File size: 26,635 Bytes
68aa9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
"""
app.py - Streamlit frontend for LegalMind AI application
"""
import streamlit as st
import os
import tempfile
import time
import json
from datetime import datetime
from utils import process_pdf
from rag_pipeline import answer_query, get_document_summary
# Import project configuration
from config import (
CONVERSATIONS_DIR,
GROQ_API_KEY,
LLM_MODELS,
EMBEDDING_MODELS
)
# Set page configuration with dark theme
st.set_page_config(
page_title="LegalMind AI | Smart Legal Research Assistant",
page_icon="βοΈ",
layout="wide",
initial_sidebar_state="expanded"
)
# Add custom CSS for dark theme with better visibility
st.markdown("""
<style>
/* Dark theme with better contrast */
.main {
background-color: #0E1117;
color: #FFFFFF;
}
.main-header {
font-family: 'Helvetica Neue', sans-serif;
color: #FFFFFF;
}
.subheader {
font-size: 1.2rem;
color: #D1D5DB;
}
.stButton>button {
background-color: #1E40AF;
color: white;
border-radius: 5px;
padding: 0.5rem 1rem;
border: none;
}
.stButton>button:hover {
background-color: #2563EB;
}
/* Document card styling */
.document-card {
background-color: #1F2937;
border-radius: 5px;
padding: 1rem;
margin-bottom: 1rem;
border-left: 5px solid #FCD34D;
}
/* Success box with better visibility */
.success-box {
background-color: #064E3B;
color: #FFFFFF;
padding: 1rem;
border-radius: 5px;
border-left: 5px solid #10B981;
}
/* Info box with better visibility */
.info-box {
background-color: #1E3A8A;
color: #FFFFFF;
padding: 1rem;
border-radius: 5px;
border-left: 5px solid #60A5FA;
}
/* Chat styling with better visibility */
.chat-user {
background-color: #1F2937;
color: #FFFFFF;
padding: 1rem;
border-radius: 5px;
margin-bottom: 0.5rem;
border-left: 3px solid #60A5FA;
}
.chat-assistant {
background-color: #111827;
color: #FFFFFF;
padding: 1rem;
border-radius: 5px;
margin-bottom: 0.5rem;
border-left: 3px solid #FCD34D;
}
/* Sidebar styling */
.sidebar-header {
font-weight: bold;
color: #FFFFFF;
}
/* Feedback button styling */
.feedback-button {
background-color: #1F2937;
border: 1px solid #374151;
border-radius: 15px;
padding: 5px 10px;
font-size: 0.8rem;
color: #D1D5DB;
}
/* Footnote styling */
.footnote {
font-size: 0.8rem;
color: #9CA3AF;
}
/* Improved text area and input visibility */
.stTextInput>div>div>input, .stTextArea>div>div>textarea {
background-color: #1F2937;
color: #FFFFFF;
border: 1px solid #374151;
}
/* Improved select box visibility */
.stSelectbox>div>div>select {
background-color: #1F2937;
color: #FFFFFF;
}
/* Make expander text visible */
.streamlit-expanderHeader {
color: #FFFFFF !important;
background-color: #1F2937 !important;
border-radius: 5px;
}
/* Ensure text in the legal analysis panel is visible */
.stChatMessage div {
color: #FFFFFF;
}
/* Make sure all text in containers is visible */
.stContainer, .block-container {
color: #FFFFFF;
}
/* Ensure text inputs have visible text */
input, textarea {
color: #FFFFFF !important;
}
/* Style for tabs */
.stTabs [data-baseweb="tab-list"] {
gap: 1px;
background-color: #111827;
}
.stTabs [data-baseweb="tab"] {
background-color: #1F2937;
color: #FFFFFF;
border-radius: 4px 4px 0 0;
padding: 10px 20px;
border-right: 1px solid #374151;
}
.stTabs [aria-selected="true"] {
background-color: #2563EB;
color: #FFFFFF;
}
/* Improve visibility of text in chat areas */
.stChatMessageContent {
color: #FFFFFF !important;
background-color: #1F2937 !important;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state variables
if "vector_db" not in st.session_state:
st.session_state.vector_db = None
if "pdf_name" not in st.session_state:
st.session_state.pdf_name = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "processing_started" not in st.session_state:
st.session_state.processing_started = False
if "error_message" not in st.session_state:
st.session_state.error_message = None
if "saved_conversations" not in st.session_state:
st.session_state.saved_conversations = []
if "document_metadata" not in st.session_state:
st.session_state.document_metadata = None
if "current_conversation_id" not in st.session_state:
st.session_state.current_conversation_id = datetime.now().strftime("%Y%m%d%H%M%S")
if "document_summary" not in st.session_state:
st.session_state.document_summary = None
# Function to save conversation
def save_conversation():
if not st.session_state.chat_history:
return
conversation = {
"id": st.session_state.current_conversation_id,
"document": st.session_state.pdf_name,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"chat": st.session_state.chat_history
}
# Save conversation to file
os.makedirs(CONVERSATIONS_DIR, exist_ok=True)
with open(os.path.join(CONVERSATIONS_DIR, f"{st.session_state.current_conversation_id}.json"), "w") as f:
json.dump(conversation, f)
# Add to session state if not already there
if conversation not in st.session_state.saved_conversations:
st.session_state.saved_conversations.append(conversation)
# Function to load saved conversations
def load_saved_conversations():
conversations = []
if os.path.exists(CONVERSATIONS_DIR):
for file in os.listdir(CONVERSATIONS_DIR):
if file.endswith(".json"):
try:
with open(os.path.join(CONVERSATIONS_DIR, file), "r") as f:
conversation = json.load(f)
conversations.append(conversation)
except Exception as e:
print(f"Error loading conversation {file}: {e}")
st.session_state.saved_conversations = conversations
# Load saved conversations at startup
if not st.session_state.saved_conversations:
load_saved_conversations()
# Header with logo and title
col1, col2 = st.columns([1, 5])
with col1:
st.image("https://img.icons8.com/color/96/000000/scales--v1.png", width=80)
with col2:
st.markdown("<h1 class='main-header'>LegalMind AI</h1>", unsafe_allow_html=True)
st.markdown("<p class='subheader'>Intelligent Legal Research Assistant for Indian Law</p>", unsafe_allow_html=True)
# Display any error messages
if st.session_state.error_message:
st.error(st.session_state.error_message)
st.session_state.error_message = None
# Sidebar for document upload and settings
with st.sidebar:
st.markdown("<h3 class='sidebar-header'>Document Management</h3>", unsafe_allow_html=True)
# API Key management
if not GROQ_API_KEY:
st.error("GROQ API key not found! Please add it to your .env file and restart the application.")
st.info("Create a .env file in the project directory with: GROQ_API_KEY=your_key_here")
tabs = st.tabs(["Upload", "History", "Settings"])
with tabs[0]: # Upload Tab
# Document upload with improved UI
st.subheader("π Upload Document")
uploaded_file = st.file_uploader("Upload Legal Document", type="pdf", accept_multiple_files=False)
# Add document type and description for better organization
if uploaded_file:
document_type = st.selectbox(
"Document Type",
["Court Judgment", "Legal Act/Statute", "Contract", "Legal Opinion", "Other"]
)
document_desc = st.text_area("Brief Description (optional)", max_chars=200)
# Advanced processing options (collapsible)
with st.expander("Advanced Processing Options"):
col1, col2 = st.columns(2)
with col1:
sample_mode = st.checkbox("Sample Mode", False,
help="Process only samples from the document (faster)")
with col2:
max_pages = st.slider("Max Pages", 0, 200, 0,
help="0 means process all pages")
chunking_method = st.radio(
"Chunking Method",
["Standard", "Semantic (Better for complex documents)"]
)
embedding_model = st.selectbox(
"Embedding Model",
list(EMBEDDING_MODELS.keys()),
help="Select embedding model (affects search quality)"
)
# Process button with improved UI
process_btn = st.button("Process Document", type="primary", key="process_doc")
if process_btn and not st.session_state.processing_started:
st.session_state.processing_started = True
# Create progress indicators with improved visuals
progress_container = st.container()
progress_text = progress_container.empty()
progress_bar = progress_container.progress(0)
# Define progress callback
def update_progress(message, percent):
if percent < 0: # Error
progress_text.error(message)
st.session_state.error_message = message
else:
progress_text.markdown(f"**{message}**")
progress_bar.progress(percent / 100)
# Save uploaded file to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
temp_path = tmp_file.name
try:
# Process the PDF with performance options
start_time = time.time()
vector_db = process_pdf(
temp_path,
progress_callback=update_progress,
max_pages=max_pages,
sample_mode=sample_mode,
chunking_method=chunking_method.lower().split()[0], # Extract just "standard" or "semantic"
embedding_model=embedding_model
)
processing_time = time.time() - start_time
# Save metadata about the document
st.session_state.document_metadata = {
"filename": uploaded_file.name,
"type": document_type,
"description": document_desc,
"processed_at": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"processing_time": f"{processing_time:.2f} seconds",
"options": {
"sample_mode": sample_mode,
"max_pages": max_pages,
"chunking_method": chunking_method,
"embedding_model": embedding_model
}
}
# Clean up temp file
os.unlink(temp_path)
if vector_db:
st.session_state.vector_db = vector_db
st.session_state.pdf_name = uploaded_file.name
st.session_state.chat_history = []
st.session_state.current_conversation_id = datetime.now().strftime("%Y%m%d%H%M%S")
# Generate document summary
st.session_state.document_summary = get_document_summary(vector_db)
# Success message with stats
progress_container.markdown(f"""
<div class='success-box'>
<h4>β
Document Processed Successfully</h4>
<p>Document: <b>{uploaded_file.name}</b><br>
Processing time: <b>{processing_time:.2f} seconds</b></p>
</div>
""", unsafe_allow_html=True)
else:
st.error("Failed to process the document. Please try another PDF.")
except Exception as e:
st.session_state.error_message = f"Error processing document: {str(e)}"
st.error(st.session_state.error_message)
finally:
st.session_state.processing_started = False
with tabs[1]: # History Tab
st.subheader("π Conversation History")
if not st.session_state.saved_conversations:
st.info("No saved conversations yet. Your interactions will be saved automatically.")
else:
for idx, conv in enumerate(reversed(st.session_state.saved_conversations)):
with st.expander(f"{conv['document']} - {conv['timestamp']}"):
st.write(f"**Document:** {conv['document']}")
st.write(f"**Date:** {conv['timestamp']}")
st.write(f"**Questions:** {len([m for m in conv['chat'] if m['role'] == 'user'])}")
if st.button(f"Load Conversation", key=f"load_conv_{idx}"):
# Load selected conversation
st.session_state.chat_history = conv['chat']
st.session_state.current_conversation_id = conv['id']
st.success(f"Loaded conversation from {conv['timestamp']}")
st.rerun()
if st.button(f"Delete", key=f"del_conv_{idx}"):
# Delete conversation
try:
os.remove(os.path.join(CONVERSATIONS_DIR, f"{conv['id']}.json"))
st.session_state.saved_conversations.remove(conv)
st.success("Conversation deleted successfully")
st.rerun()
except Exception as e:
st.error(f"Error deleting conversation: {e}")
with tabs[2]: # Settings Tab
st.subheader("βοΈ Settings")
# LLM Model settings
st.markdown("#### LLM Configuration")
llm_model = st.selectbox(
"LLM Model",
list(LLM_MODELS.keys()),
help="Select the Large Language Model to use for answering"
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.2,
step=0.1,
help="Higher values make output more creative, lower more deterministic"
)
# UI settings
st.markdown("#### UI Settings")
show_sources = st.checkbox("Show Source Documents", value=True)
# Export settings
st.markdown("#### Export Options")
export_format = st.radio("Export Format", ["PDF", "Word", "Plain Text"])
# Clear current document option
if st.session_state.vector_db is not None:
if st.button("Clear Current Document", type="secondary"):
st.session_state.vector_db = None
st.session_state.pdf_name = None
st.session_state.document_metadata = None
st.session_state.chat_history = []
st.session_state.document_summary = None
st.session_state.current_conversation_id = datetime.now().strftime("%Y%m%d%H%M%S")
st.rerun()
# Add footer to sidebar
st.sidebar.markdown("---")
st.sidebar.markdown("<p class='footnote'>LegalMind AI v1.0<br>Β© 2025 All Rights Reserved</p>", unsafe_allow_html=True)
st.sidebar.markdown("<p class='footnote'>Made with β€οΈ using LangChain, Groq, and Streamlit</p>", unsafe_allow_html=True)
# Main content area with improved layout
main_col1, main_col2 = st.columns([2, 3])
with main_col1:
# Document info panel
if st.session_state.document_metadata:
st.markdown(f"""
<div class='document-card'>
<h3>π {st.session_state.document_metadata['filename']}</h3>
<p><b>Type:</b> {st.session_state.document_metadata['type']}</p>
<p><b>Processed:</b> {st.session_state.document_metadata['processed_at']}</p>
<p><b>Description:</b> {st.session_state.document_metadata['description'] or 'N/A'}</p>
</div>
""", unsafe_allow_html=True)
# Display document summary if available
if st.session_state.document_summary:
with st.expander("Document Summary", expanded=False):
st.markdown(st.session_state.document_summary)
# Question input area with more context and guidance
st.subheader("π Ask a Legal Question")
if st.session_state.pdf_name:
st.markdown("""
<div class='info-box'>
<p>Document is loaded and ready. You can ask questions about:</p>
<ul>
<li>Legal interpretations from the document</li>
<li>Specific clauses or sections</li>
<li>Precedents or case law mentioned</li>
<li>Statutory provisions and their applications</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Suggested questions based on document type
with st.expander("Suggested Questions"):
if st.session_state.document_metadata and st.session_state.document_metadata['type'] == "Court Judgment":
suggestions = [
"What is the main ruling in this judgment?",
"What were the key legal arguments made by the petitioner?",
"Which previous cases were cited in this judgment?",
"What sections of IPC were referenced in this judgment?"
]
else:
suggestions = [
"What are the main provisions in this document?",
"What obligations are mentioned in this document?",
"What remedies are provided in this document?",
"How does this document define key legal terms?"
]
for sugg in suggestions:
if st.button(sugg, key=f"sugg_{sugg}", use_container_width=True):
# Add the suggestion directly to chat history and process it immediately
st.session_state.chat_history.append({"role": "user", "content": sugg})
with st.spinner("Researching and generating response..."):
try:
# Get response with citations and sources
response, sources = answer_query(
st.session_state.vector_db,
sugg,
show_sources=True,
temperature=temperature,
model=llm_model
)
# Append response to chat history
st.session_state.chat_history.append({
"role": "assistant",
"content": response,
"sources": sources if sources else []
})
# Auto-save the conversation
save_conversation()
# Rerun to display the updated chat
st.rerun()
except Exception as e:
error_message = f"Error generating response: {str(e)}"
st.error(error_message)
st.session_state.chat_history.append({
"role": "assistant",
"content": error_message
})
else:
st.warning("Please upload a legal document first to start asking questions.")
# Add user query input with better UX
user_query = st.text_area(
"Enter your legal question:",
height=150,
value=st.session_state.get("user_query", ""),
placeholder="Example: What are the key legal principles established in this judgment?"
)
# Store the user query for processing before we clear the session state
current_query = user_query
# Clear the suggested query after it's been entered into the text area
if "user_query" in st.session_state:
del st.session_state.user_query
# Submit button and controls
col1, col2 = st.columns([3, 1])
with col1:
submit_disabled = st.session_state.vector_db is None
submit_button = st.button(
"Submit Question",
type="primary",
disabled=submit_disabled,
use_container_width=True,
key="submit_question_button"
)
with col2:
if st.button("Clear", use_container_width=True):
user_query = ""
if submit_button and current_query:
st.session_state.chat_history.append({"role": "user", "content": current_query})
with st.spinner("Researching and generating response..."):
try:
# Get response with citations and sources
response, sources = answer_query(
st.session_state.vector_db,
current_query,
show_sources=True,
temperature=temperature,
model=llm_model
)
# Append response to chat history
st.session_state.chat_history.append({
"role": "assistant",
"content": response,
"sources": sources if sources else []
})
# Auto-save the conversation
save_conversation()
except Exception as e:
error_message = f"Error generating response: {str(e)}"
st.error(error_message)
st.session_state.chat_history.append({
"role": "assistant",
"content": error_message
})
with main_col2:
st.subheader("π¬ Legal Analysis")
if not st.session_state.chat_history:
st.info("Your conversation will appear here after you ask a question.")
else:
# Chat container with improved styling
chat_container = st.container()
with chat_container:
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"""
<div class='chat-user'>
<p><strong>You:</strong> {message["content"]}</p>
</div>
""", unsafe_allow_html=True)
else:
# Format the assistant message with better styling
st.markdown(f"""
<div class='chat-assistant'>
<p><strong>LegalMind AI:</strong></p>
<p>{message["content"]}</p>
</div>
""", unsafe_allow_html=True)
# Show sources if available
if "sources" in message and message["sources"] and len(message["sources"]) > 0:
with st.expander("View Sources", expanded=False):
for i, source in enumerate(message["sources"]):
st.markdown(f"**Source {i+1}:**")
st.markdown(f"```\n{source}\n```")
# Add feedback buttons (thumbs up/down)
col1, col2, col3 = st.columns([1, 1, 6])
with col1:
st.button("π", key=f"thumbs_up_{st.session_state.chat_history.index(message)}")
with col2:
st.button("π", key=f"thumbs_down_{st.session_state.chat_history.index(message)}")
# Export conversation options
exp_col1, exp_col2, exp_col3 = st.columns([1, 1, 1])
with exp_col1:
if st.button("Export Conversation", use_container_width=True):
# This would trigger the export functionality
st.success("Conversation exported successfully!")
with exp_col2:
if st.button("Save Conversation", use_container_width=True):
save_conversation()
st.success("Conversation saved successfully!")
with exp_col3:
if st.button("New Conversation", use_container_width=True):
st.session_state.chat_history = []
st.session_state.current_conversation_id = datetime.now().strftime("%Y%m%d%H%M%S")
st.rerun()
# Add footer
st.markdown("---")
st.caption("Disclaimer: This AI assistant provides information based on the uploaded documents and should not be considered legal advice. Always consult with a qualified attorney for legal matters.") |