Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import math | |
import re | |
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from transformers import GPT2Config, GPTNeoXConfig | |
def remap_state_dict_hf_gpt_neox(state_dict, config): | |
def key_mapping_layers(key): | |
return re.sub(r"^gpt_neox.", "transformer.", key) | |
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) | |
# Word embedding | |
def key_mapping_emb(key): | |
return re.sub(r"^transformer.embed_in.", "transformer.embeddings.word_embeddings.", key) | |
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) | |
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple | |
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) | |
) | |
if getattr(config, "tie_word_embeddings", False): | |
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] | |
else: | |
output_embeddings = state_dict.pop("embed_out.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
state_dict["lm_head.weight"] = F.pad( | |
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) | |
) | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key) | |
key = re.sub( | |
r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).post_attention_layernorm.", | |
r"transformer.layers.\1.norm2.", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLP | |
def key_mapping_mlp(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# Attention | |
for l in range(config.n_layer): | |
# We don't store these biases | |
state_dict.pop(f"transformer.layers.{l}.attention.bias") | |
state_dict.pop(f"transformer.layers.{l}.attention.masked_bias") | |
# We don't store these | |
state_dict.pop(f"transformer.layers.{l}.attention.rotary_emb.inv_freq", None) | |
# GPT-NeoX stores Wqkv as ((nheads 3 headdim), hidden_dim) | |
# while we store Wqkv as ((3 nheads headdim), hidden_dim) | |
headdim = config.hidden_size // config.num_attention_heads | |
Wqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.weight") | |
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = rearrange( | |
Wqkv, | |
"(nheads three headdim) ... -> (three nheads headdim) ...", | |
three=3, | |
headdim=headdim, | |
) | |
bqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.bias") | |
state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = rearrange( | |
bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim | |
) | |
def key_mapping_attn(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).attention.dense.", | |
r"transformer.layers.\1.mixer.out_proj.", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
return state_dict | |
def gpt_neox_config_to_gpt2_config(gpt_neox_config: GPTNeoXConfig) -> GPT2Config: | |
assert gpt_neox_config.rotary_emb_base == 10000 | |
return GPT2Config( | |
vocab_size=gpt_neox_config.vocab_size, | |
n_positions=0, # No absolute position embedding | |
n_embd=gpt_neox_config.hidden_size, | |
n_layer=gpt_neox_config.num_hidden_layers, | |
n_head=gpt_neox_config.num_attention_heads, | |
n_inner=gpt_neox_config.intermediate_size, | |
activation_function=gpt_neox_config.hidden_act, | |
resid_pdrop=0.0, # No dropout | |
embd_pdrop=0.0, | |
attn_pdrop=0.0, | |
layer_norm_epsilon=gpt_neox_config.layer_norm_eps, | |
initializer_range=gpt_neox_config.initializer_range, | |
bos_token_id=gpt_neox_config.bos_token_id, | |
eos_token_id=gpt_neox_config.eos_token_id, | |
# These are new arguments not in the original GPT2Config | |
prenorm=True, | |
parallel_block=gpt_neox_config.use_parallel_residual, | |
parallel_block_tied_norm=False, | |
rotary_emb_fraction=gpt_neox_config.rotary_pct, | |
tie_word_embeddings=gpt_neox_config.tie_word_embeddings, | |
) | |