Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py | |
# We make it work with pytorch amp and with bfloat16. | |
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py | |
from functools import partial | |
from typing import Optional | |
# import fused_dense_cuda # from apex | |
import fused_dense_lib as fused_dense_cuda | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
from torch.distributed import ProcessGroup | |
from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_bwd, sqrelu_fwd | |
from flash_attn.utils.distributed import ( | |
all_gather_raw, | |
all_reduce, | |
all_reduce_raw, | |
reduce_scatter, | |
reduce_scatter_raw, | |
) | |
class FusedDenseFunc(torch.autograd.Function): | |
def forward( | |
ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True | |
): | |
""" | |
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel | |
with sequence parallelism: we do an all_gather_raw of x before doing the matmul. | |
""" | |
ctx.compute_weight_gradient = weight.requires_grad | |
ctx.return_residual = return_residual | |
ctx.process_group = process_group | |
ctx.sequence_parallel = sequence_parallel | |
if torch.is_autocast_enabled(): | |
x = x.to(dtype=torch.get_autocast_gpu_dtype()) | |
x = x.contiguous() | |
if process_group is not None and sequence_parallel: | |
# We want to kick off the all_gather early, before weight dtype conversion | |
total_x, handle_x = all_gather_raw(x, process_group, async_op=True) | |
else: | |
total_x = x | |
if torch.is_autocast_enabled(): | |
weight = weight.to(dtype=torch.get_autocast_gpu_dtype()) | |
bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None | |
weight = weight.contiguous() | |
if process_group is not None and sequence_parallel: | |
handle_x.wait() | |
batch_shape, n = total_x.shape[:-1], total_x.shape[-1] | |
batch_dim = batch_shape.numel() | |
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 | |
if min(batch_dim, n, *weight.shape) > 65535 * 32: | |
raise RuntimeError("fused_dense only supports matrix dims <= 2M") | |
output = F.linear(total_x, weight, bias) | |
if ctx.compute_weight_gradient: | |
ctx.save_for_backward(x, weight) | |
else: | |
ctx.save_for_backward(weight) | |
return output if not return_residual else (output, x) | |
def backward(ctx, grad_output, *args): | |
grad_output = grad_output.contiguous() | |
if ctx.return_residual: | |
(grad_input,) = args | |
grad_input = grad_input.contiguous() | |
process_group = ctx.process_group | |
sequence_parallel = ctx.sequence_parallel | |
if ctx.compute_weight_gradient: | |
x, weight = ctx.saved_tensors | |
if process_group is not None and sequence_parallel: | |
total_x, handle_x = all_gather_raw(x, process_group, async_op=True) | |
else: | |
total_x = x | |
else: | |
(weight,) = ctx.saved_tensors | |
total_x = None | |
batch_shape = grad_output.shape[:-1] | |
batch_dim = batch_shape.numel() | |
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) | |
if ctx.needs_input_grad[0]: | |
if not ctx.return_residual: | |
grad_input = F.linear(grad_output, weight.t()) | |
else: | |
grad_input = torch.addmm( | |
grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight | |
) | |
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) | |
if process_group is not None: | |
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw | |
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) | |
else: | |
grad_input = None | |
if ctx.needs_input_grad[1]: | |
assert ctx.compute_weight_gradient | |
if process_group is not None and sequence_parallel: | |
handle_x.wait() | |
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad( | |
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2] | |
) | |
else: | |
grad_weight = None | |
grad_bias = grad_output if ctx.needs_input_grad[2] else None | |
if process_group is not None and ctx.needs_input_grad[0]: | |
handle_grad_input.wait() | |
return grad_input, grad_weight, grad_bias, None, None, None | |
def fused_dense_func( | |
x: Tensor, | |
weight: Tensor, | |
bias: Optional[Tensor] = None, | |
return_residual: bool = False, | |
process_group: Optional[ProcessGroup] = None, | |
sequence_parallel: bool = True, | |
): | |
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or ( | |
x.dtype == torch.float32 and torch.is_autocast_enabled() | |
) | |
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible: | |
return FusedDenseFunc.apply( | |
x, weight, bias, return_residual, process_group, sequence_parallel | |
) | |
else: | |
assert process_group is None | |
out = F.linear(x, weight, bias) | |
return out if not return_residual else (out, x) | |
class FusedDense(nn.Linear): | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
bias: bool = True, | |
return_residual: bool = False, | |
device=None, | |
dtype=None, | |
) -> None: | |
super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) | |
self.return_residual = return_residual | |
def forward(self, x, process_group=None): | |
""" | |
If process_group is not None, we're doing Tensor Parallel with sequence parallelism: | |
we do an all_gather of x before doing the matmul. | |
""" | |
return fused_dense_func( | |
x, | |
self.weight, | |
self.bias, | |
return_residual=self.return_residual, | |
process_group=process_group, | |
) | |
class ColumnParallelLinear(nn.Linear): | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
process_group: ProcessGroup, | |
bias: bool = True, | |
sequence_parallel=True, | |
multiple_of=1, | |
device=None, | |
dtype=None, | |
) -> None: | |
world_size = torch.distributed.get_world_size(process_group) | |
if out_features % multiple_of: | |
raise ValueError(f"out_features ({out_features}) must be a multiple of {multiple_of}") | |
multiple = out_features // multiple_of | |
# We want to split @multiple across world_size, but it could be an uneven split | |
div = multiple // world_size | |
mod = multiple % world_size | |
# The first @mod ranks get @div + 1 copies, the rest get @div copies | |
local_multiple = div + int(torch.distributed.get_rank(process_group) < mod) | |
super().__init__( | |
in_features, local_multiple * multiple_of, bias=bias, device=device, dtype=dtype | |
) | |
self.process_group = process_group | |
self.sequence_parallel = sequence_parallel | |
def forward(self, x): | |
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism: | |
# we do an all_gather of x before doing the matmul. | |
# If not, then the input is already gathered. | |
return fused_dense_func( | |
x, | |
self.weight, | |
self.bias, | |
process_group=self.process_group, | |
sequence_parallel=self.sequence_parallel, | |
) | |
class RowParallelLinear(nn.Linear): | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
process_group: ProcessGroup, | |
bias: bool = True, | |
sequence_parallel=True, | |
multiple_of=1, | |
device=None, | |
dtype=None, | |
) -> None: | |
world_size = torch.distributed.get_world_size(process_group) | |
rank = torch.distributed.get_rank(process_group) | |
if in_features % multiple_of: | |
raise ValueError(f"in_features ({in_features}) must be a multiple of {multiple_of}") | |
multiple = in_features // multiple_of | |
# We want to split @multiple across world_size, but it could be an uneven split | |
div = multiple // world_size | |
mod = multiple % world_size | |
# The first @mod ranks get @div + 1 copies, the rest get @div copies | |
local_multiple = div + int(torch.distributed.get_rank(process_group) < mod) | |
# Only rank 0 will have bias | |
super().__init__( | |
local_multiple * multiple_of, | |
out_features, | |
bias=bias and rank == 0, | |
device=device, | |
dtype=dtype, | |
) | |
self.process_group = process_group | |
self.sequence_parallel = sequence_parallel | |
def forward(self, x): | |
""" | |
We're doing Tensor Parallel with sequence parallelism: we do the matmul and then | |
a reduce_scatter of the result. | |
""" | |
out = fused_dense_func(x, self.weight, self.bias) | |
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce | |
return reduce_fn(out, self.process_group) | |
class FusedMLPFunc(torch.autograd.Function): | |
def forward( | |
ctx, | |
x, | |
weight1, | |
bias1, | |
weight2, | |
bias2, | |
activation="gelu_approx", | |
save_pre_act=True, | |
return_residual=False, | |
checkpoint_lvl=0, | |
heuristic=0, | |
process_group=None, | |
sequence_parallel=True, | |
): | |
""" | |
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel | |
with sequence parallelism: we do an all_gather of x before doing the matmul. | |
If sequence_parallel=False, then the input is already gathered. | |
checkpoint_lvl: | |
0: no recomputation in the bwd | |
1: recompute gelu_out / relu_out in the bwd | |
2: recompute pre_act and gelu_out / relu_out in the bwd | |
""" | |
assert -1 <= heuristic <= 4 | |
assert activation in ["gelu_approx", "relu", "sqrelu"] | |
if activation == "sqrelu": | |
assert heuristic == -1 | |
if not save_pre_act: | |
checkpoint_lvl = 2 | |
assert checkpoint_lvl in [0, 1, 2] | |
ctx.return_residual = return_residual | |
ctx.process_group = process_group | |
ctx.sequence_parallel = sequence_parallel | |
ctx.checkpoint_lvl = checkpoint_lvl | |
ctx.activation = activation | |
ctx.heuristic = heuristic | |
if torch.is_autocast_enabled(): | |
x = x.to(dtype=torch.get_autocast_gpu_dtype()) | |
x = x.contiguous() | |
if process_group is not None and sequence_parallel: | |
# We want to kick off the all_gather early, before weight dtype conversion | |
total_x, handle_x = all_gather_raw(x, process_group, async_op=True) | |
else: | |
total_x = x | |
if torch.is_autocast_enabled(): | |
dtype = torch.get_autocast_gpu_dtype() | |
weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]] | |
bias1 = bias1.to(dtype=dtype) if bias1 is not None else None | |
bias2 = bias2.to(dtype=dtype) if bias2 is not None else None | |
weight1 = weight1.contiguous() | |
bias1 = bias1.contiguous() if bias1 is not None else None | |
weight2 = weight2.contiguous() | |
bias2 = bias2.contiguous() if bias2 is not None else None | |
if process_group is not None and sequence_parallel: | |
handle_x.wait() | |
batch_shape, n = total_x.shape[:-1], total_x.shape[-1] | |
batch_dim = batch_shape.numel() | |
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174 | |
if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32: | |
raise RuntimeError("fused_dense only supports matrix dims <= 2M") | |
if heuristic == -1: | |
pre_act = F.linear(total_x, weight1, bias1) | |
activation_fn = ( | |
partial(F.gelu, approximate="tanh") | |
if activation == "gelu_approx" | |
else (sqrelu_fwd if activation == "sqrelu" else F.relu) | |
) | |
with torch.jit.fuser("fuser2"): | |
output1 = activation_fn(pre_act) | |
# This is before adding bias1 | |
# pre_act = F.linear(total_x.reshape(batch_dim, n), weight1) | |
# with torch.jit.fuser('fuser2'): | |
# output1 = bias_gelu(pre_act, bias1) | |
else: | |
is_gelu = activation == "gelu_approx" | |
output1, *rest = fused_dense_cuda.linear_act_forward( | |
total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic | |
) | |
if save_pre_act: | |
pre_act = rest[0] | |
output2 = F.linear(output1, weight2, bias2) | |
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"): | |
# For RELU the pre_act is very small (just a bit-mask) so we just save it | |
ctx.save_for_backward(x, weight1, weight2, pre_act, output1) | |
elif checkpoint_lvl == 1: | |
ctx.save_for_backward(x, weight1, weight2, pre_act) | |
elif checkpoint_lvl == 2: | |
ctx.save_for_backward(x, weight1, weight2, bias1) | |
output2 = output2.reshape(*batch_shape, output2.shape[-1]) | |
return output2 if not return_residual else (output2, x) | |
def backward(ctx, grad_output, *args): | |
grad_output = grad_output.contiguous() | |
checkpoint_lvl = ctx.checkpoint_lvl | |
activation = ctx.activation | |
activation_fn = ( | |
partial(F.gelu, approximate="tanh") | |
if activation == "gelu_approx" | |
else (sqrelu_fwd if activation == "sqrelu" else F.relu) | |
) | |
if ctx.return_residual: | |
(grad_input,) = args | |
grad_input = grad_input.contiguous() | |
process_group = ctx.process_group | |
sequence_parallel = ctx.sequence_parallel | |
x, weight1, weight2, *rest = ctx.saved_tensors | |
if process_group is None or not sequence_parallel: | |
total_x = x | |
batch_shape = grad_output.shape[:-1] | |
batch_dim = batch_shape.numel() | |
if checkpoint_lvl in [0, 1]: | |
if process_group is not None and sequence_parallel: | |
total_x, handle_x = all_gather_raw(x, process_group, async_op=True) | |
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"): | |
pre_act, output1 = rest | |
elif checkpoint_lvl == 1: | |
(pre_act,) = rest | |
with torch.jit.fuser("fuser2"): | |
output1 = activation_fn(pre_act) | |
elif checkpoint_lvl == 2: | |
(bias1,) = rest | |
if process_group is not None and sequence_parallel: | |
total_x, _ = all_gather_raw(x, process_group) | |
if ctx.heuristic == -1: | |
pre_act = F.linear(total_x, weight1, bias1) | |
with torch.jit.fuser("fuser2"): | |
output1 = activation_fn(pre_act) | |
else: | |
output1, pre_act = fused_dense_cuda.linear_act_forward( | |
total_x.reshape(batch_dim, total_x.shape[-1]), | |
weight1, | |
bias1, | |
activation == "gelu_approx", | |
True, | |
ctx.heuristic, | |
) | |
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) | |
output1 = output1.reshape(batch_dim, output1.shape[-1]) | |
pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1]) | |
if ctx.needs_input_grad[3]: | |
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad( | |
output1, grad_output, ctx.needs_input_grad[4] | |
) | |
else: | |
grad_weight2 = None | |
grad_bias2 = grad_output if ctx.needs_input_grad[4] else None | |
if ctx.heuristic == -1: | |
# grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act) | |
grad_output1 = F.linear(grad_output, weight2.t()) | |
activation_grad_fn = ( | |
gelu_bwd | |
if activation == "gelu_approx" | |
else (sqrelu_bwd if activation == "sqrelu" else relu_bwd) | |
) | |
with torch.jit.fuser("fuser2"): | |
grad_pre_act = activation_grad_fn(grad_output1, pre_act) | |
else: | |
# The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't | |
# just compute gelu/relu grad | |
grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad( | |
weight2, grad_output, pre_act, activation == "gelu_approx", ctx.heuristic | |
) | |
if not ctx.needs_input_grad[2]: | |
grad_bias1 = None | |
if ctx.needs_input_grad[0]: | |
if not ctx.return_residual: | |
grad_input = F.linear(grad_pre_act, weight1.t()) | |
else: | |
grad_input = torch.addmm( | |
grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1 | |
) | |
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1]) | |
if process_group is not None: | |
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw | |
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True) | |
else: | |
grad_input = None | |
if ctx.heuristic == -1: | |
if ctx.needs_input_grad[1]: | |
if process_group is not None and sequence_parallel and checkpoint_lvl != 2: | |
handle_x.wait() | |
grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad( | |
total_x.reshape(batch_dim, total_x.shape[-1]), | |
grad_pre_act, | |
ctx.needs_input_grad[2], | |
) | |
else: | |
grad_weight1 = None | |
grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None | |
else: | |
if ctx.needs_input_grad[1]: | |
if process_group is not None and sequence_parallel and checkpoint_lvl != 2: | |
handle_x.wait() | |
grad_weight1 = F.linear( | |
grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t() | |
) | |
else: | |
grad_weight1 = None | |
if process_group is not None and ctx.needs_input_grad[0]: | |
handle_grad_input.wait() | |
return ( | |
grad_input, | |
grad_weight1, | |
grad_bias1, | |
grad_weight2, | |
grad_bias2, | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
) | |
def fused_mlp_func( | |
x: Tensor, | |
weight1: Tensor, | |
weight2: Tensor, | |
bias1: Optional[Tensor] = None, | |
bias2: Optional[Tensor] = None, | |
activation: str = "gelu_approx", | |
save_pre_act: bool = True, | |
return_residual: bool = False, | |
checkpoint_lvl: int = 0, | |
heuristic: int = 0, | |
process_group: Optional[ProcessGroup] = None, | |
sequence_parallel: bool = True, | |
): | |
assert activation in ["gelu_approx", "relu", "sqrelu"] | |
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or ( | |
x.dtype == torch.float32 and torch.is_autocast_enabled() | |
) | |
# If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu) | |
dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == "relu" else 8) == 0) | |
if ( | |
x.is_cuda | |
and weight1.is_cuda | |
and weight2.is_cuda | |
and (bias1 is None or bias1.is_cuda) | |
and (bias2 is None or bias2.is_cuda) | |
and dtype_eligible | |
and dim_eligible | |
): | |
return FusedMLPFunc.apply( | |
x, | |
weight1, | |
bias1, | |
weight2, | |
bias2, | |
activation, | |
save_pre_act, | |
return_residual, | |
checkpoint_lvl, | |
heuristic, | |
process_group, | |
sequence_parallel, | |
) | |
else: | |
assert process_group is None | |
pre_act = F.linear(x, weight1, bias1) | |
activation_fn = ( | |
partial(F.gelu, approximate="tanh") | |
if activation == "gelu_approx" | |
else partial(F.relu, inplace=True) | |
) | |
output1 = activation_fn(pre_act) | |
output2 = F.linear(output1, weight2, bias2) | |
return output2 if not return_residual else (output2, x) | |
class FusedMLP(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
bias1=True, | |
bias2=True, | |
activation="gelu_approx", | |
return_residual=False, | |
checkpoint_lvl=0, | |
heuristic="auto", | |
device=None, | |
dtype=None, | |
): | |
""" | |
If process_group is not None, we're doing Tensor Parallel with sequence parallelism: | |
we do an all_gather of x before doing the matmul, gelu, then matmul. | |
Finally we do a reduce_scatter of the output. | |
checkpoint_lvl (increasing lvl means slower but more memory saving): | |
0: no recomputation in the bwd | |
1: recompute gelu_out in the bwd | |
2: recompute pre_act and gelu_out in the bwd | |
heuristic: | |
-1: don't fuse gemm + gelu (separate kernel) | |
0..4: use this heuristic for the algo section in the fused gemm + gelu | |
'auto': heuristic will be picked automatically: | |
For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf. | |
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16. | |
For H100, we set heuristic=-1 for both fp16 and bf16 as the fused cuBlasLt implementation | |
is slower than the unfused version. | |
return_residual: whether to return the input x along with the output. This is for | |
performance reason: for post-norm architecture, returning the input allows us | |
to fuse the backward of nn.Linear with the residual connection. | |
""" | |
assert checkpoint_lvl in [0, 1, 2] | |
assert activation in ["gelu_approx", "relu", "sqrelu"] | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features * 4 | |
self.activation = activation | |
self.return_residual = return_residual | |
self.checkpoint_lvl = checkpoint_lvl | |
self.heuristic = heuristic if activation != "sqrelu" else -1 | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) | |
def forward(self, x, process_group=None): | |
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype() | |
if self.heuristic == "auto": | |
if self.activation == "gelu_approx": | |
if torch.cuda.get_device_capability("cuda") == (9, 0): | |
heuristic = -1 | |
else: | |
cuda_ver = tuple(map(int, torch.version.cuda.split("."))) | |
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1) | |
else: | |
heuristic = 0 | |
else: | |
heuristic = self.heuristic | |
out = fused_mlp_func( | |
x, | |
self.fc1.weight, | |
self.fc2.weight, | |
self.fc1.bias, | |
self.fc2.bias, | |
activation=self.activation, | |
save_pre_act=self.training, | |
return_residual=self.return_residual, | |
checkpoint_lvl=self.checkpoint_lvl, | |
heuristic=heuristic, | |
process_group=process_group, | |
) | |
if self.return_residual: | |
out, x = out | |
if process_group is not None: | |
out = reduce_scatter(out, process_group) | |
return out if not self.return_residual else (out, x) | |
class ParallelFusedMLP(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
activation="gelu_approx", | |
process_group: ProcessGroup = None, | |
bias1=True, | |
bias2=True, | |
sequence_parallel=True, | |
checkpoint_lvl=0, | |
heuristic="auto", | |
device=None, | |
dtype=None, | |
): | |
""" | |
process_group is required. We're doing Tensor Parallel with sequence parallelism: | |
we do an all_gather of x before doing the matmul, gelu, then matmul. | |
Finally we do a reduce_scatter of the output. | |
checkpoint_lvl (increasing lvl means slower but more memory saving): | |
0: no recomputation in the bwd | |
1: recompute gelu_out in the bwd | |
2: recompute pre_act and gelu_out in the bwd | |
heuristic: | |
-1: don't fuse gemm + gelu (separate kernel) | |
0..4: use this heuristic for the algo section in the fused gemm + gelu | |
'auto': heuristic will be picked automatically: | |
For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf. | |
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16. | |
""" | |
assert checkpoint_lvl in [0, 1, 2] | |
assert activation in ["gelu_approx", "relu", "sqrelu"] | |
assert process_group is not None | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features * 4 | |
self.activation = activation | |
self.process_group = process_group | |
self.sequence_parallel = sequence_parallel | |
self.checkpoint_lvl = checkpoint_lvl | |
self.heuristic = heuristic if activation != "sqrelu" else -1 | |
self.fc1 = ColumnParallelLinear( | |
in_features, hidden_features, process_group, bias=bias1, **factory_kwargs | |
) | |
self.fc2 = RowParallelLinear( | |
hidden_features, out_features, process_group, bias=bias2, **factory_kwargs | |
) | |
def forward(self, x): | |
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype() | |
if self.heuristic == "auto": | |
if self.activation == "gelu_approx": | |
cuda_ver = tuple(map(int, torch.version.cuda.split("."))) | |
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1) | |
else: | |
heuristic = 0 | |
else: | |
heuristic = self.heuristic | |
out = fused_mlp_func( | |
x, | |
self.fc1.weight, | |
self.fc2.weight, | |
self.fc1.bias, | |
self.fc2.bias, | |
activation=self.activation, | |
save_pre_act=self.training, | |
checkpoint_lvl=self.checkpoint_lvl, | |
heuristic=heuristic, | |
process_group=self.process_group, | |
sequence_parallel=self.sequence_parallel, | |
) | |
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce | |
return reduce_fn(out, self.process_group) | |