File size: 8,017 Bytes
f5288df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys
import os
import glob
import SimpleITK as sitk
from tqdm import tqdm
import random
from HD_BET.hd_bet import hd_bet
import argparse
import torch

def brain_extraction(input_dir, output_dir, device):
    """
    Brain extraction using HDBET package (UNet based DL method)
    Args:
        input_dir {path} -- input directory for registered images
        output_dir {path} -- output directory for brain extracted images
    Returns:
        Brain images
    """
    print("Running brain extraction...")
    print(f"Input directory: {input_dir}")
    print(f"Output directory: {output_dir}")
    
    # Run HD-BET directly with the output directory
    hd_bet(input_dir, output_dir, device=device, mode='fast', tta=0)
    
    print('Brain extraction complete!')
    print("\nContents of output directory after brain extraction:")
    print(os.listdir(output_dir))

def registration(input_dir, output_dir, temp_img, interp_type='linear'):
    """
    MRI registration with SimpleITK
    Args:
        input_dir {path} -- Directory containing input images
        output_dir {path} -- Directory to save registered images
        temp_img {str} -- Registration image template
    Returns:
        The sitk image object -- nii.gz
    """
    
    # Read the template image
    fixed_img = sitk.ReadImage(temp_img, sitk.sitkFloat32)
    
    # Track problematic files
    IDs = []
    print("Preloading step...")
    for img_dir in tqdm(sorted(glob.glob(input_dir + '/*.nii.gz'))):
        ID = img_dir.split('/')[-1].split('.')[0]
        try:
            moving_img = sitk.ReadImage(img_dir, sitk.sitkFloat32)
        except Exception as e:
            IDs.append(ID)
            print(f"Error loading {ID}: {e}")
    
    count = 0
    print("Registering images...")
    list_of_files = sorted(glob.glob(input_dir + '/*.nii.gz'))
    
    for img_dir in tqdm(list_of_files):
        ID = img_dir.split('/')[-1].split('.')[0]
        if ID in IDs:
            print(f'Skipping problematic file: {ID}')
            continue
        
        if "_mask" in ID:
            continue
            
        print(f"Processing image {count + 1}: {ID}")
        
        try:
            # Read and preprocess moving image
            moving_img = sitk.ReadImage(img_dir, sitk.sitkFloat32)
            moving_img = sitk.N4BiasFieldCorrection(moving_img)

            # Resample fixed image to 1mm isotropic
            old_size = fixed_img.GetSize()
            old_spacing = fixed_img.GetSpacing()
            new_spacing = (1, 1, 1)
            new_size = [
                int(round((old_size[0] * old_spacing[0]) / float(new_spacing[0]))),
                int(round((old_size[1] * old_spacing[1]) / float(new_spacing[1]))),
                int(round((old_size[2] * old_spacing[2]) / float(new_spacing[2])))
            ]

            # Set interpolation type
            if interp_type == 'linear':
                interp_type = sitk.sitkLinear
            elif interp_type == 'bspline':
                interp_type = sitk.sitkBSpline
            elif interp_type == 'nearest_neighbor':
                interp_type = sitk.sitkNearestNeighbor

            # Resample fixed image
            resample = sitk.ResampleImageFilter()
            resample.SetOutputSpacing(new_spacing)
            resample.SetSize(new_size)
            resample.SetOutputOrigin(fixed_img.GetOrigin())
            resample.SetOutputDirection(fixed_img.GetDirection())
            resample.SetInterpolator(interp_type)
            resample.SetDefaultPixelValue(fixed_img.GetPixelIDValue())
            resample.SetOutputPixelType(sitk.sitkFloat32)
            fixed_img = resample.Execute(fixed_img)

            # Initialize transform
            transform = sitk.CenteredTransformInitializer(
                fixed_img, 
                moving_img, 
                sitk.Euler3DTransform(), 
                sitk.CenteredTransformInitializerFilter.GEOMETRY)

            # Set up registration method
            registration_method = sitk.ImageRegistrationMethod()
            registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
            registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
            registration_method.SetMetricSamplingPercentage(0.01)
            registration_method.SetInterpolator(sitk.sitkLinear)
            registration_method.SetOptimizerAsGradientDescent(
                learningRate=1.0, 
                numberOfIterations=100, 
                convergenceMinimumValue=1e-6, 
                convergenceWindowSize=10)
            registration_method.SetOptimizerScalesFromPhysicalShift()
            registration_method.SetShrinkFactorsPerLevel(shrinkFactors=[4, 2, 1])
            registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2, 1, 0])
            registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
            registration_method.SetInitialTransform(transform)

            # Execute registration
            final_transform = registration_method.Execute(fixed_img, moving_img)

            # Apply transform and save registered image
            moving_img_resampled = sitk.Resample(
                moving_img, 
                fixed_img, 
                final_transform, 
                sitk.sitkLinear, 
                0.0, 
                moving_img.GetPixelID())
            
            # Save with _0000 suffix as required by HD-BET
            output_filename = os.path.join(output_dir, f"{ID}_0000.nii.gz")
            sitk.WriteImage(moving_img_resampled, output_filename)
            print(f"Saved registered image to: {output_filename}")
            count += 1

        except Exception as e:
            print(f"Error processing {ID}: {e}")
            continue

    print(f"Successfully registered {count} images.")
    # Debug information
    print(f"Contents of output directory {output_dir}:")
    print(os.listdir(output_dir))
    return count > 0

def main(temp_img, input_dir, output_dir):
    """
    Main function to process brain MRI images
    Args:
        temp_img {str} -- Path to template image
        input_dir {str} -- Path to input directory containing images
        output_dir {str} -- Path to output directory for results
    """
   
    os.makedirs(output_dir, exist_ok=True)
    
    # set device
    device = "0" if torch.cuda.is_available() else "cpu"
    
    # Create temporary directory for intermediate results
    temp_reg_dir = os.path.join(output_dir, 'temp_registered')
    os.makedirs(temp_reg_dir, exist_ok=True)
    
    print("Starting brain MRI preprocessing...")
    
    # REgistration
    print("\nStep 1: Image Registration")
    success = registration(
        input_dir=input_dir,
        output_dir=temp_reg_dir,
        temp_img=temp_img
    )
    
    if not success:
        print("Registration failed! No images were processed successfully.")
        return
    
    print("\nChecking temporary directory contents:")
    print(os.listdir(temp_reg_dir))
    
    # skullstripping
    print("\nStep 2: Brain Extraction")
    brain_extraction(
        input_dir=temp_reg_dir,
        output_dir=output_dir,
        device=device
    )
    
    # Clean up temporary directory
    import shutil
    shutil.rmtree(temp_reg_dir)
    
    print("\nPreprocessing complete! Final results saved in:", output_dir)
    print("Final preprocessed files:")
    print(os.listdir(output_dir))

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Process brain MRI registration and skull stripping.")
    parser.add_argument("--temp_img", type=str, required=True, help="Path to the atlas template image.")
    parser.add_argument("--input_dir", type=str, required=True, help="Path to the input images directory.")
    parser.add_argument("--output_dir", type=str, required=True, help="Path to save the processed images.")

    args = parser.parse_args()
    main(temp_img=args.temp_img, input_dir=args.input_dir, output_dir=args.output_dir)