Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, GGGGGGXY, Tri Dao. | |
import math | |
import json | |
import re | |
from pathlib import Path | |
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from transformers import GPT2Config, AutoConfig, PretrainedConfig | |
def remap_state_dict_hf_baichuan(state_dict, config): | |
def key_mapping_layers(key): | |
return re.sub(r"^model.", "transformer.", key) | |
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) | |
# Word embedding | |
def key_mapping_emb(key): | |
return re.sub( | |
r"^transformer.embed_tokens.", | |
"transformer.embeddings.word_embeddings.", | |
key, | |
) | |
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) | |
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
vocab_size = ( | |
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) | |
* pad_vocab_size_multiple | |
) | |
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) | |
) | |
if getattr(config, "tie_word_embeddings"): | |
state_dict["lm_head.weight"] = state_dict[ | |
"transformer.embeddings.word_embeddings.weight" | |
] | |
else: | |
output_embeddings = state_dict.pop("lm_head.weight") | |
# Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings | |
# differently. | |
vocab_size = ( | |
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple) | |
* pad_vocab_size_multiple | |
) | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
state_dict["lm_head.weight"] = F.pad( | |
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) | |
) | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key) | |
key = re.sub( | |
r"^transformer.layers.(\d+).input_layernorm.", | |
r"transformer.layers.\1.norm1.", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).post_attention_layernorm.", | |
r"transformer.layers.\1.norm2.", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLP | |
for l in range(config.n_layer): | |
w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight") | |
w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight") | |
# Our ordering is different | |
state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat( | |
[w3, w1], dim=0 | |
) | |
def key_mapping_mlp(key): | |
return re.sub( | |
r"^transformer.layers.(\d+).mlp.down_proj.", | |
r"transformer.layers.\1.mlp.fc2.", | |
key, | |
) | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# Attention | |
def key_mapping_attn(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).self_attn.W_pack.", | |
r"transformer.layers.\1.mixer.Wqkv.", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).self_attn.o_proj.", | |
r"transformer.layers.\1.mixer.out_proj.", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
for l in range(config.n_layer): | |
# pop rotary_emb.inv_freq from state dict | |
state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq", None) | |
return state_dict | |
def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config: | |
# HACK: the config doesn't have say whether it's rotary or alibi. | |
# So we have to infer from the hidden size (7B -> rotary, 13B -> alibi). | |
# HACK: the config doesn't have say whether it uses norm head. | |
# So we have to infer from the vocab size | |
# (v1, vocab size 64k, no norm head; v2, vocab size 128k, norm head). | |
use_rotary = baichuan_config.hidden_size < 5000 | |
return GPT2Config( | |
vocab_size=baichuan_config.vocab_size, | |
n_positions=0, # No absolute position embedding | |
n_embd=baichuan_config.hidden_size, | |
n_layer=baichuan_config.num_hidden_layers, | |
n_head=baichuan_config.num_attention_heads, | |
n_inner=baichuan_config.intermediate_size, | |
activation_function="swiglu", # Hardcode since HF calls it 'silu' | |
# baichuan doesn't have dropout, idk if it's because they only release the inference code | |
resid_pdrop=0.0, | |
embd_pdrop=0.0, | |
attn_pdrop=0.0, | |
layer_norm_epsilon=baichuan_config.rms_norm_eps, | |
initializer_range=baichuan_config.initializer_range, | |
bos_token_id=baichuan_config.bos_token_id, | |
eos_token_id=baichuan_config.eos_token_id, | |
# These are new arguments not in the original GPT2Config | |
pad_token_id=baichuan_config.pad_token_id, # Idk if this does anything | |
rms_norm=True, | |
rotary_emb_fraction=1.0 if use_rotary else 0.0, | |
rotary_emb_interleaved=False, | |
use_alibi=not use_rotary, | |
use_flash_attn=not use_rotary, # Alibi code path requires flash_attn | |
tie_word_embeddings=False, | |
norm_head=baichuan_config.vocab_size > 70000, | |
qkv_proj_bias=False, | |
out_proj_bias=False, | |
mlp_fc1_bias=False, | |
mlp_fc2_bias=False, | |
) | |