Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import math | |
import re | |
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
from transformers import GPT2Config, OPTConfig | |
def remap_state_dict_hf_opt(state_dict, config): | |
def key_mapping_model(key): | |
key = re.sub(r"^model.decoder.", "transformer.", key) | |
# The OPT-350m model uses '^decoder' instead of '^model.decoder' | |
key = re.sub(r"^decoder.", "transformer.", key) | |
return key | |
state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items()) | |
# Word embedding and position embedding | |
def key_mapping_emb(key): | |
key = re.sub(r"^transformer.embed_tokens.", "transformer.embeddings.word_embeddings.", key) | |
# The OPT-350m model uses has project_in and project_out | |
key = re.sub(r"^transformer.project_in.", "transformer.embeddings.project_in.", key) | |
key = re.sub(r"^transformer.project_out.", "project_out.", key) | |
key = re.sub( | |
r"^transformer.embed_positions.", "transformer.embeddings.position_embeddings.", key | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) | |
# OPT uses the first 2 indices of pos_emb for padding tokens | |
pos_embeddings = state_dict.pop("transformer.embeddings.position_embeddings.weight") | |
state_dict["transformer.embeddings.position_embeddings.weight"] = pos_embeddings[2:] | |
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple | |
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) | |
) | |
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key) | |
# The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm' | |
key = re.sub(r"^transformer.layer_norm.", r"transformer.ln_f.", key) | |
key = re.sub( | |
r"^transformer.layers.(\d+).self_attn_layer_norm.", r"transformer.layers.\1.norm1.", key | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).final_layer_norm.", r"transformer.layers.\1.norm2.", key | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLP | |
def key_mapping_mlp(key): | |
return re.sub( | |
r"^transformer.layers.(\d+).fc(1|2).", r"transformer.layers.\1.mlp.fc\2.", key | |
) | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# Attention | |
for l in range(config.n_layer): | |
Wq = state_dict.pop(f"transformer.layers.{l}.self_attn.q_proj.weight") | |
Wk = state_dict.pop(f"transformer.layers.{l}.self_attn.k_proj.weight") | |
Wv = state_dict.pop(f"transformer.layers.{l}.self_attn.v_proj.weight") | |
bq = state_dict.pop(f"transformer.layers.{l}.self_attn.q_proj.bias") | |
bk = state_dict.pop(f"transformer.layers.{l}.self_attn.k_proj.bias") | |
bv = state_dict.pop(f"transformer.layers.{l}.self_attn.v_proj.bias") | |
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0) | |
state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0) | |
def key_mapping_attn(key): | |
return re.sub( | |
r"^transformer.layers.(\d+).self_attn.out_proj.", | |
r"transformer.layers.\1.mixer.out_proj.", | |
key, | |
) | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
return state_dict | |
def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config: | |
assert opt_config.layerdrop == 0.0 | |
assert opt_config.layer_norm_elementwise_affine | |
word_embed_proj_dim = ( | |
None | |
if opt_config.word_embed_proj_dim == opt_config.hidden_size | |
else opt_config.word_embed_proj_dim | |
) | |
return GPT2Config( | |
vocab_size=opt_config.vocab_size, | |
n_positions=opt_config.max_position_embeddings, | |
n_embd=opt_config.hidden_size, | |
n_layer=opt_config.num_hidden_layers, | |
n_head=opt_config.num_attention_heads, | |
n_inner=opt_config.ffn_dim, | |
activation_function=opt_config.activation_function, | |
resid_pdrop=opt_config.dropout, | |
# HF's implementation of OPT doesn't seem to have embedding dropout | |
embd_pdrop=opt_config.dropout, | |
attn_pdrop=opt_config.attention_dropout, | |
initializer_range=opt_config.init_std, | |
bos_token_id=opt_config.bos_token_id, | |
eos_token_id=opt_config.eos_token_id, | |
# These are new arguments not in the original GPT2Config | |
prenorm=opt_config.do_layer_norm_before, | |
word_embed_proj_dim=word_embed_proj_dim, | |
) | |