Spaces:
Running
Running
import torch | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import gradio as gr | |
# 加载模型和处理器 | |
try: | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2.5-VL-7B-Instruct", | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
except Exception as e: | |
print(f"模型加载失败: {e}") | |
# 定义处理函数 | |
def recognize_and_analyze(image, text_prompt): | |
try: | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text_prompt}, | |
], | |
} | |
] | |
# 准备推理输入数据 | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
# 推理:生成输出文本 | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
except Exception as e: | |
return f"处理过程中出现错误: {e}" | |
# 设置 Gradio 界面 | |
interface = gr.Interface( | |
fn=recognize_and_analyze, | |
inputs=[ | |
gr.Image(type="filepath", label="上传图像"), | |
gr.Textbox(label="输入描述文本"), | |
], | |
outputs=gr.Textbox(label="识别结果"), | |
title="Qwen2.5-VL 物体识别与分析", | |
description="上传图像并输入描述文本以获取识别和分析结果。", | |
) | |
# 启动 Gradio 应用 | |
if __name__ == "__main__": | |
interface.launch() | |