Spaces:
Sleeping
Sleeping
File size: 19,054 Bytes
e45d058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import re
import pytest
import torch
from einops import rearrange
from flash_attn.models.gpt import (
GPTLMHeadModel,
remap_state_dict_hf_gpt2,
shard_state_dict_tp,
combine_state_dicts_tp,
)
from flash_attn.utils.generation import InferenceParams
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import GPT2Config, GPT2Tokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF
@pytest.mark.parametrize("model_name", ["gpt2", "gpt2-medium"])
# @pytest.mark.parametrize('model_name', ["gpt2"])
def test_gpt2_state_dict(model_name):
config = GPT2Config.from_pretrained(model_name)
pretrained_state_dict = remap_state_dict_hf_gpt2(state_dict_from_pretrained(model_name), config)
model = GPTLMHeadModel(config)
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize("model_name", ["gpt2", "gpt2-medium"])
# @pytest.mark.parametrize('model_name', ["gpt2"])
def test_gpt2_non_optimized(model_name):
"""Check that our implementation of GPT2 (without any optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
config = GPT2Config.from_pretrained(model_name)
model = GPTLMHeadModel.from_pretrained(model_name, config)
model = model.cuda().to(dtype=dtype)
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda()
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype)
model.eval()
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
batch_size = 4
max_seqlen = 512
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
out = model.transformer(input_ids)
out_hf = model_hf.transformer(input_ids).last_hidden_state
out_ref = model_ref.transformer(input_ids).last_hidden_state
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
logits = model(input_ids).logits
logits_hf = model_hf(input_ids).logits
logits_ref = model_ref(input_ids).logits
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
@pytest.mark.parametrize("model_name", ["gpt2", "gpt2-medium"])
# @pytest.mark.parametrize('model_name', ["gpt2"])
def test_gpt2_optimized(model_name):
"""Check that our implementation of GPT2 (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
config = GPT2Config.from_pretrained(model_name)
vocab_size_og = config.vocab_size
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
config.pad_vocab_size_multiple = 8
model = GPTLMHeadModel.from_pretrained(model_name, config)
model = model.cuda().to(dtype=dtype)
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda()
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype)
model.eval()
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
batch_size = 4
max_seqlen = 512
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
input_ids = torch.randint(
0, vocab_size_og, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
)
out = model.transformer(input_ids)
out_hf = model_hf.transformer(input_ids).last_hidden_state
out_ref = model_ref.transformer(input_ids).last_hidden_state
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
logits = model(input_ids).logits[..., :vocab_size_og]
logits_hf = model_hf(input_ids).logits
logits_ref = model_ref(input_ids).logits
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
@pytest.mark.parametrize("optimized", [False, True])
# @pytest.mark.parametrize('optimized', [True])
@pytest.mark.parametrize("rotary", [False, True])
# @pytest.mark.parametrize('rotary', [False])
@pytest.mark.parametrize("model_name", ["gpt2"])
def test_gpt2_generation(model_name, rotary, optimized):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
dtype = torch.float16
device = "cuda"
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
if rotary:
config.n_positions = 0
config.rotary_emb_fraction = 0.5
config.rotary_emb_base = 24000
config.residual_in_fp32 = True
if optimized:
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
# if not rotary, we load the weight from HF but ignore the position embeddings.
# The model would be nonsense but it doesn't matter for the test.
model = GPTLMHeadModel.from_pretrained(
model_name, config, strict=not rotary, device=device, dtype=dtype
)
model.eval()
if not rotary:
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device)
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name, torch_dtype=dtype).to(
device=device
)
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_ids = tokenizer("Hello, my dog is cute and he", return_tensors="pt").input_ids.to(
device=device
)
max_length = 25
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
# Slow generation for reference
sequences = []
scores = []
cur_input_ids = input_ids
with torch.inference_mode():
scores.append(model(cur_input_ids).logits[:, -1])
sequences.append(scores[-1].argmax(dim=-1))
for _ in range(input_ids.shape[1] + 1, max_length):
cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1)
scores.append(model(cur_input_ids).logits[:, -1])
sequences.append(scores[-1].argmax(dim=-1))
sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1)
scores = tuple(scores)
out = model.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
print(out.sequences)
print(tokenizer.batch_decode(out.sequences.tolist()))
if getattr(config, "use_flash_attn", False):
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
print(out_cg.sequences)
assert torch.equal(torch.stack(out.scores, dim=1), torch.stack(out_cg.scores, dim=1))
if not rotary:
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
out_ref = model_ref.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
print(
f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}"
)
print(
f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}"
)
print(
f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}"
)
print(
f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}"
)
print(tokenizer.batch_decode(out_ref.sequences.tolist()))
assert torch.all(out.sequences == sequences)
assert torch.allclose(
torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol
)
if not rotary:
assert torch.all(out.sequences == out_ref.sequences)
assert torch.all(out.sequences == out_hf.sequences)
assert (
torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)
).abs().max().item() < 3 * (
torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)
).abs().max().item()
def get_logits(model, input_ids, max_length, teacher_outputs=None, **kwargs):
out = model.generate(
input_ids=input_ids,
max_length=max_length,
teacher_outputs=teacher_outputs,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
**kwargs,
)
return torch.stack(out.scores, dim=1)
@pytest.mark.parametrize("seqlen,maxlen", [(10, 20), (30, 150), (3000, 3400), (14000, 15000)])
# @pytest.mark.parametrize('seqlen,maxlen', [(10, 20)])
@pytest.mark.parametrize("rotary", [None, "interleaved", "contiguous"])
# @pytest.mark.parametrize('rotary', [None])
@pytest.mark.parametrize("model_name", ["gpt2"])
def test_gpt2_generation_cg(model_name, rotary, seqlen, maxlen):
"""Check that decoding with CUDA graph is the same as decoding without CUDA graph."""
dtype = torch.float16
device = "cuda"
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
config.n_positions = 16 * 1024
assert seqlen <= maxlen <= config.n_positions
if rotary is not None:
config.n_positions = 0
config.rotary_emb_dim = 32
config.rotary_emb_interleaved = rotary == "interleaved"
config.residual_in_fp32 = True
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
batch_size = 1
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
teacher_outputs = torch.randint(
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
)
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
assert torch.equal(logits, logits_cg)
# Try increasing batch size and seqlen, then decrease them to see if it's still correct
batch_size = 3
maxlen += 30
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
teacher_outputs = torch.randint(
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
)
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
assert torch.equal(logits, logits_cg)
batch_size = 2
maxlen -= 35
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
teacher_outputs = torch.randint(
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
)
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
assert torch.equal(logits, logits_cg)
@pytest.mark.parametrize("optimized", [False, True])
# @pytest.mark.parametrize("optimized", [False])
@pytest.mark.parametrize("model_name", ["gpt2"])
def test_gpt2_multiple_token_generation(model_name, optimized):
"""Generation when we pass in multiple tokens at a time, not just one."""
dtype = torch.float16
device = "cuda"
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
config.residual_in_fp32 = True
if optimized:
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
input_ids = torch.randint(0, config.vocab_size, (1, 20), dtype=torch.long, device=device)
# Reference logits
logits_ref = model(input_ids).logits
# Run 10 tokens, then pass in another 4, then another 6, to see if we get the same logits
inference_params = InferenceParams(max_seqlen=20, max_batch_size=1)
logits_10 = model(input_ids[:, :10], inference_params=inference_params).logits
inference_params.seqlen_offset += 10
position_ids = torch.arange(10, 14, dtype=torch.long, device=device)
logits_1014 = model(
input_ids[:, 10:14], position_ids=position_ids, inference_params=inference_params
).logits
inference_params.seqlen_offset += 4
position_ids = torch.arange(14, 20, dtype=torch.long, device=device)
logits_1420 = model(
input_ids[:, 14:20], position_ids=position_ids, inference_params=inference_params
).logits
logits = torch.cat([logits_10, logits_1014, logits_1420], dim=1)
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
assert torch.allclose(logits, logits_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize("cg", [False, True])
# @pytest.mark.parametrize("cg", [True])
@pytest.mark.parametrize("optimized", [False, True])
# @pytest.mark.parametrize("optimized", [True])
# @pytest.mark.parametrize("model_name", ["gpt2-medium"])
@pytest.mark.parametrize("model_name", ["gpt2-xl"])
def test_gpt2_speculative_decoding(model_name, optimized, cg):
if cg and not optimized:
pytest.skip() # CG requires use_flash_attn
dtype = torch.float16
device = "cuda"
rtol, atol = 3e-3, 3e-1
config = GPT2Config.from_pretrained(model_name)
config.residual_in_fp32 = True
if optimized:
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
config_draft = GPT2Config.from_pretrained("gpt2")
config_draft.residual_in_fp32 = True
if optimized:
config_draft.use_flash_attn = True
config_draft.fused_bias_fc = True
config_draft.fused_mlp = True
config_draft.fused_dropout_add_ln = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
model_draft = GPTLMHeadModel.from_pretrained("gpt2", config_draft, device=device, dtype=dtype)
model_draft.eval()
torch.manual_seed(0)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_ids = tokenizer("Hello, my dog is cute and he", return_tensors="pt").input_ids.to(
device=device
)
max_length = 100
from flash_attn.utils.generation import decode_speculative
torch.manual_seed(42)
print(f"Speculative decoding, {optimized = }")
out = decode_speculative(
input_ids,
model,
model_draft,
max_length=max_length,
top_k=5,
cg=cg,
speculative_lookahead=4,
enable_timing=True,
# debug=True,
)
print(tokenizer.batch_decode(out.sequences))
print(f"Without speculative decoding, {cg = }")
out_og = model.generate(
input_ids,
max_length=max_length,
top_k=5,
cg=cg,
enable_timing=True,
return_dict_in_generate=True,
)
print(tokenizer.batch_decode(out_og.sequences))
@pytest.mark.parametrize(
"n_heads_q_kv",
[
(8, 8), # Regular attention
(8, 4), # GQA
(8, 2), # MQA
],
)
def test_gpt2_shard_unshard(n_heads_q_kv):
world_size = 2
config = GPT2Config.from_pretrained("gpt2")
config.vocab_size = 1024
config.n_head, config.n_head_kv = n_heads_q_kv
model = GPTLMHeadModel(config, device="cuda", dtype=torch.float16)
state_dict = model.state_dict()
shards = [
# NOTE: Shallow copy as `state_dict` is modified in-place
shard_state_dict_tp(dict(state_dict), config, world_size, rank)
for rank in range(world_size)
]
state_dict2 = combine_state_dicts_tp(shards, config)
assert state_dict2.keys() == state_dict.keys()
for k in state_dict.keys():
ref = state_dict[k]
new = state_dict[k]
assert torch.allclose(ref, new, atol=0.0, rtol=0.0)
|