Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
raw
history blame
6.18 kB
# Copyright (c) 2023, Tri Dao.
import math
import re
from collections import OrderedDict
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import FalconConfig, GPT2Config
def remap_state_dict_hf_falcon(state_dict, config):
def key_mapping_layers(key):
return re.sub(r"^transformer.h.", "transformer.layers.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# Word embedding
def key_mapping_emb(key):
return re.sub(
r"^transformer.word_embeddings.", "transformer.embeddings.word_embeddings.", key
)
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
)
if getattr(config, "tie_word_embeddings"):
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
else:
output_embeddings = state_dict.pop("lm_head.weight")
# It's possible that vocab_size is padded to be a multiple of 8, for example.
state_dict["lm_head.weight"] = F.pad(
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
)
output_embeddings_bias = state_dict.pop("lm_head.bias")
state_dict["lm_head.bias"] = F.pad(
output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
)
# LayerNorm
def key_mapping_ln(key):
key = re.sub(
r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key
)
key = re.sub(
r"^transformer.layers.(\d+).post_attention_layernorm.",
r"transformer.layers.\1.norm2.",
key,
)
key = re.sub(r"^transformer.layers.(\d+).ln_attn.", r"transformer.layers.\1.norm1.", key)
key = re.sub(r"^transformer.layers.(\d+).ln_mlp.", r"transformer.layers.\1.norm2.", key)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
key = re.sub(
r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key
)
key = re.sub(
r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
def key_mapping_attn(key):
key = re.sub(
r"^transformer.layers.(\d+).self_attention.query_key_value.",
r"transformer.layers.\1.mixer.Wqkv.",
key,
)
key = re.sub(
r"^transformer.layers.(\d+).self_attention.dense.",
r"transformer.layers.\1.mixer.out_proj.",
key,
)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
n_head = config.n_head
n_head_kv = getattr(config, "n_head_kv", 1)
headdim = config.hidden_size // n_head
for l in range(config.n_layer):
# The weights are stored in a different layout compared to our implementation
Wqkv = rearrange(
state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight"),
"(group ratio headdim) ... -> group ratio headdim ...",
ratio=n_head // n_head_kv + 2,
headdim=headdim,
)
Wq = rearrange(Wqkv[:, :-2], "group ratio headdim ... -> (group ratio headdim) ...")
Wk = rearrange(Wqkv[:, [-2]], "group ratio headdim ... -> (group ratio headdim) ...")
Wv = rearrange(Wqkv[:, [-1]], "group ratio headdim ... -> (group ratio headdim) ...")
state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
return state_dict
def falcon_config_to_gpt2_config(falcon_config: FalconConfig) -> GPT2Config:
# The 40b config uses "n_head_kv" instead of "num_kv_heads"
n_head_kv = getattr(
falcon_config,
"n_head_kv",
1 if getattr(falcon_config, "multi_query", False) else falcon_config.n_head,
)
# HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config.
# So we have to infer it from the number of heads in the key/value block
parallel_block_tied_norm = n_head_kv == 1
return GPT2Config(
vocab_size=falcon_config.vocab_size,
n_positions=0, # No absolute position embedding
n_embd=falcon_config.hidden_size,
n_layer=falcon_config.n_layer,
n_head=falcon_config.n_head,
n_inner=falcon_config.hidden_size * 4,
activation_function="gelu",
resid_pdrop=falcon_config.hidden_dropout,
embd_pdrop=0.0, # There doesn't seem to be any embedding dropout
attn_pdrop=falcon_config.attention_dropout,
layer_norm_epsilon=falcon_config.layer_norm_epsilon,
initializer_range=falcon_config.initializer_range,
bos_token_id=falcon_config.bos_token_id,
eos_token_id=falcon_config.eos_token_id,
# These are new arguments not in the original GPT2Config
parallel_block=falcon_config.parallel_attn,
n_head_kv=n_head_kv,
parallel_block_tied_norm=parallel_block_tied_norm,
rotary_emb_fraction=1.0,
rotary_emb_interleaved=False,
tie_word_embeddings=True,
qkv_proj_bias=falcon_config.bias,
out_proj_bias=falcon_config.bias,
mlp_fc1_bias=falcon_config.bias,
mlp_fc2_bias=falcon_config.bias,
lm_head_bias=False,
)