Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numbers | |
| from typing import Dict, Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.utils import is_torch_version | |
| from .embeddings import get_activation | |
| from .embeddings import ( | |
| CombinedTimestepLabelEmbeddings, | |
| PixArtAlphaCombinedTimestepSizeEmbeddings, | |
| ) | |
| class AdaLayerNorm(nn.Module): | |
| r""" | |
| Norm layer modified to incorporate timestep embeddings. | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| num_embeddings (`int`): The size of the embeddings dictionary. | |
| """ | |
| def __init__(self, embedding_dim: int, num_embeddings: int): | |
| super().__init__() | |
| self.emb = nn.Embedding(num_embeddings, embedding_dim) | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, embedding_dim * 2) | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) | |
| def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor: | |
| emb = self.linear(self.silu(self.emb(timestep))) | |
| scale, shift = torch.chunk(emb, 2) | |
| x = self.norm(x) * (1 + scale) + shift | |
| return x | |
| class FP32LayerNorm(nn.LayerNorm): | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| origin_dtype = inputs.dtype | |
| return F.layer_norm( | |
| inputs.float(), | |
| self.normalized_shape, | |
| self.weight.float() if self.weight is not None else None, | |
| self.bias.float() if self.bias is not None else None, | |
| self.eps, | |
| ).to(origin_dtype) | |
| class AdaLayerNormZero(nn.Module): | |
| r""" | |
| Norm layer adaptive layer norm zero (adaLN-Zero). | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| num_embeddings (`int`): The size of the embeddings dictionary. | |
| """ | |
| def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True): | |
| super().__init__() | |
| if num_embeddings is not None: | |
| self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) | |
| else: | |
| self.emb = None | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
| elif norm_type == "fp32_layer_norm": | |
| self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) | |
| else: | |
| raise ValueError( | |
| f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| timestep: Optional[torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| hidden_dtype: Optional[torch.dtype] = None, | |
| emb: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| if self.emb is not None: | |
| emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype) | |
| emb = self.linear(self.silu(emb)) | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) | |
| x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
| return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
| class AdaLayerNormZeroSingle(nn.Module): | |
| r""" | |
| Norm layer adaptive layer norm zero (adaLN-Zero). | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| num_embeddings (`int`): The size of the embeddings dictionary. | |
| """ | |
| def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
| else: | |
| raise ValueError( | |
| f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| emb: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| emb = self.linear(self.silu(emb)) | |
| shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) | |
| x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
| return x, gate_msa | |
| class LuminaRMSNormZero(nn.Module): | |
| """ | |
| Norm layer adaptive RMS normalization zero. | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| """ | |
| def __init__(self, embedding_dim: int, norm_eps: float, norm_elementwise_affine: bool): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear( | |
| min(embedding_dim, 1024), | |
| 4 * embedding_dim, | |
| bias=True, | |
| ) | |
| self.norm = RMSNorm(embedding_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| emb: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| # emb = self.emb(timestep, encoder_hidden_states, encoder_mask) | |
| emb = self.linear(self.silu(emb)) | |
| scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) | |
| x = self.norm(x) * (1 + scale_msa[:, None]) | |
| return x, gate_msa, scale_mlp, gate_mlp | |
| class AdaLayerNormSingle(nn.Module): | |
| r""" | |
| Norm layer adaptive layer norm single (adaLN-single). | |
| As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| use_additional_conditions (`bool`): To use additional conditions for normalization or not. | |
| """ | |
| def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): | |
| super().__init__() | |
| self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( | |
| embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions | |
| ) | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
| def forward( | |
| self, | |
| timestep: torch.Tensor, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| batch_size: Optional[int] = None, | |
| hidden_dtype: Optional[torch.dtype] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| # No modulation happening here. | |
| embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) | |
| return self.linear(self.silu(embedded_timestep)), embedded_timestep | |
| class AdaGroupNorm(nn.Module): | |
| r""" | |
| GroupNorm layer modified to incorporate timestep embeddings. | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| num_embeddings (`int`): The size of the embeddings dictionary. | |
| num_groups (`int`): The number of groups to separate the channels into. | |
| act_fn (`str`, *optional*, defaults to `None`): The activation function to use. | |
| eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability. | |
| """ | |
| def __init__( | |
| self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 | |
| ): | |
| super().__init__() | |
| self.num_groups = num_groups | |
| self.eps = eps | |
| if act_fn is None: | |
| self.act = None | |
| else: | |
| self.act = get_activation(act_fn) | |
| self.linear = nn.Linear(embedding_dim, out_dim * 2) | |
| def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: | |
| if self.act: | |
| emb = self.act(emb) | |
| emb = self.linear(emb) | |
| emb = emb[:, :, None, None] | |
| scale, shift = emb.chunk(2, dim=1) | |
| x = F.group_norm(x, self.num_groups, eps=self.eps) | |
| x = x * (1 + scale) + shift | |
| return x | |
| class AdaLayerNormContinuous(nn.Module): | |
| def __init__( | |
| self, | |
| embedding_dim: int, | |
| conditioning_embedding_dim: int, | |
| # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters | |
| # because the output is immediately scaled and shifted by the projected conditioning embeddings. | |
| # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. | |
| # However, this is how it was implemented in the original code, and it's rather likely you should | |
| # set `elementwise_affine` to False. | |
| elementwise_affine=True, | |
| eps=1e-5, | |
| bias=True, | |
| norm_type="layer_norm", | |
| ): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) | |
| elif norm_type == "rms_norm": | |
| self.norm = RMSNorm(embedding_dim, eps, elementwise_affine) | |
| else: | |
| raise ValueError(f"unknown norm_type {norm_type}") | |
| def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: | |
| # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) | |
| emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) | |
| scale, shift = torch.chunk(emb, 2, dim=1) | |
| x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
| return x | |
| class LuminaLayerNormContinuous(nn.Module): | |
| def __init__( | |
| self, | |
| embedding_dim: int, | |
| conditioning_embedding_dim: int, | |
| # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters | |
| # because the output is immediately scaled and shifted by the projected conditioning embeddings. | |
| # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. | |
| # However, this is how it was implemented in the original code, and it's rather likely you should | |
| # set `elementwise_affine` to False. | |
| elementwise_affine=True, | |
| eps=1e-5, | |
| bias=True, | |
| norm_type="layer_norm", | |
| out_dim: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| # AdaLN | |
| self.silu = nn.SiLU() | |
| self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) | |
| else: | |
| raise ValueError(f"unknown norm_type {norm_type}") | |
| # linear_2 | |
| if out_dim is not None: | |
| self.linear_2 = nn.Linear( | |
| embedding_dim, | |
| out_dim, | |
| bias=bias, | |
| ) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| conditioning_embedding: torch.Tensor, | |
| ) -> torch.Tensor: | |
| # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) | |
| emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) | |
| scale = emb | |
| x = self.norm(x) * (1 + scale)[:, None, :] | |
| if self.linear_2 is not None: | |
| x = self.linear_2(x) | |
| return x | |
| if is_torch_version(">=", "2.1.0"): | |
| LayerNorm = nn.LayerNorm | |
| else: | |
| # Has optional bias parameter compared to torch layer norm | |
| # TODO: replace with torch layernorm once min required torch version >= 2.1 | |
| class LayerNorm(nn.Module): | |
| def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True): | |
| super().__init__() | |
| self.eps = eps | |
| if isinstance(dim, numbers.Integral): | |
| dim = (dim,) | |
| self.dim = torch.Size(dim) | |
| if elementwise_affine: | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| self.bias = nn.Parameter(torch.zeros(dim)) if bias else None | |
| else: | |
| self.weight = None | |
| self.bias = None | |
| def forward(self, input): | |
| return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim, eps: float, elementwise_affine: bool = True): | |
| super().__init__() | |
| self.eps = eps | |
| if isinstance(dim, numbers.Integral): | |
| dim = (dim,) | |
| self.dim = torch.Size(dim) | |
| if elementwise_affine: | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| else: | |
| self.weight = None | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
| if self.weight is not None: | |
| # convert into half-precision if necessary | |
| if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
| hidden_states = hidden_states.to(self.weight.dtype) | |
| hidden_states = hidden_states * self.weight | |
| else: | |
| hidden_states = hidden_states.to(input_dtype) | |
| return hidden_states | |
| class GlobalResponseNorm(nn.Module): | |
| # Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
| self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
| def forward(self, x): | |
| gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
| nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6) | |
| return self.gamma * (x * nx) + self.beta + x |