Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import math | |
import re | |
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from transformers import FalconConfig, GPT2Config | |
def remap_state_dict_hf_falcon(state_dict, config): | |
def key_mapping_layers(key): | |
return re.sub(r"^transformer.h.", "transformer.layers.", key) | |
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) | |
# Word embedding | |
def key_mapping_emb(key): | |
return re.sub( | |
r"^transformer.word_embeddings.", "transformer.embeddings.word_embeddings.", key | |
) | |
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) | |
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple | |
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) | |
) | |
if getattr(config, "tie_word_embeddings"): | |
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] | |
else: | |
output_embeddings = state_dict.pop("lm_head.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
state_dict["lm_head.weight"] = F.pad( | |
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) | |
) | |
output_embeddings_bias = state_dict.pop("lm_head.bias") | |
state_dict["lm_head.bias"] = F.pad( | |
output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0]) | |
) | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).post_attention_layernorm.", | |
r"transformer.layers.\1.norm2.", | |
key, | |
) | |
key = re.sub(r"^transformer.layers.(\d+).ln_attn.", r"transformer.layers.\1.norm1.", key) | |
key = re.sub(r"^transformer.layers.(\d+).ln_mlp.", r"transformer.layers.\1.norm2.", key) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLP | |
def key_mapping_mlp(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
def key_mapping_attn(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).self_attention.query_key_value.", | |
r"transformer.layers.\1.mixer.Wqkv.", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).self_attention.dense.", | |
r"transformer.layers.\1.mixer.out_proj.", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
n_head = config.n_head | |
n_head_kv = getattr(config, "n_head_kv", 1) | |
headdim = config.hidden_size // n_head | |
for l in range(config.n_layer): | |
# The weights are stored in a different layout compared to our implementation | |
Wqkv = rearrange( | |
state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight"), | |
"(group ratio headdim) ... -> group ratio headdim ...", | |
ratio=n_head // n_head_kv + 2, | |
headdim=headdim, | |
) | |
Wq = rearrange(Wqkv[:, :-2], "group ratio headdim ... -> (group ratio headdim) ...") | |
Wk = rearrange(Wqkv[:, [-2]], "group ratio headdim ... -> (group ratio headdim) ...") | |
Wv = rearrange(Wqkv[:, [-1]], "group ratio headdim ... -> (group ratio headdim) ...") | |
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0) | |
return state_dict | |
def falcon_config_to_gpt2_config(falcon_config: FalconConfig) -> GPT2Config: | |
# The 40b config uses "n_head_kv" instead of "num_kv_heads" | |
n_head_kv = getattr( | |
falcon_config, | |
"n_head_kv", | |
1 if getattr(falcon_config, "multi_query", False) else falcon_config.n_head, | |
) | |
# HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config. | |
# So we have to infer it from the number of heads in the key/value block | |
parallel_block_tied_norm = n_head_kv == 1 | |
return GPT2Config( | |
vocab_size=falcon_config.vocab_size, | |
n_positions=0, # No absolute position embedding | |
n_embd=falcon_config.hidden_size, | |
n_layer=falcon_config.n_layer, | |
n_head=falcon_config.n_head, | |
n_inner=falcon_config.hidden_size * 4, | |
activation_function="gelu", | |
resid_pdrop=falcon_config.hidden_dropout, | |
embd_pdrop=0.0, # There doesn't seem to be any embedding dropout | |
attn_pdrop=falcon_config.attention_dropout, | |
layer_norm_epsilon=falcon_config.layer_norm_epsilon, | |
initializer_range=falcon_config.initializer_range, | |
bos_token_id=falcon_config.bos_token_id, | |
eos_token_id=falcon_config.eos_token_id, | |
# These are new arguments not in the original GPT2Config | |
parallel_block=falcon_config.parallel_attn, | |
n_head_kv=n_head_kv, | |
parallel_block_tied_norm=parallel_block_tied_norm, | |
rotary_emb_fraction=1.0, | |
rotary_emb_interleaved=False, | |
tie_word_embeddings=True, | |
qkv_proj_bias=falcon_config.bias, | |
out_proj_bias=falcon_config.bias, | |
mlp_fc1_bias=falcon_config.bias, | |
mlp_fc2_bias=falcon_config.bias, | |
lm_head_bias=False, | |
) | |