import streamlit as st import pandas as pd import requests # Set the title of the Streamlit app st.title("SuperKart Store Sales Prediction") # Section for online prediction st.subheader("Online Prediction") # Collect user input for store/product features product_weight = st.number_input("Product Weight", min_value=0.0, value=1.0) product_allocated_area = st.number_input("Product Allocated Area", min_value=0.0, value=10.0) product_mrp = st.number_input("Product MRP", min_value=0.0, value=50.0) store_establishment_year = st.number_input("Store Establishment Year", min_value=1900, max_value=2025, value=2015) product_sugar_content = st.selectbox("Product Sugar Content", ["Low", "Medium", "High"]) product_type = st.selectbox("Product Type", ["Dairy", "Beverages", "Snacks", "Others"]) store_size = st.selectbox("Store Size", ["Small", "Medium", "High"]) store_location_city_type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) store_type = st.selectbox("Store Type", ["Type 1", "Type 2", "Type 3", "Type 4"]) store_id = st.text_input("Store Id", "S001") # Feature engineering for Store_Age store_age = 2025 - store_establishment_year # Convert user input into a DataFrame input_data = pd.DataFrame([{ 'Product_Weight': product_weight, 'Product_Allocated_Area': product_allocated_area, 'Product_MRP': product_mrp, 'Store_Age': store_age, 'Product_Sugar_Content': product_sugar_content, 'Product_Type': product_type, 'Store_Size': store_size, 'Store_Location_City_Type': store_location_city_type, 'Store_Type': store_type, 'Store_Id': store_id }]) # Make prediction when the "Predict" button is clicked if st.button("Predict"): response = requests.post( "https://Disha252001-SuperKart-Frontend.hf.space/v1/sale", json=input_data.to_dict(orient='records')[0] ) if response.status_code == 200: prediction = response.json()['Predicted Store Sales'] st.success(f"Predicted Store Sales: {prediction}") else: st.error("Error making prediction.") # Section for batch prediction st.subheader("Batch Prediction") # Allow users to upload a CSV file for batch prediction uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"]) # Make batch prediction when the "Predict Batch" button is clicked if uploaded_file is not None: if st.button("Predict Batch"): response = requests.post( "https://Disha252001-SuperKart-Frontend.hf.space/v1/salebatch", files={"file": uploaded_file} ) if response.status_code == 200: predictions = response.json() st.success("Batch predictions completed!") st.write(predictions) # Display the predictions else: st.error("Error making batch prediction.")