File size: 7,827 Bytes
2d07fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import copy
from typing import Optional, Any

import torch

from torch import Tensor
from torch import nn
from torch.nn import functional as F


def conv3x3(in_channels, out_channels, num_groups=0):
    return nn.Sequential(
        # Conv2d w/o bias since BatchNorm2d/GroupNorm already accounts for it (affine=True)
        nn.Conv2d(in_channels, out_channels, (3, 3), 1, 1, bias=False),
        nn.BatchNorm2d(out_channels) if num_groups < 1 else nn.GroupNorm(num_groups, out_channels),
        nn.ReLU(inplace=True),
    )


class XTransformerEncoder(nn.Module):
    __constants__ = ['norm']
    def __init__(self, encoder_layer, num_layers, num_conv=2, norm=None):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

        d_model = encoder_layer.linear1.in_features
        self.conv = nn.ModuleList([
            nn.Sequential(*[
                conv3x3(d_model, d_model) for _ in range(num_conv)
            ]) for _ in range(num_layers)
        ])

    def flatten(self, x):
        N, D, H, W = x.size()
        x = x.to(memory_format=torch.channels_last)
        x = x.permute(0, 2, 3, 1).view(N, H*W, D)
        return x  # NxHWxD

    def unflatten(self, x, size):
        N, R, D = x.size()
        H, W = size
        assert R == H*W, 'wrong tensor size'
        x = x.permute(0, 2, 1).to(memory_format=torch.contiguous_format)
        x = x.view(N, D, H, W)
        return x  # NxDxHxW

    def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, size=None) -> Tensor:
        output = src

        for i, mod in enumerate(self.layers):
            output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)

            vis = self.unflatten(output[:, :size[0]*size[1]], size)
            vis = self.flatten(self.conv[i](vis))

            output = torch.cat([vis, output[:, size[0]*size[1]:]], dim=1)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerEncoder(nn.Module):
    r"""TransformerEncoder is a stack of N encoder layers

    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
        >>> src = torch.rand(10, 32, 512)
        >>> out = transformer_encoder(src)
    """
    __constants__ = ['norm']

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None) -> Tensor:
        r"""Pass the input through the encoder layers in turn.

        Args:
            src: the sequence to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = src

        for mod in self.layers:
            output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerEncoderLayer(nn.Module):
    r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of intermediate layer, relu or gelu (default=relu).
        layer_norm_eps: the eps value in layer normalization components (default=1e-5).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False``.

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> src = torch.rand(10, 32, 512)
        >>> out = encoder_layer(src)

    Alternatively, when ``batch_first`` is ``True``:
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
        >>> src = torch.rand(32, 10, 512)
        >>> out = encoder_layer(src)
    """
    __constants__ = ['batch_first']

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
                 layer_norm_eps=1e-5, batch_first=False,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
                                               **factory_kwargs)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)

        self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerEncoderLayer, self).__setstate__(state)

    def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None) -> Tensor:
        r"""Pass the input through the encoder layer.

        Args:
            src: the sequence to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """

        q = k = src if pos is None else src + pos

        src2 = self.self_attn(q, k, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation):
    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return F.gelu

    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))