QwenVL7B-test / app.py
Dibiddo's picture
Update app.py
60a326e verified
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import gradio as gr
# 加载模型和处理器
try:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype="auto",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
except Exception as e:
print(f"模型加载失败: {e}")
# 定义处理函数
def recognize_and_analyze(image, text_prompt):
try:
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt},
],
}
]
# 准备推理输入数据
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# 推理:生成输出文本
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
except Exception as e:
return f"处理过程中出现错误: {e}"
# 设置 Gradio 界面
interface = gr.Interface(
fn=recognize_and_analyze,
inputs=[
gr.Image(type="filepath", label="上传图像"),
gr.Textbox(label="输入描述文本"),
],
outputs=gr.Textbox(label="识别结果"),
title="Qwen2.5-VL 物体识别与分析",
description="上传图像并输入描述文本以获取识别和分析结果。",
)
# 启动 Gradio 应用
if __name__ == "__main__":
interface.launch()