Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
raw
history blame
5.28 kB
# Copyright (c) 2023, Tri Dao.
import math
import re
from collections import OrderedDict
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import GPT2Config, GPTNeoXConfig
def remap_state_dict_hf_gpt_neox(state_dict, config):
def key_mapping_layers(key):
return re.sub(r"^gpt_neox.", "transformer.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# Word embedding
def key_mapping_emb(key):
return re.sub(r"^transformer.embed_in.", "transformer.embeddings.word_embeddings.", key)
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
if getattr(config, "tie_word_embeddings", False):
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
else:
output_embeddings = state_dict.pop("embed_out.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
state_dict["lm_head.weight"] = F.pad(
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
)
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key)
key = re.sub(
r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key
)
key = re.sub(
r"^transformer.layers.(\d+).post_attention_layernorm.",
r"transformer.layers.\1.norm2.",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
key = re.sub(
r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key
)
key = re.sub(
r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
for l in range(config.n_layer):
# We don't store these biases
state_dict.pop(f"transformer.layers.{l}.attention.bias")
state_dict.pop(f"transformer.layers.{l}.attention.masked_bias")
# We don't store these
state_dict.pop(f"transformer.layers.{l}.attention.rotary_emb.inv_freq", None)
# GPT-NeoX stores Wqkv as ((nheads 3 headdim), hidden_dim)
# while we store Wqkv as ((3 nheads headdim), hidden_dim)
headdim = config.hidden_size // config.num_attention_heads
Wqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.weight")
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = rearrange(
Wqkv,
"(nheads three headdim) ... -> (three nheads headdim) ...",
three=3,
headdim=headdim,
)
bqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.bias")
state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = rearrange(
bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim
)
def key_mapping_attn(key):
key = re.sub(
r"^transformer.layers.(\d+).attention.dense.",
r"transformer.layers.\1.mixer.out_proj.",
key,
)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
return state_dict
def gpt_neox_config_to_gpt2_config(gpt_neox_config: GPTNeoXConfig) -> GPT2Config:
assert gpt_neox_config.rotary_emb_base == 10000
return GPT2Config(
vocab_size=gpt_neox_config.vocab_size,
n_positions=0, # No absolute position embedding
n_embd=gpt_neox_config.hidden_size,
n_layer=gpt_neox_config.num_hidden_layers,
n_head=gpt_neox_config.num_attention_heads,
n_inner=gpt_neox_config.intermediate_size,
activation_function=gpt_neox_config.hidden_act,
resid_pdrop=0.0, # No dropout
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=gpt_neox_config.layer_norm_eps,
initializer_range=gpt_neox_config.initializer_range,
bos_token_id=gpt_neox_config.bos_token_id,
eos_token_id=gpt_neox_config.eos_token_id,
# These are new arguments not in the original GPT2Config
prenorm=True,
parallel_block=gpt_neox_config.use_parallel_residual,
parallel_block_tied_norm=False,
rotary_emb_fraction=gpt_neox_config.rotary_pct,
tie_word_embeddings=gpt_neox_config.tie_word_embeddings,
)