import os import streamlit as st from transformers import pipeline from huggingface_hub.inference_api import InferenceApi API_TOKEN = os.getenv('My_Token') inference = InferenceApi(repo_id="bert-base-uncased", token=API_TOKEN) # inference(inputs="The goal of life is [MASK].") text1 = st.text_area("enter some text 111") if text1: res = inference(inputs="The goal of life is [MASK].") st.json(res) pipe = pipeline("sentiment-analysis") text2 = st.text_area("enter some text 222") if text2: out = pipe(text) st.json(out) # import streamlit as st # # adding the text that will show in the text box as default # default_value = "See how a modern neural network auto-completes your text 🤗 This site, built by the Hugging Face team, lets you write a whole document directly from your browser, and you can trigger the Transformer anywhere using the Tab key. Its like having a smart machine that completes your thoughts 😀 Get started by typing a custom snippet, check out the repository, or try one of the examples. Have fun!" # sent = st.text_area("Text", default_value, height = 275) # max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30) # temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05) # top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0) # top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9) # num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=5, value=1, step=1)