import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import gradio as gr # 加载模型和处理器 try: model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") except Exception as e: print(f"模型加载失败: {e}") # 定义处理函数 def recognize_and_analyze(image, text_prompt): try: messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_prompt}, ], } ] # 准备推理输入数据 text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) # 推理:生成输出文本 generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] except Exception as e: return f"处理过程中出现错误: {e}" # 设置 Gradio 界面 interface = gr.Interface( fn=recognize_and_analyze, inputs=[ gr.Image(type="filepath", label="上传图像"), gr.Textbox(label="输入描述文本"), ], outputs=gr.Textbox(label="识别结果"), title="Qwen2.5-VL 物体识别与分析", description="上传图像并输入描述文本以获取识别和分析结果。", ) # 启动 Gradio 应用 if __name__ == "__main__": interface.launch()