Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,42 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
grayed_image = np.mean(image, 2)
|
| 6 |
-
image_max = np.max(grayed_image)
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
return grayed_image
|
| 12 |
|
| 13 |
app = gr.Interface(
|
| 14 |
-
|
| 15 |
-
'
|
| 16 |
-
gr.
|
| 17 |
-
examples=[
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
],
|
| 22 |
live=True
|
| 23 |
)
|
| 24 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torchvision import transforms, dataset, models
|
| 6 |
|
| 7 |
+
transformer = models.ResNet18_Weights.IMAGENET1K_V1.transforms()
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
device = torch.device("cpu")
|
| 10 |
+
class_names = ['Anger', 'Disgust', 'Fear', 'Happy', 'Pain', 'Sad']
|
| 11 |
+
classes_count = len(class_names)
|
| 12 |
+
|
| 13 |
+
model = model.renset18(weights='DEFAULT').to(device)
|
| 14 |
+
model.fc = nn.Sequential(
|
| 15 |
+
nn.Linear(512, classes_count)
|
| 16 |
+
)
|
| 17 |
+
model.load_state_dict(torch.load('./model_param.pt', map_location=device), strict=False)
|
| 18 |
+
|
| 19 |
+
def predict(image):
|
| 20 |
+
image = transformer(image).unsqueeze(0).to(device)
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
with torch.inference_mode():
|
| 24 |
+
pred = torch.softmax(model(image), dim=1)
|
| 25 |
+
|
| 26 |
+
preds_and_labels = {class_names[i]: pred[0][i].item() for i in range(len(pred[0]))}
|
| 27 |
+
|
| 28 |
+
return preds_and_labels
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
app = gr.Interface(
|
| 32 |
+
predict,
|
| 33 |
+
gr.Image(type='pil'),
|
| 34 |
+
gr.Label(label='Predictions', num_top_classes=classes_count),
|
| 35 |
+
#examples=[
|
| 36 |
+
# './example1.jpg',
|
| 37 |
+
# './example2.jpg',
|
| 38 |
+
# './example3.jpg',
|
| 39 |
+
#],
|
| 40 |
live=True
|
| 41 |
)
|
| 42 |
|