Spaces:
Runtime error
Runtime error
erwold
commited on
Commit
·
ac06db6
1
Parent(s):
660497c
Initial Commit
Browse files- app.py +37 -17
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -12,6 +12,7 @@ import logging
|
|
| 12 |
import sys
|
| 13 |
|
| 14 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
|
|
|
| 15 |
import spaces
|
| 16 |
|
| 17 |
# 设置日志
|
|
@@ -25,6 +26,27 @@ logging.basicConfig(
|
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
MODEL_ID = "Djrango/Qwen2vl-Flux"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Add aspect ratio options
|
| 30 |
ASPECT_RATIOS = {
|
|
@@ -61,33 +83,31 @@ class FluxInterface:
|
|
| 61 |
torch.cuda.max_memory_allocated = lambda *args, **kwargs: 0 # 忽略已分配内存的限制
|
| 62 |
|
| 63 |
# Load FLUX components
|
| 64 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
| 65 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
| 66 |
-
text_encoder_two = T5EncoderModel.from_pretrained(
|
| 67 |
-
tokenizer_two = T5TokenizerFast.from_pretrained(
|
| 68 |
|
| 69 |
# Load VAE and transformer
|
| 70 |
-
vae = AutoencoderKL.from_pretrained(
|
| 71 |
-
transformer = FluxTransformer2DModel.from_pretrained(
|
| 72 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
| 73 |
|
| 74 |
# Load Qwen2VL components
|
| 75 |
-
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
| 76 |
|
| 77 |
-
#
|
| 78 |
connector = Qwen2Connector().to(self.dtype).to(self.device)
|
| 79 |
-
connector_path =
|
| 80 |
-
connector_state = torch.
|
| 81 |
-
# Move state dict to dtype before loading
|
| 82 |
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
| 83 |
connector.load_state_dict(connector_state)
|
| 84 |
connector = connector.to(self.device)
|
| 85 |
-
|
| 86 |
-
#
|
| 87 |
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
|
| 88 |
-
t5_embedder_path =
|
| 89 |
-
t5_embedder_state = torch.
|
| 90 |
-
# Move state dict to dtype before loading
|
| 91 |
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
| 92 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
| 93 |
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
|
|
|
| 12 |
import sys
|
| 13 |
|
| 14 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
| 15 |
+
from huggingface_hub import snapshot_download
|
| 16 |
import spaces
|
| 17 |
|
| 18 |
# 设置日志
|
|
|
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
MODEL_ID = "Djrango/Qwen2vl-Flux"
|
| 29 |
+
MODEL_CACHE_DIR = "model_cache"
|
| 30 |
+
|
| 31 |
+
# 预下载所有模型
|
| 32 |
+
def download_models():
|
| 33 |
+
logger.info("Starting model download...")
|
| 34 |
+
try:
|
| 35 |
+
# 下载完整模型仓库
|
| 36 |
+
snapshot_download(
|
| 37 |
+
repo_id=MODEL_ID,
|
| 38 |
+
local_dir=MODEL_CACHE_DIR,
|
| 39 |
+
local_dir_use_symlinks=False
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
logger.info("Model download completed successfully")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
logger.error(f"Error downloading models: {str(e)}")
|
| 45 |
+
raise
|
| 46 |
+
|
| 47 |
+
# 在脚本开始时下载模型
|
| 48 |
+
if not os.path.exists(MODEL_CACHE_DIR):
|
| 49 |
+
download_models()
|
| 50 |
|
| 51 |
# Add aspect ratio options
|
| 52 |
ASPECT_RATIOS = {
|
|
|
|
| 83 |
torch.cuda.max_memory_allocated = lambda *args, **kwargs: 0 # 忽略已分配内存的限制
|
| 84 |
|
| 85 |
# Load FLUX components
|
| 86 |
+
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
|
| 87 |
+
text_encoder = CLIPTextModel.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")).to(self.dtype).to(self.device)
|
| 88 |
+
text_encoder_two = T5EncoderModel.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")).to(self.dtype).to(self.device)
|
| 89 |
+
tokenizer_two = T5TokenizerFast.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2"))
|
| 90 |
|
| 91 |
# Load VAE and transformer
|
| 92 |
+
vae = AutoencoderKL.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/vae")).to(self.dtype).to(self.device)
|
| 93 |
+
transformer = FluxTransformer2DModel.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/transformer")).to(self.dtype).to(self.device)
|
| 94 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/scheduler"), shift=1)
|
| 95 |
|
| 96 |
# Load Qwen2VL components
|
| 97 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(os.path.join(MODEL_CACHE_DIR, "qwen2-vl")).to(self.dtype).to(self.device)
|
| 98 |
|
| 99 |
+
# 加载 connector
|
| 100 |
connector = Qwen2Connector().to(self.dtype).to(self.device)
|
| 101 |
+
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
|
| 102 |
+
connector_state = torch.load(connector_path, map_location='cpu')
|
|
|
|
| 103 |
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
| 104 |
connector.load_state_dict(connector_state)
|
| 105 |
connector = connector.to(self.device)
|
| 106 |
+
|
| 107 |
+
# 加载 T5 embedder
|
| 108 |
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
|
| 109 |
+
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
|
| 110 |
+
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
|
|
|
|
| 111 |
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
| 112 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
| 113 |
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
requirements.txt
CHANGED
|
@@ -11,4 +11,5 @@ numpy>=1.24.0
|
|
| 11 |
# Utilities
|
| 12 |
protobuf==4.23.4
|
| 13 |
sentencepiece==0.2.0
|
| 14 |
-
gradio==5.6.0
|
|
|
|
|
|
| 11 |
# Utilities
|
| 12 |
protobuf==4.23.4
|
| 13 |
sentencepiece==0.2.0
|
| 14 |
+
gradio==5.6.0
|
| 15 |
+
huggingface-hub
|