Spaces:
Running
Running
Didier Guillevic
commited on
Commit
·
fecab9d
1
Parent(s):
a3b9984
Adding app.y llm_utils.py and the build requirements.
Browse files- app.py +269 -0
- llm_utils.py +55 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" app.py
|
2 |
+
|
3 |
+
Question / answer over a collection of PDF documents from OECD.org.
|
4 |
+
|
5 |
+
PDF text extraction:
|
6 |
+
- pypdf
|
7 |
+
|
8 |
+
Retrieval model:
|
9 |
+
- LanceDB: support for hybrid search search with reranking of results.
|
10 |
+
- Full text search (lexical): BM25
|
11 |
+
- Vector search (semantic dense vectors): BAAI/bge-m3
|
12 |
+
|
13 |
+
Rerankers:
|
14 |
+
- ColBERT, cross encoder, reciprocal rank fusion, AnswerDotAI
|
15 |
+
|
16 |
+
Generation:
|
17 |
+
- Mistral
|
18 |
+
|
19 |
+
:author: Didier Guillevic
|
20 |
+
:date: 2024-12-28
|
21 |
+
"""
|
22 |
+
|
23 |
+
import gradio as gr
|
24 |
+
import lancedb
|
25 |
+
|
26 |
+
import llm_utils
|
27 |
+
|
28 |
+
import logging
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
|
32 |
+
#
|
33 |
+
# LanceDB with the indexed documents
|
34 |
+
#
|
35 |
+
|
36 |
+
# Connect to the database
|
37 |
+
lance_db = lancedb.connect("lance.db")
|
38 |
+
lance_tbl = lance_db.open_table("documents")
|
39 |
+
|
40 |
+
# Document schema
|
41 |
+
class Document(lancedb.pydantic.LanceModel):
|
42 |
+
text: str
|
43 |
+
vector: lancedb.pydantic.Vector(1024)
|
44 |
+
file_name: str
|
45 |
+
num_pages: int
|
46 |
+
creation_date: str
|
47 |
+
modification_date: str
|
48 |
+
|
49 |
+
#
|
50 |
+
# Retrieval: query types and reranker types
|
51 |
+
#
|
52 |
+
|
53 |
+
query_types = {
|
54 |
+
'lexical': 'fts',
|
55 |
+
'semantic': 'vector',
|
56 |
+
'hybrid': 'hybrid',
|
57 |
+
}
|
58 |
+
|
59 |
+
# Define a few rerankers
|
60 |
+
colbert_reranker = lancedb.rerankers.ColbertReranker(column='text')
|
61 |
+
answerai_reranker = lancedb.rerankers.AnswerdotaiRerankers(column='text')
|
62 |
+
crossencoder_reranker = lancedb.rerankers.CrossEncoderReranker(column='text')
|
63 |
+
reciprocal_rank_fusion_reranker = lancedb.rerankers.RRFReranker() # hybrid search only
|
64 |
+
|
65 |
+
reranker_types = {
|
66 |
+
'ColBERT': colbert_reranker,
|
67 |
+
'cross encoder': crossencoder_reranker,
|
68 |
+
'AnswerAI': answerai_reranker,
|
69 |
+
'Reciprocal Rank Fusion': reciprocal_rank_fusion_reranker
|
70 |
+
}
|
71 |
+
|
72 |
+
def search_table(
|
73 |
+
table: lancedb.table,
|
74 |
+
query: str,
|
75 |
+
query_type: str,
|
76 |
+
reranker_name: str,
|
77 |
+
filter_year: int,
|
78 |
+
top_k: int=5,
|
79 |
+
overfetch_factor: int=2
|
80 |
+
):
|
81 |
+
# Get the instance of reranker
|
82 |
+
reranker = reranker_types.get(reranker_name)
|
83 |
+
if reranker is None:
|
84 |
+
logger.error(f"Invalid reranker name: {reranker_name}")
|
85 |
+
raise ValueError(f"Invalid reranker selected: {reranker_name}")
|
86 |
+
|
87 |
+
if query_type in ["vector", "fts"]:
|
88 |
+
if reranker == reciprocal_rank_fusion_reranker:
|
89 |
+
# reciprocal is for 'hybrid' search type only
|
90 |
+
reranker = crossencoder_reranker
|
91 |
+
results = (
|
92 |
+
table.search(query, query_type=query_type)
|
93 |
+
.where(f"creation_date >= '{filter_year}'", prefilter=True)
|
94 |
+
.rerank(reranker=reranker)
|
95 |
+
.limit(top_k * overfetch_factor)
|
96 |
+
.to_pydantic(Document)
|
97 |
+
)
|
98 |
+
elif query_type == "hybrid":
|
99 |
+
results = (
|
100 |
+
table.search(query, query_type=query_type)
|
101 |
+
.where(f"creation_date >= '{filter_year}'", prefilter=True)
|
102 |
+
.rerank(reranker=reranker)
|
103 |
+
.limit(top_k)
|
104 |
+
.to_pydantic(Document)
|
105 |
+
)
|
106 |
+
|
107 |
+
return results[:top_k]
|
108 |
+
|
109 |
+
|
110 |
+
#
|
111 |
+
# Generatton: query + context --> response
|
112 |
+
#
|
113 |
+
|
114 |
+
def create_bulleted_list(texts: list[str]) -> str:
|
115 |
+
"""
|
116 |
+
This function takes a list of strings and returns HTML with a bulleted list.
|
117 |
+
"""
|
118 |
+
html_items = []
|
119 |
+
for item in texts:
|
120 |
+
html_items.append(f"<li>{item}</li>")
|
121 |
+
return "<ul>" + "".join(html_items) + "</ul>"
|
122 |
+
|
123 |
+
|
124 |
+
def generate_response(
|
125 |
+
query: str,
|
126 |
+
query_type: str,
|
127 |
+
reranker_name: str,
|
128 |
+
filter_year: int
|
129 |
+
) -> list[str, str, str]:
|
130 |
+
"""Generate a response given query, search type and reranker.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
- the response given the snippets extracted from the database
|
136 |
+
- (html string): the references (origin of the snippets of text used to generate the answer)
|
137 |
+
- (html string): the snippets of text used to generate the answer
|
138 |
+
"""
|
139 |
+
# Get results from LanceDB
|
140 |
+
results = search_table(
|
141 |
+
lance_tbl,
|
142 |
+
query=query,
|
143 |
+
query_type=query_type,
|
144 |
+
reranker_name=reranker_name,
|
145 |
+
filter_year=filter_year
|
146 |
+
)
|
147 |
+
|
148 |
+
references = [result.file_name for result in results]
|
149 |
+
references_html = "<h4>References</h4>\n" + create_bulleted_list(references)
|
150 |
+
|
151 |
+
snippets = [result.text for result in results]
|
152 |
+
snippets_html = "<h4>Snippets</h4>\n" + create_bulleted_list(snippets)
|
153 |
+
|
154 |
+
# Generate the reponse from the LLM
|
155 |
+
stream_reponse = llm_utils.generate_chat_response_streaming(
|
156 |
+
query, '\n\n'.join(snippets)
|
157 |
+
)
|
158 |
+
|
159 |
+
model_response = ""
|
160 |
+
for chunk in stream_reponse:
|
161 |
+
model_response += chunk.data.choices[0].delta.content
|
162 |
+
yield model_response, references_html, snippets_html
|
163 |
+
|
164 |
+
|
165 |
+
#
|
166 |
+
# User interface
|
167 |
+
#
|
168 |
+
|
169 |
+
with gr.Blocks() as demo:
|
170 |
+
gr.Markdown("""
|
171 |
+
# Hybrid search / reranking / Mistral
|
172 |
+
Document collection: OECD documents on international tax crimes.
|
173 |
+
""")
|
174 |
+
|
175 |
+
# Inputs: question
|
176 |
+
question = gr.Textbox(
|
177 |
+
label="Question to answer",
|
178 |
+
placeholder=""
|
179 |
+
)
|
180 |
+
|
181 |
+
# Response / references / snippets
|
182 |
+
response = gr.Textbox(
|
183 |
+
label="Response",
|
184 |
+
placeholder=""
|
185 |
+
)
|
186 |
+
with gr.Accordion("References & snippets", open=False):
|
187 |
+
references = gr.HTML(label="References")
|
188 |
+
snippets = gr.HTML(label="Snippets")
|
189 |
+
|
190 |
+
# Button
|
191 |
+
with gr.Row():
|
192 |
+
response_button = gr.Button("Submit", variant='primary')
|
193 |
+
clear_button = gr.Button("Clear", variant='secondary')
|
194 |
+
|
195 |
+
# Additional inputs
|
196 |
+
query_type = gr.Dropdown(
|
197 |
+
choices=query_types.items(),
|
198 |
+
value='hybrid',
|
199 |
+
label='Query type',
|
200 |
+
render=False
|
201 |
+
)
|
202 |
+
reranker_name = gr.Dropdown(
|
203 |
+
choices=list(reranker_types.keys()),
|
204 |
+
value='cross encoder',
|
205 |
+
label='Reranker',
|
206 |
+
render=False
|
207 |
+
)
|
208 |
+
filter_year = gr.Slider(
|
209 |
+
minimum=2005, maximum=2020, value=2005, step=1,
|
210 |
+
label='Creation date >=', render=False
|
211 |
+
)
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
# Example questions given default provided PDF file
|
215 |
+
with gr.Accordion("Sample questions", open=False):
|
216 |
+
gr.Examples(
|
217 |
+
[
|
218 |
+
["What is the OECD's role in combating offshore tax evasion?",],
|
219 |
+
["What are the key tools used in fighting offshore tax evasion?",],
|
220 |
+
['What are "High Net Worth Individuals" (HNWIs) and how do they relate to tax compliance efforts?',],
|
221 |
+
["What is the significance of international financial centers (IFCs) in the context of tax evasion?",],
|
222 |
+
["What is being done to address the role of professional enablers in facilitating tax evasion?",],
|
223 |
+
["How does the OECD measure the effectiveness of international efforts to fight offshore tax evasion?",],
|
224 |
+
['What are the "Ten Global Principles" for fighting tax crime?',],
|
225 |
+
["What are some recent developments in the fight against offshore tax evasion?",],
|
226 |
+
],
|
227 |
+
inputs=[question, query_type, reranker_name, filter_year],
|
228 |
+
outputs=[response, references, snippets],
|
229 |
+
fn=generate_response,
|
230 |
+
cache_examples=False,
|
231 |
+
label="Sample questions"
|
232 |
+
)
|
233 |
+
|
234 |
+
# Additional inputs: search parameters
|
235 |
+
with gr.Accordion("Search parameters", open=False):
|
236 |
+
with gr.Row():
|
237 |
+
query_type.render()
|
238 |
+
reranker_name.render()
|
239 |
+
filter_year.render()
|
240 |
+
|
241 |
+
# Documentation
|
242 |
+
with gr.Accordion("Documentation", open=False):
|
243 |
+
gr.Markdown("""
|
244 |
+
- Retrieval model
|
245 |
+
- LanceDB: support for hybrid search search with reranking of results.
|
246 |
+
- Full text search (lexical): BM25
|
247 |
+
- Vector search (semantic dense vectors): BAAI/bge-m3
|
248 |
+
- Rerankers
|
249 |
+
- ColBERT, cross encoder, reciprocal rank fusion, AnswerDotAI
|
250 |
+
- Generation
|
251 |
+
- Mistral
|
252 |
+
- Examples
|
253 |
+
- Generated using Google NotebookLM
|
254 |
+
""")
|
255 |
+
|
256 |
+
# Click actions
|
257 |
+
response_button.click(
|
258 |
+
fn=generate_response,
|
259 |
+
inputs=[question, query_type, reranker_name, filter_year],
|
260 |
+
outputs=[response, references, snippets]
|
261 |
+
)
|
262 |
+
clear_button.click(
|
263 |
+
fn=lambda: ('', '', '', ''),
|
264 |
+
inputs=[],
|
265 |
+
outputs=[question, response, references, snippets]
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
demo.launch(show_api=False)
|
llm_utils.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" llm_utils.py
|
2 |
+
|
3 |
+
Utilities for working with Large Language Models
|
4 |
+
|
5 |
+
:author: Didier Guillevic
|
6 |
+
:email: [email protected]
|
7 |
+
:creation: 2024-12-28
|
8 |
+
"""
|
9 |
+
|
10 |
+
import logging
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
|
14 |
+
import os
|
15 |
+
from mistralai import Mistral
|
16 |
+
|
17 |
+
#
|
18 |
+
# Mistral AI client
|
19 |
+
#
|
20 |
+
api_key = os.environ["MISTRAL_API_KEY"]
|
21 |
+
client = Mistral(api_key=api_key)
|
22 |
+
model_id = "mistral-large-latest" # 128k context window
|
23 |
+
|
24 |
+
|
25 |
+
#
|
26 |
+
# Some functions
|
27 |
+
#
|
28 |
+
def generate_chat_response_streaming(
|
29 |
+
query: str,
|
30 |
+
context: str,
|
31 |
+
max_new_tokens=1_024,
|
32 |
+
temperature=0.0
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
|
36 |
+
"""
|
37 |
+
# Instruction
|
38 |
+
instruction = (
|
39 |
+
f"You will be given a question and list of context that might "
|
40 |
+
f"be relevant to the question. "
|
41 |
+
f"Do not include facts not contained in the provided context. "
|
42 |
+
f"If no such relecant context provided to answer the question, "
|
43 |
+
f"then soimply say so. Do not invent anything.\n\n"
|
44 |
+
f"Question: {query}\n\n\n"
|
45 |
+
f"Context:\n\n{context}"
|
46 |
+
)
|
47 |
+
|
48 |
+
# messages
|
49 |
+
messages = []
|
50 |
+
messages.append({'role': 'user', 'content': instruction})
|
51 |
+
#logger.info(messages)
|
52 |
+
|
53 |
+
# Yield the model response as the tokens are being generated
|
54 |
+
stream_reponse = client.chat.stream(model=model_id, messages=messages)
|
55 |
+
return stream_reponse
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
lancedb
|
3 |
+
sentence-transformers
|
4 |
+
pytorch
|
5 |
+
mistralai
|