Spaces:
Sleeping
Sleeping
Dharshaneshwaran
commited on
Commit
·
ddcedb5
0
Parent(s):
Full updated code with finding ai generated images too
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +40 -0
- .gitignore +3 -0
- README.md +125 -0
- __pycache__/demo.txt +0 -0
- __pycache__/inference.cpython-39.pyc +0 -0
- __pycache__/inference_2.cpython-310.pyc +0 -0
- __pycache__/inference_2.cpython-39.pyc +0 -0
- app.py +59 -0
- audio.py +2 -0
- audios/DF_E_2000027.flac +0 -0
- audios/DF_E_2000028.flac +0 -0
- audios/DF_E_2000031.flac +0 -0
- audios/DF_E_2000032.flac +0 -0
- audios/demo.txt +0 -0
- checkpoints/demo.txt +0 -0
- checkpoints/efficientnet.onnx +3 -0
- checkpoints/model.pth +3 -0
- data/__init__.py +22 -0
- data/__pycache__/__init__.cpython-39.pyc +0 -0
- data/__pycache__/augmentation_utils.cpython-39.pyc +0 -0
- data/__pycache__/demo.txt +0 -0
- data/__pycache__/dfdt_dataset.cpython-39.pyc +0 -0
- data/augmentation_utils.py +88 -0
- data/demo.txt +0 -0
- data/dfdt_dataset.py +130 -0
- data/generate_dataset_to_tfrecord.py +178 -0
- datasets/demo.txt +0 -0
- datasets/fakeavceleb_100.csv +101 -0
- datasets/fakeavceleb_1k.csv +1001 -0
- datasets/train/.gitkeep +0 -0
- datasets/train/demo.txt +0 -0
- datasets/val/.gitkeep +0 -0
- datasets/val/demo.txt +0 -0
- images/demo.txt +0 -0
- images/fake_image.jpg +0 -0
- images/lady.jpg +0 -0
- images/real.jpeg +0 -0
- inference.py +211 -0
- inference_2.py +265 -0
- inference_3.py +17 -0
- main.py +247 -0
- model.py +3 -0
- models/TMC.py +156 -0
- models/__pycache__/TMC.cpython-310.pyc +0 -0
- models/__pycache__/TMC.cpython-39.pyc +0 -0
- models/__pycache__/classifiers.cpython-310.pyc +0 -0
- models/__pycache__/classifiers.cpython-39.pyc +0 -0
- models/__pycache__/demo.txt +0 -0
- models/__pycache__/image.cpython-310.pyc +0 -0
- models/__pycache__/image.cpython-39.pyc +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoints/model.pth filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoints/efficientnet.onnx filter=lfs diff=lfs merge=lfs -textvideos/0317.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
videos/celeb_synthesis.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
images/lady.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.ext filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
checkpoints/RawNet2.pth
|
| 2 |
+
deepfake/
|
| 3 |
+
.gradio/
|
README.md
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DeepSecure-AI
|
| 2 |
+
|
| 3 |
+
DeepSecure-AI is a powerful open-source tool designed to detect fake images, videos, and audios. Utilizing state-of-the-art deep learning techniques like EfficientNetV2 and MTCNN, DeepSecure-AI offers frame-by-frame video analysis, enabling high-accuracy deepfake detection. It's developed with a focus on ease of use, making it accessible for researchers, developers, and security analysts...
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## Features
|
| 8 |
+
|
| 9 |
+
- Multimedia Detection: Detect deepfakes in images, videos, and audio files using a unified platform.
|
| 10 |
+
- High Accuracy: Leverages EfficientNetV2 for enhanced prediction performance and accurate results.
|
| 11 |
+
- Real-Time Video Analysis: Frame-by-frame analysis of videos with automatic face detection.
|
| 12 |
+
- User-Friendly Interface: Easy-to-use interface built with Gradio for uploading and processing media files.
|
| 13 |
+
- Open Source: Completely open source under the MIT license, making it available for developers to extend and improve.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## Demo-Data
|
| 18 |
+
|
| 19 |
+
You can test the deepfake detection capabilities of DeepSecure-AI by uploading your video files. The tool will analyze each frame of the video, detect faces, and determine the likelihood of the video being real or fake.
|
| 20 |
+
|
| 21 |
+
Examples:
|
| 22 |
+
1. [Video1-fake-1-ff.mp4](#)
|
| 23 |
+
2. [Video6-real-1-ff.mp4](#)
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## How It Works
|
| 28 |
+
|
| 29 |
+
DeepSecure-AI uses the following architecture:
|
| 30 |
+
|
| 31 |
+
1. Face Detection:
|
| 32 |
+
The [MTCNN](https://arxiv.org/abs/1604.02878) model detects faces in each frame of the video. If no face is detected, it will use the previous frame's face to ensure accuracy.
|
| 33 |
+
|
| 34 |
+
2. Fake vs. Real Classification:
|
| 35 |
+
Once the face is detected, it's resized and fed into the [EfficientNetV2](https://arxiv.org/abs/2104.00298) deep learning model, which determines the likelihood of the frame being real or fake.
|
| 36 |
+
|
| 37 |
+
3. Fake Confidence:
|
| 38 |
+
A final prediction is generated as a percentage score, indicating the confidence that the media is fake.
|
| 39 |
+
|
| 40 |
+
4. Results:
|
| 41 |
+
DeepSecure-AI provides an output video, highlighting the detected faces and a summary of whether the input is classified as real or fake.
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## Project Setup
|
| 46 |
+
|
| 47 |
+
### Prerequisites
|
| 48 |
+
|
| 49 |
+
Ensure you have the following installed:
|
| 50 |
+
|
| 51 |
+
- Python 3.10
|
| 52 |
+
- Gradio (pip install gradio)
|
| 53 |
+
- TensorFlow (pip install tensorflow)
|
| 54 |
+
- OpenCV (pip install opencv-python)
|
| 55 |
+
- PyTorch (pip install torch torchvision torchaudio)
|
| 56 |
+
- facenet-pytorch (pip install facenet-pytorch)
|
| 57 |
+
- MoviePy (pip install moviepy)
|
| 58 |
+
|
| 59 |
+
### Installation
|
| 60 |
+
|
| 61 |
+
1. Clone the repository:
|
| 62 |
+
git clone https://github.com/Divith123/DeepSecure-AI.git
|
| 63 |
+
cd DeepSecure-AI
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
2. Install required dependencies:
|
| 67 |
+
pip install -r requirements.txt
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
3. Download the pre-trained model weights for EfficientNetV2 and place them in the project folder.
|
| 71 |
+
|
| 72 |
+
### Running the Application
|
| 73 |
+
|
| 74 |
+
1. Launch the Gradio interface:
|
| 75 |
+
python app.py
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
2. The web interface will be available locally. You can upload a video, and DeepSecure-AI will analyze and display results.
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
## Example Usage
|
| 83 |
+
|
| 84 |
+
Upload a video or image to DeepSecure-AI to detect fake media. Here are some sample predictions:
|
| 85 |
+
|
| 86 |
+
- Video Analysis: The tool will detect faces from each frame and classify whether the video is fake or real.
|
| 87 |
+
- Result Output: A GIF or MP4 file with the sequence of detected faces and classification result will be provided.
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
|
| 91 |
+
## Technologies Used
|
| 92 |
+
|
| 93 |
+
- TensorFlow: For building and training deep learning models.
|
| 94 |
+
- EfficientNetV2: The core model for image and video classification.
|
| 95 |
+
- MTCNN: For face detection in images and videos.
|
| 96 |
+
- OpenCV: For video processing and frame manipulation.
|
| 97 |
+
- MoviePy: For video editing and result generation.
|
| 98 |
+
- Gradio: To create a user-friendly interface for interacting with the deepfake detector.
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## License
|
| 103 |
+
|
| 104 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 105 |
+
|
| 106 |
+
---
|
| 107 |
+
|
| 108 |
+
## Contributions
|
| 109 |
+
|
| 110 |
+
Contributions are welcome! If you'd like to improve the tool, feel free to submit a pull request or raise an issue.
|
| 111 |
+
|
| 112 |
+
For more information, check the [Contribution Guidelines](CONTRIBUTING.md).
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## References
|
| 117 |
+
- Li et al. (2020): [Celeb-DF(V2)](https://arxiv.org/abs/2008.06456)
|
| 118 |
+
- Rossler et al. (2019): [FaceForensics++](https://arxiv.org/abs/1901.08971)
|
| 119 |
+
- Timesler (2020): [Facial Recognition Model in PyTorch](https://www.kaggle.com/timesler/facial-recognition-model-in-pytorch)
|
| 120 |
+
|
| 121 |
+
---
|
| 122 |
+
|
| 123 |
+
### Disclaimer
|
| 124 |
+
|
| 125 |
+
DeepSecure-AI is a research project and is designed for educational purposes.Please use responsibly and always give proper credit when utilizing the model in your work.
|
__pycache__/demo.txt
ADDED
|
File without changes
|
__pycache__/inference.cpython-39.pyc
ADDED
|
Binary file (5.97 kB). View file
|
|
|
__pycache__/inference_2.cpython-310.pyc
ADDED
|
Binary file (7.34 kB). View file
|
|
|
__pycache__/inference_2.cpython-39.pyc
ADDED
|
Binary file (5.97 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import inference_2 as inference
|
| 3 |
+
|
| 4 |
+
# Title and Description
|
| 5 |
+
title = " Multimodal Deepfake Detector"
|
| 6 |
+
description = "Detect deepfakes and AI-generated content from videos, audio, and images using advanced AI models."
|
| 7 |
+
|
| 8 |
+
# Individual Interfaces
|
| 9 |
+
video_interface = gr.Interface(
|
| 10 |
+
inference.deepfakes_video_predict,
|
| 11 |
+
inputs=gr.Video(label="Upload a Video"),
|
| 12 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 13 |
+
examples=["videos/aaa.mp4", "videos/bbb.mp4"],
|
| 14 |
+
cache_examples=False
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
image_interface = gr.Interface(
|
| 18 |
+
inference.deepfakes_image_predict,
|
| 19 |
+
inputs=gr.Image(label="Upload an Image"),
|
| 20 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 21 |
+
examples=["images/lady.jpg", "images/fake_image.jpg"],
|
| 22 |
+
cache_examples=False
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
audio_interface = gr.Interface(
|
| 26 |
+
inference.deepfakes_spec_predict,
|
| 27 |
+
inputs=gr.Audio(label="Upload an Audio"),
|
| 28 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 29 |
+
examples=["audios/DF_E_2000027.flac", "audios/DF_E_2000031.flac"],
|
| 30 |
+
cache_examples=False
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
ai_image_detector = gr.Interface(
|
| 34 |
+
fn=inference.detect_ai_generated_image,
|
| 35 |
+
inputs=gr.Image(label="Upload an Image"),
|
| 36 |
+
outputs=gr.Textbox(label="AI-Generated or Human-Created"),
|
| 37 |
+
examples=["images/ai_generated.jpg", "images/real.jpeg"],
|
| 38 |
+
cache_examples=False
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# 🧩 Full UI with Title & Tabs
|
| 42 |
+
with gr.Blocks(title=title) as app:
|
| 43 |
+
gr.Markdown(f"# {title}")
|
| 44 |
+
gr.Markdown(description)
|
| 45 |
+
|
| 46 |
+
with gr.Tab("🎬 Video Inference"):
|
| 47 |
+
video_interface.render()
|
| 48 |
+
|
| 49 |
+
with gr.Tab("🎧 Audio Inference"):
|
| 50 |
+
audio_interface.render()
|
| 51 |
+
|
| 52 |
+
with gr.Tab("🖼️ Image Inference"):
|
| 53 |
+
image_interface.render()
|
| 54 |
+
|
| 55 |
+
with gr.Tab("🤖 AI Image Detector"):
|
| 56 |
+
ai_image_detector.render()
|
| 57 |
+
|
| 58 |
+
if __name__ == '__main__':
|
| 59 |
+
app.launch(share=False)
|
audio.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.system("ffprobe -version")
|
audios/DF_E_2000027.flac
ADDED
|
Binary file (30.3 kB). View file
|
|
|
audios/DF_E_2000028.flac
ADDED
|
Binary file (29.7 kB). View file
|
|
|
audios/DF_E_2000031.flac
ADDED
|
Binary file (65.2 kB). View file
|
|
|
audios/DF_E_2000032.flac
ADDED
|
Binary file (80.3 kB). View file
|
|
|
audios/demo.txt
ADDED
|
File without changes
|
checkpoints/demo.txt
ADDED
|
File without changes
|
checkpoints/efficientnet.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:206f99f4c4efe6d088ba6e53bfcdec76ffa796a345d50770c037005e3cd11639
|
| 3 |
+
size 23510323
|
checkpoints/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3de812710093068acee6200b8d162aab074975edffa3edf2ccbe562868e4adf6
|
| 3 |
+
size 117418889
|
data/__init__.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.utils.data
|
| 2 |
+
|
| 3 |
+
class DataProvider():
|
| 4 |
+
|
| 5 |
+
def __init__(self, cfg, dataset, batch_size=None, shuffle=True):
|
| 6 |
+
super().__init__()
|
| 7 |
+
self.dataset = dataset
|
| 8 |
+
if batch_size is None:
|
| 9 |
+
batch_size = cfg.BATCH_SIZE
|
| 10 |
+
self.dataloader = torch.utils.data.DataLoader(
|
| 11 |
+
self.dataset,
|
| 12 |
+
batch_size=batch_size,
|
| 13 |
+
shuffle=shuffle,
|
| 14 |
+
num_workers=int(cfg.WORKERS),
|
| 15 |
+
drop_last=False)
|
| 16 |
+
|
| 17 |
+
def __len__(self):
|
| 18 |
+
return len(self.dataset)
|
| 19 |
+
|
| 20 |
+
def __iter__(self):
|
| 21 |
+
for i, data in enumerate(self.dataloader):
|
| 22 |
+
yield data
|
data/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (1.05 kB). View file
|
|
|
data/__pycache__/augmentation_utils.cpython-39.pyc
ADDED
|
Binary file (3.55 kB). View file
|
|
|
data/__pycache__/demo.txt
ADDED
|
File without changes
|
data/__pycache__/dfdt_dataset.cpython-39.pyc
ADDED
|
Binary file (4.56 kB). View file
|
|
|
data/augmentation_utils.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import albumentations
|
| 5 |
+
from albumentations import (Compose, ImageCompression, GaussNoise, HorizontalFlip,
|
| 6 |
+
PadIfNeeded, OneOf,ToGray, ShiftScaleRotate, GaussianBlur,
|
| 7 |
+
RandomBrightnessContrast, FancyPCA, HueSaturationValue, BasicTransform)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class AudioTransform(BasicTransform):
|
| 11 |
+
""" Transform for audio task. This is the main class where we override the targets and update params function for our need"""
|
| 12 |
+
@property
|
| 13 |
+
def targets(self):
|
| 14 |
+
return {"data": self.apply}
|
| 15 |
+
|
| 16 |
+
def update_params(self, params, **kwargs):
|
| 17 |
+
if hasattr(self, "interpolation"):
|
| 18 |
+
params["interpolation"] = self.interpolation
|
| 19 |
+
if hasattr(self, "fill_value"):
|
| 20 |
+
params["fill_value"] = self.fill_value
|
| 21 |
+
return params
|
| 22 |
+
|
| 23 |
+
class TimeShifting(AudioTransform):
|
| 24 |
+
""" Do time shifting of audio """
|
| 25 |
+
def __init__(self, always_apply=False, p=0.5):
|
| 26 |
+
super(TimeShifting, self).__init__(always_apply, p)
|
| 27 |
+
|
| 28 |
+
def apply(self,data,**params):
|
| 29 |
+
'''
|
| 30 |
+
data : ndarray of audio timeseries
|
| 31 |
+
'''
|
| 32 |
+
start_ = int(np.random.uniform(-80000,80000))
|
| 33 |
+
if start_ >= 0:
|
| 34 |
+
audio_time_shift = np.r_[data[start_:], np.random.uniform(-0.001,0.001, start_)]
|
| 35 |
+
else:
|
| 36 |
+
audio_time_shift = np.r_[np.random.uniform(-0.001,0.001, -start_), data[:start_]]
|
| 37 |
+
|
| 38 |
+
return audio_time_shift
|
| 39 |
+
|
| 40 |
+
class PitchShift(AudioTransform):
|
| 41 |
+
""" Do time shifting of audio """
|
| 42 |
+
def __init__(self, always_apply=False, p=0.5 , n_steps=None):
|
| 43 |
+
super(PitchShift, self).__init__(always_apply, p)
|
| 44 |
+
'''
|
| 45 |
+
nsteps here is equal to number of semitones
|
| 46 |
+
'''
|
| 47 |
+
|
| 48 |
+
self.n_steps = n_steps
|
| 49 |
+
|
| 50 |
+
def apply(self,data,**params):
|
| 51 |
+
'''
|
| 52 |
+
data : ndarray of audio timeseries
|
| 53 |
+
'''
|
| 54 |
+
return librosa.effects.pitch_shift(data,sr=16000,n_steps=self.n_steps)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class AddGaussianNoise(AudioTransform):
|
| 58 |
+
""" Do time shifting of audio """
|
| 59 |
+
def __init__(self, always_apply=False, p=0.5):
|
| 60 |
+
super(AddGaussianNoise, self).__init__(always_apply, p)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def apply(self,data,**params):
|
| 64 |
+
'''
|
| 65 |
+
data : ndarray of audio timeseries
|
| 66 |
+
'''
|
| 67 |
+
noise = np.random.randn(len(data))
|
| 68 |
+
data_wn = data + 0.005*noise
|
| 69 |
+
return data_wn
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
create_frame_transforms = Compose([
|
| 73 |
+
ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
|
| 74 |
+
GaussNoise(p=0.1),
|
| 75 |
+
GaussianBlur(blur_limit=3, p=0.05),
|
| 76 |
+
HorizontalFlip(),
|
| 77 |
+
PadIfNeeded(min_height=256, min_width=256, border_mode=cv2.BORDER_CONSTANT),
|
| 78 |
+
OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7),
|
| 79 |
+
ToGray(p=0.2),
|
| 80 |
+
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5),])
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
create_spec_transforms = albumentations.Compose([
|
| 85 |
+
TimeShifting(p=0.9), # here not p=1.0 because your nets should get some difficulties
|
| 86 |
+
AddGaussianNoise(p=0.8),
|
| 87 |
+
PitchShift(p=0.5,n_steps=4)
|
| 88 |
+
])
|
data/demo.txt
ADDED
|
File without changes
|
data/dfdt_dataset.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''Module for loading the fakeavceleb dataset from tfrecord format'''
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from data.augmentation_utils import create_frame_transforms, create_spec_transforms
|
| 5 |
+
|
| 6 |
+
FEATURE_DESCRIPTION = {
|
| 7 |
+
'video_path': tf.io.FixedLenFeature([], tf.string),
|
| 8 |
+
'image/encoded': tf.io.FixedLenFeature([], tf.string),
|
| 9 |
+
'clip/label/index': tf.io.FixedLenFeature([], tf.int64),
|
| 10 |
+
'clip/label/text': tf.io.FixedLenFeature([], tf.string),
|
| 11 |
+
'WAVEFORM/feature/floats': tf.io.FixedLenFeature([], tf.string)
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
@tf.function
|
| 15 |
+
def _parse_function(example_proto):
|
| 16 |
+
|
| 17 |
+
#Parse the input `tf.train.Example` proto using the dictionary above.
|
| 18 |
+
example = tf.io.parse_single_example(example_proto, FEATURE_DESCRIPTION)
|
| 19 |
+
|
| 20 |
+
video_path = example['video_path']
|
| 21 |
+
video = tf.io.decode_raw(example['image/encoded'], tf.int8)
|
| 22 |
+
spectrogram = tf.io.decode_raw(example['WAVEFORM/feature/floats'], tf.float32)
|
| 23 |
+
|
| 24 |
+
label = example["clip/label/text"]
|
| 25 |
+
label_map = example["clip/label/index"]
|
| 26 |
+
|
| 27 |
+
return video, spectrogram, label_map
|
| 28 |
+
|
| 29 |
+
@tf.function
|
| 30 |
+
def decode_inputs(video, spectrogram, label_map):
|
| 31 |
+
'''Decode tensors to arrays with desired shape'''
|
| 32 |
+
frame = tf.reshape(video, [10, 3, 256, 256])
|
| 33 |
+
frame = frame[0] / 255 #Pick the first frame and normalize it.
|
| 34 |
+
# frame = tf.cast(frame, tf.float32)
|
| 35 |
+
|
| 36 |
+
label_map = tf.expand_dims(label_map, axis = 0)
|
| 37 |
+
|
| 38 |
+
sample = {'video_reshaped': frame, 'spectrogram': spectrogram, 'label_map': label_map}
|
| 39 |
+
return sample
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def decode_train_inputs(video, spectrogram, label_map):
|
| 43 |
+
#Data augmentation for spectograms
|
| 44 |
+
spectrogram_shape = spectrogram.shape
|
| 45 |
+
spec_augmented = tf.py_function(aug_spec_fn, [spectrogram], tf.float32)
|
| 46 |
+
spec_augmented.set_shape(spectrogram_shape)
|
| 47 |
+
|
| 48 |
+
frame = tf.reshape(video, [10, 256, 256, 3])
|
| 49 |
+
frame = frame[0] #Pick the first frame.
|
| 50 |
+
frame = frame / 255 #Normalize tensor.
|
| 51 |
+
|
| 52 |
+
frame_augmented = tf.py_function(aug_img_fn, [frame], tf.uint8)
|
| 53 |
+
# frame_augmented.set_shape(frame_shape)
|
| 54 |
+
|
| 55 |
+
frame_augmented.set_shape([3, 256, 256])
|
| 56 |
+
label_map = tf.expand_dims(label_map, axis = 0)
|
| 57 |
+
|
| 58 |
+
augmented_sample = {'video_reshaped': frame_augmented, 'spectrogram': spec_augmented, 'label_map': label_map}
|
| 59 |
+
return augmented_sample
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def aug_img_fn(frame):
|
| 63 |
+
frame = frame.numpy().astype(np.uint8)
|
| 64 |
+
frame_data = {'image': frame}
|
| 65 |
+
aug_frame_data = create_frame_transforms(**frame_data)
|
| 66 |
+
aug_img = aug_frame_data['image']
|
| 67 |
+
aug_img = aug_img.transpose(2, 0, 1)
|
| 68 |
+
return aug_img
|
| 69 |
+
|
| 70 |
+
def aug_spec_fn(spec):
|
| 71 |
+
spec = spec.numpy()
|
| 72 |
+
spec_data = {'spec': spec}
|
| 73 |
+
aug_spec_data = create_spec_transforms(**spec_data)
|
| 74 |
+
aug_spec = aug_spec_data['spec']
|
| 75 |
+
return aug_spec
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class FakeAVCelebDatasetTrain:
|
| 79 |
+
|
| 80 |
+
def __init__(self, args):
|
| 81 |
+
self.args = args
|
| 82 |
+
self.samples = self.load_features_from_tfrec()
|
| 83 |
+
|
| 84 |
+
def load_features_from_tfrec(self):
|
| 85 |
+
'''Loads raw features from a tfrecord file and returns them as raw inputs'''
|
| 86 |
+
ds = tf.io.matching_files(self.args.data_dir)
|
| 87 |
+
files = tf.random.shuffle(ds)
|
| 88 |
+
|
| 89 |
+
shards = tf.data.Dataset.from_tensor_slices(files)
|
| 90 |
+
dataset = shards.interleave(tf.data.TFRecordDataset)
|
| 91 |
+
dataset = dataset.shuffle(buffer_size=100)
|
| 92 |
+
|
| 93 |
+
dataset = dataset.map(_parse_function, num_parallel_calls = tf.data.AUTOTUNE)
|
| 94 |
+
dataset = dataset.map(decode_train_inputs, num_parallel_calls = tf.data.AUTOTUNE)
|
| 95 |
+
dataset = dataset.padded_batch(batch_size = self.args.batch_size)
|
| 96 |
+
return dataset
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def __len__(self):
|
| 100 |
+
self.samples = self.load_features_from_tfrec(self.args.data_dir)
|
| 101 |
+
cnt = self.samples.reduce(np.int64(0), lambda x, _: x + 1)
|
| 102 |
+
cnt = cnt.numpy()
|
| 103 |
+
return cnt
|
| 104 |
+
|
| 105 |
+
class FakeAVCelebDatasetVal:
|
| 106 |
+
|
| 107 |
+
def __init__(self, args):
|
| 108 |
+
self.args = args
|
| 109 |
+
self.samples = self.load_features_from_tfrec()
|
| 110 |
+
|
| 111 |
+
def load_features_from_tfrec(self):
|
| 112 |
+
'''Loads raw features from a tfrecord file and returns them as raw inputs'''
|
| 113 |
+
ds = tf.io.matching_files(self.args.data_dir)
|
| 114 |
+
files = tf.random.shuffle(ds)
|
| 115 |
+
|
| 116 |
+
shards = tf.data.Dataset.from_tensor_slices(files)
|
| 117 |
+
dataset = shards.interleave(tf.data.TFRecordDataset)
|
| 118 |
+
dataset = dataset.shuffle(buffer_size=100)
|
| 119 |
+
|
| 120 |
+
dataset = dataset.map(_parse_function, num_parallel_calls = tf.data.AUTOTUNE)
|
| 121 |
+
dataset = dataset.map(decode_inputs, num_parallel_calls = tf.data.AUTOTUNE)
|
| 122 |
+
dataset = dataset.padded_batch(batch_size = self.args.batch_size)
|
| 123 |
+
return dataset
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def __len__(self):
|
| 127 |
+
self.samples = self.load_features_from_tfrec(self.args.data_dir)
|
| 128 |
+
cnt = self.samples.reduce(np.int64(0), lambda x, _: x + 1)
|
| 129 |
+
cnt = cnt.numpy()
|
| 130 |
+
return cnt
|
data/generate_dataset_to_tfrecord.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Code outsourced from https://github.com/deepmind/dmvr/tree/master and later modified.
|
| 2 |
+
|
| 3 |
+
"""Python script to generate TFRecords of SequenceExample from raw videos."""
|
| 4 |
+
|
| 5 |
+
import contextlib
|
| 6 |
+
import math
|
| 7 |
+
import os
|
| 8 |
+
import cv2
|
| 9 |
+
from typing import Dict, Optional, Sequence
|
| 10 |
+
import moviepy.editor
|
| 11 |
+
from absl import app
|
| 12 |
+
from absl import flags
|
| 13 |
+
import ffmpeg
|
| 14 |
+
import numpy as np
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import tensorflow as tf
|
| 17 |
+
|
| 18 |
+
import warnings
|
| 19 |
+
warnings.filterwarnings('ignore')
|
| 20 |
+
|
| 21 |
+
flags.DEFINE_string("csv_path", "fakeavceleb_1k.csv", "Input csv")
|
| 22 |
+
flags.DEFINE_string("output_path", "fakeavceleb_tfrec", "Tfrecords output path.")
|
| 23 |
+
flags.DEFINE_string("video_root_path", "./",
|
| 24 |
+
"Root directory containing the raw videos.")
|
| 25 |
+
flags.DEFINE_integer(
|
| 26 |
+
"num_shards", 4, "Number of shards to output, -1 means"
|
| 27 |
+
"it will automatically adapt to the sqrt(num_examples).")
|
| 28 |
+
flags.DEFINE_bool("decode_audio", False, "Whether or not to decode the audio")
|
| 29 |
+
flags.DEFINE_bool("shuffle_csv", False, "Whether or not to shuffle the csv.")
|
| 30 |
+
FLAGS = flags.FLAGS
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
_JPEG_HEADER = b"\xff\xd8"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@contextlib.contextmanager
|
| 37 |
+
def _close_on_exit(writers):
|
| 38 |
+
"""Call close on all writers on exit."""
|
| 39 |
+
try:
|
| 40 |
+
yield writers
|
| 41 |
+
finally:
|
| 42 |
+
for writer in writers:
|
| 43 |
+
writer.close()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def add_float_list(key: str, values: Sequence[float],
|
| 47 |
+
sequence: tf.train.SequenceExample):
|
| 48 |
+
sequence.feature_lists.feature_list[key].feature.add(
|
| 49 |
+
).float_list.value[:] = values
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def add_bytes_list(key: str, values: Sequence[bytes],
|
| 53 |
+
sequence: tf.train.SequenceExample):
|
| 54 |
+
sequence.feature_lists.feature_list[key].feature.add().bytes_list.value[:] = values
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def add_int_list(key: str, values: Sequence[int],
|
| 58 |
+
sequence: tf.train.SequenceExample):
|
| 59 |
+
sequence.feature_lists.feature_list[key].feature.add().int64_list.value[:] = values
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def set_context_int_list(key: str, value: Sequence[int],
|
| 63 |
+
sequence: tf.train.SequenceExample):
|
| 64 |
+
sequence.context.feature[key].int64_list.value[:] = value
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def set_context_bytes(key: str, value: bytes,
|
| 68 |
+
sequence: tf.train.SequenceExample):
|
| 69 |
+
sequence.context.feature[key].bytes_list.value[:] = (value,)
|
| 70 |
+
|
| 71 |
+
def set_context_bytes_list(key: str, value: Sequence[bytes],
|
| 72 |
+
sequence: tf.train.SequenceExample):
|
| 73 |
+
sequence.context.feature[key].bytes_list.value[:] = value
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def set_context_float(key: str, value: float,
|
| 77 |
+
sequence: tf.train.SequenceExample):
|
| 78 |
+
sequence.context.feature[key].float_list.value[:] = (value,)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def set_context_int(key: str, value: int, sequence: tf.train.SequenceExample):
|
| 82 |
+
sequence.context.feature[key].int64_list.value[:] = (value,)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def extract_frames(video_path, fps = 10, min_resize = 256):
|
| 86 |
+
'''Load n number of frames from a video'''
|
| 87 |
+
v_cap = cv2.VideoCapture(video_path)
|
| 88 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 89 |
+
|
| 90 |
+
if fps is None:
|
| 91 |
+
sample = np.arange(0, v_len)
|
| 92 |
+
else:
|
| 93 |
+
sample = np.linspace(0, v_len - 1, fps).astype(int)
|
| 94 |
+
|
| 95 |
+
frames = []
|
| 96 |
+
for j in range(v_len):
|
| 97 |
+
success = v_cap.grab()
|
| 98 |
+
if j in sample:
|
| 99 |
+
success, frame = v_cap.retrieve()
|
| 100 |
+
if not success:
|
| 101 |
+
continue
|
| 102 |
+
|
| 103 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 104 |
+
frame = cv2.resize(frame, (min_resize, min_resize))
|
| 105 |
+
frames.append(frame)
|
| 106 |
+
|
| 107 |
+
v_cap.release()
|
| 108 |
+
frame_np = np.stack(frames)
|
| 109 |
+
return frame_np.tobytes()
|
| 110 |
+
|
| 111 |
+
def extract_audio(video_path: str,
|
| 112 |
+
sampling_rate: int = 16_000):
|
| 113 |
+
"""Extract raw mono audio float list from video_path with ffmpeg."""
|
| 114 |
+
video = moviepy.editor.VideoFileClip(video_path)
|
| 115 |
+
audio = video.audio.to_soundarray()
|
| 116 |
+
#Load first channel.
|
| 117 |
+
audio = audio[:, 0]
|
| 118 |
+
|
| 119 |
+
return np.array(audio)
|
| 120 |
+
|
| 121 |
+
#Each of the features can be coerced into a tf.train.Example-compatible type using one of the _bytes_feature, _float_feature and the _int64_feature.
|
| 122 |
+
#You can then create a tf.train.Example message from these encoded features.
|
| 123 |
+
|
| 124 |
+
def serialize_example(video_path: str, label_name: str, label_map: Optional[Dict[str, int]] = None):
|
| 125 |
+
# Initiate the sequence example.
|
| 126 |
+
seq_example = tf.train.SequenceExample()
|
| 127 |
+
|
| 128 |
+
imgs_encoded = extract_frames(video_path, fps = 10)
|
| 129 |
+
|
| 130 |
+
audio = extract_audio(video_path)
|
| 131 |
+
|
| 132 |
+
set_context_bytes(f'image/encoded', imgs_encoded, seq_example)
|
| 133 |
+
set_context_bytes("video_path", video_path.encode(), seq_example)
|
| 134 |
+
set_context_bytes("WAVEFORM/feature/floats", audio.tobytes(), seq_example)
|
| 135 |
+
set_context_int("clip/label/index", label_map[label_name], seq_example)
|
| 136 |
+
set_context_bytes("clip/label/text", label_name.encode(), seq_example)
|
| 137 |
+
return seq_example
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def main(argv):
|
| 141 |
+
del argv
|
| 142 |
+
# reads the input csv.
|
| 143 |
+
input_csv = pd.read_csv(FLAGS.csv_path)
|
| 144 |
+
if FLAGS.num_shards == -1:
|
| 145 |
+
num_shards = int(math.sqrt(len(input_csv)))
|
| 146 |
+
else:
|
| 147 |
+
num_shards = FLAGS.num_shards
|
| 148 |
+
# Set up the TFRecordWriters.
|
| 149 |
+
basename = os.path.splitext(os.path.basename(FLAGS.csv_path))[0]
|
| 150 |
+
shard_names = [
|
| 151 |
+
os.path.join(FLAGS.output_path, f"{basename}-{i:05d}-of-{num_shards:05d}")
|
| 152 |
+
for i in range(num_shards)
|
| 153 |
+
]
|
| 154 |
+
writers = [tf.io.TFRecordWriter(shard_name) for shard_name in shard_names]
|
| 155 |
+
|
| 156 |
+
if "label" in input_csv:
|
| 157 |
+
unique_labels = list(set(input_csv["label"].values))
|
| 158 |
+
l_map = {unique_labels[i]: i for i in range(len(unique_labels))}
|
| 159 |
+
else:
|
| 160 |
+
l_map = None
|
| 161 |
+
|
| 162 |
+
if FLAGS.shuffle_csv:
|
| 163 |
+
input_csv = input_csv.sample(frac=1)
|
| 164 |
+
with _close_on_exit(writers) as writers:
|
| 165 |
+
row_count = 0
|
| 166 |
+
for row in input_csv.itertuples():
|
| 167 |
+
index = row[0]
|
| 168 |
+
v = row[1]
|
| 169 |
+
if os.name == 'posix':
|
| 170 |
+
v = v.str.replace('\\', '/')
|
| 171 |
+
l = row[2]
|
| 172 |
+
row_count += 1
|
| 173 |
+
print("Processing example %d of %d (%d%%) \r" %(row_count, len(input_csv), row_count * 100 / len(input_csv)), end="")
|
| 174 |
+
seq_ex = serialize_example(video_path = v, label_name = l,label_map = l_map)
|
| 175 |
+
writers[index % len(writers)].write(seq_ex.SerializeToString())
|
| 176 |
+
|
| 177 |
+
if __name__ == "__main__":
|
| 178 |
+
app.run(main)
|
datasets/demo.txt
ADDED
|
File without changes
|
datasets/fakeavceleb_100.csv
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
video_path,label
|
| 2 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00076/00109.mp4,real
|
| 3 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00166/00010.mp4,real
|
| 4 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00173/00118.mp4,real
|
| 5 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00366/00118.mp4,real
|
| 6 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00391/00052.mp4,real
|
| 7 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00475/00099.mp4,real
|
| 8 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00476/00109.mp4,real
|
| 9 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00478/00206.mp4,real
|
| 10 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00518/00031.mp4,real
|
| 11 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00701/00092.mp4,real
|
| 12 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00761/00072.mp4,real
|
| 13 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00781/00092.mp4,real
|
| 14 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00830/00143.mp4,real
|
| 15 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00944/00135.mp4,real
|
| 16 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id00987/00160.mp4,real
|
| 17 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01036/00010.mp4,real
|
| 18 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01076/00005.mp4,real
|
| 19 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01170/00021.mp4,real
|
| 20 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01171/00053.mp4,real
|
| 21 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01179/00160.mp4,real
|
| 22 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01207/00320.mp4,real
|
| 23 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01236/00005.mp4,real
|
| 24 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01392/00167.mp4,real
|
| 25 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01452/00001.mp4,real
|
| 26 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01521/00109.mp4,real
|
| 27 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01528/00017.mp4,real
|
| 28 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01530/00002.mp4,real
|
| 29 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01544/00044.mp4,real
|
| 30 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01597/00005.mp4,real
|
| 31 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01598/00044.mp4,real
|
| 32 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01610/00090.mp4,real
|
| 33 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01637/00002.mp4,real
|
| 34 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01691/00045.mp4,real
|
| 35 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01717/00005.mp4,real
|
| 36 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01779/00010.mp4,real
|
| 37 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01835/00130.mp4,real
|
| 38 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01856/00006.mp4,real
|
| 39 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01920/00099.mp4,real
|
| 40 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01933/00028.mp4,real
|
| 41 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01972/00078.mp4,real
|
| 42 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id01995/00071.mp4,real
|
| 43 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02005/00052.mp4,real
|
| 44 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02040/00476.mp4,real
|
| 45 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02051/00015.mp4,real
|
| 46 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02268/00036.mp4,real
|
| 47 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02296/00019.mp4,real
|
| 48 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02316/00094.mp4,real
|
| 49 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02342/00191.mp4,real
|
| 50 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id02494/00050.mp4,real
|
| 51 |
+
FakeAVCeleb/RealVideo-RealAudio/African/men/id04727/00007.mp4,real
|
| 52 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id00476_wavtolip.mp4,fake
|
| 53 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id01076_wavtolip.mp4,fake
|
| 54 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id01179_wavtolip.mp4,fake
|
| 55 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id02005_wavtolip.mp4,fake
|
| 56 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_10_id02342_wavtolip.mp4,fake
|
| 57 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id00518_wavtolip.mp4,fake
|
| 58 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id00761_wavtolip.mp4,fake
|
| 59 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id00987_wavtolip.mp4,fake
|
| 60 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id01856_wavtolip.mp4,fake
|
| 61 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_12_id02296_wavtolip.mp4,fake
|
| 62 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id00166_wavtolip.mp4,fake
|
| 63 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id00701_wavtolip.mp4,fake
|
| 64 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id01236_wavtolip.mp4,fake
|
| 65 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id01521_wavtolip.mp4,fake
|
| 66 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_2_id01598_wavtolip.mp4,fake
|
| 67 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01392_wavtolip.mp4,fake
|
| 68 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01528_wavtolip.mp4,fake
|
| 69 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01691_wavtolip.mp4,fake
|
| 70 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id01995_wavtolip.mp4,fake
|
| 71 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_4_id02296_wavtolip.mp4,fake
|
| 72 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id00166_wavtolip.mp4,fake
|
| 73 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id00478_wavtolip.mp4,fake
|
| 74 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id01452_wavtolip.mp4,fake
|
| 75 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id01717_wavtolip.mp4,fake
|
| 76 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_7_id01995_wavtolip.mp4,fake
|
| 77 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id00166_wavtolip.mp4,fake
|
| 78 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id00701_wavtolip.mp4,fake
|
| 79 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id00761_wavtolip.mp4,fake
|
| 80 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id01170_wavtolip.mp4,fake
|
| 81 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_8_id02005_wavtolip.mp4,fake
|
| 82 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id00076_wavtolip.mp4,fake
|
| 83 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id01036_wavtolip.mp4,fake
|
| 84 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id01452_wavtolip.mp4,fake
|
| 85 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id01528_wavtolip.mp4,fake
|
| 86 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00076/00109_9_id02005_wavtolip.mp4,fake
|
| 87 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id00166_wavtolip.mp4,fake
|
| 88 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id00761_wavtolip.mp4,fake
|
| 89 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id01171_wavtolip.mp4,fake
|
| 90 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id01530_wavtolip.mp4,fake
|
| 91 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00166/00010_id01637_5VjcPZm8knM_faceswap_id01598_wavtolip.mp4,fake
|
| 92 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id00166_wavtolip.mp4,fake
|
| 93 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id00173_wavtolip.mp4,fake
|
| 94 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id01530_wavtolip.mp4,fake
|
| 95 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id01598_wavtolip.mp4,fake
|
| 96 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00173/00118_id00476_UgdYVJ6xPYg_faceswap_id01779_wavtolip.mp4,fake
|
| 97 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id01170_wavtolip.mp4,fake
|
| 98 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id01779_wavtolip.mp4,fake
|
| 99 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id02316_wavtolip.mp4,fake
|
| 100 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id02342_wavtolip.mp4,fake
|
| 101 |
+
FakeAVCeleb/FakeVideo-FakeAudio/African/men/id00366/00118_id00076_Isiq7cA-DNE_faceswap_id02494_wavtolip.mp4,fake
|
datasets/fakeavceleb_1k.csv
ADDED
|
@@ -0,0 +1,1001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
video_path,label
|
| 2 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00076\00109.mp4,real
|
| 3 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00166\00010.mp4,real
|
| 4 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00173\00118.mp4,real
|
| 5 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00366\00118.mp4,real
|
| 6 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00391\00052.mp4,real
|
| 7 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00475\00099.mp4,real
|
| 8 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00476\00109.mp4,real
|
| 9 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00478\00206.mp4,real
|
| 10 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00518\00031.mp4,real
|
| 11 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00701\00092.mp4,real
|
| 12 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00761\00072.mp4,real
|
| 13 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00781\00092.mp4,real
|
| 14 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00830\00143.mp4,real
|
| 15 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00944\00135.mp4,real
|
| 16 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id00987\00160.mp4,real
|
| 17 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01036\00010.mp4,real
|
| 18 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01076\00005.mp4,real
|
| 19 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01170\00021.mp4,real
|
| 20 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01171\00053.mp4,real
|
| 21 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01179\00160.mp4,real
|
| 22 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01207\00320.mp4,real
|
| 23 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01236\00005.mp4,real
|
| 24 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01392\00167.mp4,real
|
| 25 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01452\00001.mp4,real
|
| 26 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01521\00109.mp4,real
|
| 27 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01528\00017.mp4,real
|
| 28 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01530\00002.mp4,real
|
| 29 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01544\00044.mp4,real
|
| 30 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01597\00005.mp4,real
|
| 31 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01598\00044.mp4,real
|
| 32 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01610\00090.mp4,real
|
| 33 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01637\00002.mp4,real
|
| 34 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01691\00045.mp4,real
|
| 35 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01717\00005.mp4,real
|
| 36 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01779\00010.mp4,real
|
| 37 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01835\00130.mp4,real
|
| 38 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01856\00006.mp4,real
|
| 39 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01920\00099.mp4,real
|
| 40 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01933\00028.mp4,real
|
| 41 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01972\00078.mp4,real
|
| 42 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id01995\00071.mp4,real
|
| 43 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02005\00052.mp4,real
|
| 44 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02040\00476.mp4,real
|
| 45 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02051\00015.mp4,real
|
| 46 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02268\00036.mp4,real
|
| 47 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02296\00019.mp4,real
|
| 48 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02316\00094.mp4,real
|
| 49 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02342\00191.mp4,real
|
| 50 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id02494\00050.mp4,real
|
| 51 |
+
FakeAVCeleb\RealVideo-RealAudio\African\men\id04727\00007.mp4,real
|
| 52 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00220\00027.mp4,real
|
| 53 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00359\00053.mp4,real
|
| 54 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00371\00099.mp4,real
|
| 55 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00460\00005.mp4,real
|
| 56 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00568\00384.mp4,real
|
| 57 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00577\00010.mp4,real
|
| 58 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00592\00017.mp4,real
|
| 59 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00707\00052.mp4,real
|
| 60 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00829\00271.mp4,real
|
| 61 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id00832\00078.mp4,real
|
| 62 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01178\00028.mp4,real
|
| 63 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01532\00065.mp4,real
|
| 64 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01661\00059.mp4,real
|
| 65 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01783\00015.mp4,real
|
| 66 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01838\00126.mp4,real
|
| 67 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id01907\00148.mp4,real
|
| 68 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02071\00195.mp4,real
|
| 69 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02301\00092.mp4,real
|
| 70 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02508\00083.mp4,real
|
| 71 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02586\00042.mp4,real
|
| 72 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02617\00028.mp4,real
|
| 73 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02721\00424.mp4,real
|
| 74 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02808\00056.mp4,real
|
| 75 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02824\00130.mp4,real
|
| 76 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02838\00080.mp4,real
|
| 77 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id02948\00298.mp4,real
|
| 78 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03103\00130.mp4,real
|
| 79 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03569\00065.mp4,real
|
| 80 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03656\00052.mp4,real
|
| 81 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03658\00077.mp4,real
|
| 82 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03713\00249.mp4,real
|
| 83 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id03747\00273.mp4,real
|
| 84 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04055\00001.mp4,real
|
| 85 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04245\00072.mp4,real
|
| 86 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04374\00032.mp4,real
|
| 87 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04376\00181.mp4,real
|
| 88 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04437\00002.mp4,real
|
| 89 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04540\00078.mp4,real
|
| 90 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04547\00052.mp4,real
|
| 91 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04689\00005.mp4,real
|
| 92 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04705\00408.mp4,real
|
| 93 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04736\00083.mp4,real
|
| 94 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04820\00015.mp4,real
|
| 95 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id04939\00174.mp4,real
|
| 96 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05106\00078.mp4,real
|
| 97 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05231\00149.mp4,real
|
| 98 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05235\00052.mp4,real
|
| 99 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05251\00033.mp4,real
|
| 100 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05252\00052.mp4,real
|
| 101 |
+
FakeAVCeleb\RealVideo-RealAudio\African\women\id05980\00143.mp4,real
|
| 102 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00018\00181.mp4,real
|
| 103 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00020\00206.mp4,real
|
| 104 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00021\00010.mp4,real
|
| 105 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00029\00288.mp4,real
|
| 106 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00049\00118.mp4,real
|
| 107 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00052\00015.mp4,real
|
| 108 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00060\00307.mp4,real
|
| 109 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00062\00278.mp4,real
|
| 110 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00087\00002.mp4,real
|
| 111 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00088\00005.mp4,real
|
| 112 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00169\00021.mp4,real
|
| 113 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00179\00143.mp4,real
|
| 114 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00184\00241.mp4,real
|
| 115 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00243\00037.mp4,real
|
| 116 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00264\00257.mp4,real
|
| 117 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00345\00243.mp4,real
|
| 118 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00529\00409.mp4,real
|
| 119 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00696\00005.mp4,real
|
| 120 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00708\00043.mp4,real
|
| 121 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00775\00092.mp4,real
|
| 122 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00777\00160.mp4,real
|
| 123 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00943\00304.mp4,real
|
| 124 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00945\00107.mp4,real
|
| 125 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id00971\00253.mp4,real
|
| 126 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01035\00012.mp4,real
|
| 127 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01042\00154.mp4,real
|
| 128 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01044\00336.mp4,real
|
| 129 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01048\00160.mp4,real
|
| 130 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01096\00037.mp4,real
|
| 131 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01105\00083.mp4,real
|
| 132 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01124\00063.mp4,real
|
| 133 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01163\00195.mp4,real
|
| 134 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01168\00028.mp4,real
|
| 135 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01172\00015.mp4,real
|
| 136 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01175\00025.mp4,real
|
| 137 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01182\00167.mp4,real
|
| 138 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01192\00217.mp4,real
|
| 139 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01201\00028.mp4,real
|
| 140 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01210\00283.mp4,real
|
| 141 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01211\00023.mp4,real
|
| 142 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id01239\00280.mp4,real
|
| 143 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03525\00048.mp4,real
|
| 144 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03668\00143.mp4,real
|
| 145 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03678\00078.mp4,real
|
| 146 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id03757\00149.mp4,real
|
| 147 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04034\00009.mp4,real
|
| 148 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04073\00021.mp4,real
|
| 149 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04216\00470.mp4,real
|
| 150 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04219\00130.mp4,real
|
| 151 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\men\id04221\00053.mp4,real
|
| 152 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00025\00025.mp4,real
|
| 153 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00097\00162.mp4,real
|
| 154 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00098\00004.mp4,real
|
| 155 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00100\00028.mp4,real
|
| 156 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00145\00043.mp4,real
|
| 157 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00180\00206.mp4,real
|
| 158 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00190\00072.mp4,real
|
| 159 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00231\00037.mp4,real
|
| 160 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00261\00048.mp4,real
|
| 161 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00272\00195.mp4,real
|
| 162 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00291\00052.mp4,real
|
| 163 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00381\00030.mp4,real
|
| 164 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00383\00171.mp4,real
|
| 165 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00385\00439.mp4,real
|
| 166 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00398\00016.mp4,real
|
| 167 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00418\00052.mp4,real
|
| 168 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00428\00017.mp4,real
|
| 169 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00431\00039.mp4,real
|
| 170 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00458\00072.mp4,real
|
| 171 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00462\00143.mp4,real
|
| 172 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00555\00005.mp4,real
|
| 173 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00575\00092.mp4,real
|
| 174 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00616\00305.mp4,real
|
| 175 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00618\00195.mp4,real
|
| 176 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00680\00110.mp4,real
|
| 177 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00752\00340.mp4,real
|
| 178 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00835\00195.mp4,real
|
| 179 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00841\00078.mp4,real
|
| 180 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00842\00043.mp4,real
|
| 181 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id00848\00028.mp4,real
|
| 182 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01004\00028.mp4,real
|
| 183 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01005\00028.mp4,real
|
| 184 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01075\00160.mp4,real
|
| 185 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01091\00236.mp4,real
|
| 186 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01216\00025.mp4,real
|
| 187 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01217\00005.mp4,real
|
| 188 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01223\00255.mp4,real
|
| 189 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01225\00300.mp4,real
|
| 190 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01227\00052.mp4,real
|
| 191 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01231\00015.mp4,real
|
| 192 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01238\00037.mp4,real
|
| 193 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01245\00028.mp4,real
|
| 194 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id01248\00005.mp4,real
|
| 195 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id02464\00002.mp4,real
|
| 196 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id02466\00136.mp4,real
|
| 197 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03556\00043.mp4,real
|
| 198 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03605\00048.mp4,real
|
| 199 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03696\00160.mp4,real
|
| 200 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03707\00055.mp4,real
|
| 201 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (American)\women\id03781\00113.mp4,real
|
| 202 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00056\00028.mp4,real
|
| 203 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00126\00173.mp4,real
|
| 204 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00560\00041.mp4,real
|
| 205 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00597\00019.mp4,real
|
| 206 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00740\00015.mp4,real
|
| 207 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id00863\00069.mp4,real
|
| 208 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01204\00092.mp4,real
|
| 209 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01212\00183.mp4,real
|
| 210 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01215\00001.mp4,real
|
| 211 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01589\00017.mp4,real
|
| 212 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id01683\00052.mp4,real
|
| 213 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02332\00055.mp4,real
|
| 214 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02365\00028.mp4,real
|
| 215 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02493\00073.mp4,real
|
| 216 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02553\00043.mp4,real
|
| 217 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id02561\02561.mp4,real
|
| 218 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03028\00466.mp4,real
|
| 219 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03168\03168.mp4,real
|
| 220 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03889\00052.mp4,real
|
| 221 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id03965\00051.mp4,real
|
| 222 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04111\00015.mp4,real
|
| 223 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04222\00078.mp4,real
|
| 224 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04687\00066.mp4,real
|
| 225 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04691\1.mp4,real
|
| 226 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04726\00245.mp4,real
|
| 227 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04774\00032.mp4,real
|
| 228 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04789\002121.mp4,real
|
| 229 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id04884\00028.mp4,real
|
| 230 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05268\00010.mp4,real
|
| 231 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05332\00065.mp4,real
|
| 232 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05383\00015.mp4,real
|
| 233 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05479\05479.mp4,real
|
| 234 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id05743\00015.mp4,real
|
| 235 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06152\06152.mp4,real
|
| 236 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06269\00005.mp4,real
|
| 237 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06467\00010.mp4,real
|
| 238 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06470\00052.mp4,real
|
| 239 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06535\00183.mp4,real
|
| 240 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06591\00021.mp4,real
|
| 241 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06594\00002.mp4,real
|
| 242 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06776\00021.mp4,real
|
| 243 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06807\00015.mp4,real
|
| 244 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id06878\00001.mp4,real
|
| 245 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id07102\00052.mp4,real
|
| 246 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id07338\00003.mp4,real
|
| 247 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id08299\00110.mp4,real
|
| 248 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id08613\00074.mp4,real
|
| 249 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id08652\00006.mp4,real
|
| 250 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id09053\00005.mp4,real
|
| 251 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\men\id09143\00056.mp4,real
|
| 252 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00137\00025.mp4,real
|
| 253 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00363\00014.mp4,real
|
| 254 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00430\00209.mp4,real
|
| 255 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00566\00032.mp4,real
|
| 256 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00579\00030.mp4,real
|
| 257 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00582\00006.mp4,real
|
| 258 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00763\00074.mp4,real
|
| 259 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id00935\00005.mp4,real
|
| 260 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id01281\00040.mp4,real
|
| 261 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id01451\00099.mp4,real
|
| 262 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id02587\00020.mp4,real
|
| 263 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id02807\00032.mp4,real
|
| 264 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id03211\00032.mp4,real
|
| 265 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id03379\00032.mp4,real
|
| 266 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id03940\00025.mp4,real
|
| 267 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04057\00015.mp4,real
|
| 268 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04066\00013.mp4,real
|
| 269 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04144\00028.mp4,real
|
| 270 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04414\00001.mp4,real
|
| 271 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id04701\00017.mp4,real
|
| 272 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05576\00368.mp4,real
|
| 273 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05620\00005.mp4,real
|
| 274 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05631\00073.mp4,real
|
| 275 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id05844\00072.mp4,real
|
| 276 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06054\00010.mp4,real
|
| 277 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06060\00219.mp4,real
|
| 278 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06061\00002.mp4,real
|
| 279 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06065\00160.mp4,real
|
| 280 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06066\00028.mp4,real
|
| 281 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06158\00015.mp4,real
|
| 282 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06225\00005.mp4,real
|
| 283 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06388\00005.mp4,real
|
| 284 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06427\00138.mp4,real
|
| 285 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06443\00232.mp4,real
|
| 286 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id06462\00014.mp4,real
|
| 287 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07039\00105.mp4,real
|
| 288 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07383\00011.mp4,real
|
| 289 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07739\00019.mp4,real
|
| 290 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07799\00063.mp4,real
|
| 291 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id07901\00040.mp4,real
|
| 292 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08139\00067.mp4,real
|
| 293 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08397\00167.mp4,real
|
| 294 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08402\00092.mp4,real
|
| 295 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id08819\00052.mp4,real
|
| 296 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09116\00026.mp4,real
|
| 297 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09125\00098.mp4,real
|
| 298 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09171\00092.mp4,real
|
| 299 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09174\00015.mp4,real
|
| 300 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09175\00072.mp4,real
|
| 301 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (East)\women\id09181\00048.mp4,real
|
| 302 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00055\00120.mp4,real
|
| 303 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00063\00021.mp4,real
|
| 304 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00171\00092.mp4,real
|
| 305 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00183\00015.mp4,real
|
| 306 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00185\00015.mp4,real
|
| 307 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00186\00120.mp4,real
|
| 308 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00187\00360.mp4,real
|
| 309 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00192\00078.mp4,real
|
| 310 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00225\00078.mp4,real
|
| 311 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00241\00015.mp4,real
|
| 312 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00253\00021.mp4,real
|
| 313 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00265\00130.mp4,real
|
| 314 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00266\00470.mp4,real
|
| 315 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00282\00268.mp4,real
|
| 316 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00292\00072.mp4,real
|
| 317 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00305\00113.mp4,real
|
| 318 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00306\00015.mp4,real
|
| 319 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00358\00217.mp4,real
|
| 320 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00368\00078.mp4,real
|
| 321 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00415\00017.mp4,real
|
| 322 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00498\00014.mp4,real
|
| 323 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00519\00028.mp4,real
|
| 324 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00520\00187.mp4,real
|
| 325 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00535\00005.mp4,real
|
| 326 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00548\00015.mp4,real
|
| 327 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00554\00028.mp4,real
|
| 328 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00559\00078.mp4,real
|
| 329 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00594\00005.mp4,real
|
| 330 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00694\00340.mp4,real
|
| 331 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00709\00206.mp4,real
|
| 332 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00909\00037.mp4,real
|
| 333 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00919\00063.mp4,real
|
| 334 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00946\00126.mp4,real
|
| 335 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00963\00028.mp4,real
|
| 336 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00981\00092.mp4,real
|
| 337 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00990\00160.mp4,real
|
| 338 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id00999\00028.mp4,real
|
| 339 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01051\00322.mp4,real
|
| 340 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01052\00076.mp4,real
|
| 341 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01058\00005.mp4,real
|
| 342 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01098\00044.mp4,real
|
| 343 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01099\00206.mp4,real
|
| 344 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01102\00197.mp4,real
|
| 345 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01123\00072.mp4,real
|
| 346 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01126\00040.mp4,real
|
| 347 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01154\00118.mp4,real
|
| 348 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01156\00078.mp4,real
|
| 349 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id01157\00048.mp4,real
|
| 350 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id02567\00040.mp4,real
|
| 351 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\men\id03205\00150.mp4,real
|
| 352 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00042\00028.mp4,real
|
| 353 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00068\00004.mp4,real
|
| 354 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00071\00014.mp4,real
|
| 355 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00188\00020.mp4,real
|
| 356 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00232\00025.mp4,real
|
| 357 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00234\00063.mp4,real
|
| 358 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00262\00028.mp4,real
|
| 359 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00270\00088.mp4,real
|
| 360 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00271\00028.mp4,real
|
| 361 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00287\00005.mp4,real
|
| 362 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00325\00015.mp4,real
|
| 363 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00328\00092.mp4,real
|
| 364 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00330\00118.mp4,real
|
| 365 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00332\00293.mp4,real
|
| 366 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00365\00078.mp4,real
|
| 367 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00373\00028.mp4,real
|
| 368 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00374\00311.mp4,real
|
| 369 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00379\00043.mp4,real
|
| 370 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00395\00420.mp4,real
|
| 371 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00403\00052.mp4,real
|
| 372 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00434\00046.mp4,real
|
| 373 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00484\00202.mp4,real
|
| 374 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00491\00122.mp4,real
|
| 375 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00495\00027.mp4,real
|
| 376 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00496\00015.mp4,real
|
| 377 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00569\00239.mp4,real
|
| 378 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00581\00010.mp4,real
|
| 379 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00589\00130.mp4,real
|
| 380 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00591\00001.mp4,real
|
| 381 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00633\00088.mp4,real
|
| 382 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00634\00078.mp4,real
|
| 383 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00735\00037.mp4,real
|
| 384 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00806\00005.mp4,real
|
| 385 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00813\00169.mp4,real
|
| 386 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00823\00125.mp4,real
|
| 387 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00826\00065.mp4,real
|
| 388 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id00897\00005.mp4,real
|
| 389 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id01001\00086.mp4,real
|
| 390 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id01002\00043.mp4,real
|
| 391 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id01018\00072.mp4,real
|
| 392 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03371\00430.mp4,real
|
| 393 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03589\00002.mp4,real
|
| 394 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03620\00081.mp4,real
|
| 395 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03649\00001.mp4,real
|
| 396 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03651\00092.mp4,real
|
| 397 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03716\00040.mp4,real
|
| 398 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03816\00093.mp4,real
|
| 399 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03844\00028.mp4,real
|
| 400 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03858\00092.mp4,real
|
| 401 |
+
FakeAVCeleb\RealVideo-RealAudio\Caucasian (European)\women\id03941\00021.mp4,real
|
| 402 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00032\00028.mp4,real
|
| 403 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00033\00276.mp4,real
|
| 404 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00078\00114.mp4,real
|
| 405 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00082\00052.mp4,real
|
| 406 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00103\00241.mp4,real
|
| 407 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00350\00015.mp4,real
|
| 408 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00414\00052.mp4,real
|
| 409 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00459\00382.mp4,real
|
| 410 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00685\00146.mp4,real
|
| 411 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00732\00118.mp4,real
|
| 412 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00745\00165.mp4,real
|
| 413 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00769\00015.mp4,real
|
| 414 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00773\00038.mp4,real
|
| 415 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00816\00118.mp4,real
|
| 416 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00857\00347.mp4,real
|
| 417 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id00860\00154.mp4,real
|
| 418 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03180\00039.mp4,real
|
| 419 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03344\00114.mp4,real
|
| 420 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03599\00072.mp4,real
|
| 421 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id03945\00063.mp4,real
|
| 422 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04526\00317.mp4,real
|
| 423 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04537\00083.mp4,real
|
| 424 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04554\00118.mp4,real
|
| 425 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04560\00195.mp4,real
|
| 426 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04561\00248.mp4,real
|
| 427 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04562\00221.mp4,real
|
| 428 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04599\00111.mp4,real
|
| 429 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04601\00118.mp4,real
|
| 430 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id04928\00027.mp4,real
|
| 431 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06334\00015.mp4,real
|
| 432 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06354\00021.mp4,real
|
| 433 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06355\00347.mp4,real
|
| 434 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id06753\00021.mp4,real
|
| 435 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07058\00010.mp4,real
|
| 436 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07108\00412.mp4,real
|
| 437 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07161\00159.mp4,real
|
| 438 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07163\00141.mp4,real
|
| 439 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07165\00368.mp4,real
|
| 440 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07179\00206.mp4,real
|
| 441 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07182\00040.mp4,real
|
| 442 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07194\00014.mp4,real
|
| 443 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07195\00186.mp4,real
|
| 444 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07200\00045.mp4,real
|
| 445 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07210\00005.mp4,real
|
| 446 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07233\00010.mp4,real
|
| 447 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07463\00028.mp4,real
|
| 448 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id07768\00143.mp4,real
|
| 449 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id08313\00202.mp4,real
|
| 450 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id08314\00028.mp4,real
|
| 451 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\men\id08457\00417.mp4,real
|
| 452 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00043\00135.mp4,real
|
| 453 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00080\00281.mp4,real
|
| 454 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00149\00284.mp4,real
|
| 455 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00235\00052.mp4,real
|
| 456 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00417\00069.mp4,real
|
| 457 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00461\00043.mp4,real
|
| 458 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00488\00028.mp4,real
|
| 459 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00739\00005.mp4,real
|
| 460 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id00747\00053.mp4,real
|
| 461 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id01026\00083.mp4,real
|
| 462 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id02089\00092.mp4,real
|
| 463 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id02310\00139.mp4,real
|
| 464 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id02619\00015.mp4,real
|
| 465 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03559\00023.mp4,real
|
| 466 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03815\00118.mp4,real
|
| 467 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03897\00021.mp4,real
|
| 468 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id03985\00005.mp4,real
|
| 469 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04070\00072.mp4,real
|
| 470 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04490\00054.mp4,real
|
| 471 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04529\00186.mp4,real
|
| 472 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04530\00231.mp4,real
|
| 473 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04564\00417.mp4,real
|
| 474 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04582\00180.mp4,real
|
| 475 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04583\00077.mp4,real
|
| 476 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id04927\00013.mp4,real
|
| 477 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05434\00052.mp4,real
|
| 478 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05435\00107.mp4,real
|
| 479 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05478\00135.mp4,real
|
| 480 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05845\00027.mp4,real
|
| 481 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05920\00161.mp4,real
|
| 482 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id05931\00013.mp4,real
|
| 483 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06232\00025.mp4,real
|
| 484 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06254\00043.mp4,real
|
| 485 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06268\00159.mp4,real
|
| 486 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06343\00023.mp4,real
|
| 487 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06428\00043.mp4,real
|
| 488 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06437\00028.mp4,real
|
| 489 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06438\00110.mp4,real
|
| 490 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06439\00118.mp4,real
|
| 491 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06445\00150.mp4,real
|
| 492 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id06752\00221.mp4,real
|
| 493 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07008\00175.mp4,real
|
| 494 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07049\00043.mp4,real
|
| 495 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07051\00083.mp4,real
|
| 496 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07078\00405.mp4,real
|
| 497 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07136\00052.mp4,real
|
| 498 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07236\00143.mp4,real
|
| 499 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07377\00025.mp4,real
|
| 500 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07686\00254.mp4,real
|
| 501 |
+
FakeAVCeleb\RealVideo-RealAudio\Asian (South)\women\id07689\00028.mp4,real
|
| 502 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id00476_wavtolip.mp4,fake
|
| 503 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id01076_wavtolip.mp4,fake
|
| 504 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id01179_wavtolip.mp4,fake
|
| 505 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id02005_wavtolip.mp4,fake
|
| 506 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_10_id02342_wavtolip.mp4,fake
|
| 507 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id00518_wavtolip.mp4,fake
|
| 508 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id00761_wavtolip.mp4,fake
|
| 509 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id00987_wavtolip.mp4,fake
|
| 510 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id01856_wavtolip.mp4,fake
|
| 511 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_12_id02296_wavtolip.mp4,fake
|
| 512 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id00166_wavtolip.mp4,fake
|
| 513 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id00701_wavtolip.mp4,fake
|
| 514 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id01236_wavtolip.mp4,fake
|
| 515 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id01521_wavtolip.mp4,fake
|
| 516 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_2_id01598_wavtolip.mp4,fake
|
| 517 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01392_wavtolip.mp4,fake
|
| 518 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01528_wavtolip.mp4,fake
|
| 519 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01691_wavtolip.mp4,fake
|
| 520 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id01995_wavtolip.mp4,fake
|
| 521 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_4_id02296_wavtolip.mp4,fake
|
| 522 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id00166_wavtolip.mp4,fake
|
| 523 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id00478_wavtolip.mp4,fake
|
| 524 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id01452_wavtolip.mp4,fake
|
| 525 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id01717_wavtolip.mp4,fake
|
| 526 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_7_id01995_wavtolip.mp4,fake
|
| 527 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id00166_wavtolip.mp4,fake
|
| 528 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id00701_wavtolip.mp4,fake
|
| 529 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id00761_wavtolip.mp4,fake
|
| 530 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id01170_wavtolip.mp4,fake
|
| 531 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_8_id02005_wavtolip.mp4,fake
|
| 532 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id00076_wavtolip.mp4,fake
|
| 533 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id01036_wavtolip.mp4,fake
|
| 534 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id01452_wavtolip.mp4,fake
|
| 535 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id01528_wavtolip.mp4,fake
|
| 536 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00076\00109_9_id02005_wavtolip.mp4,fake
|
| 537 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id00166_wavtolip.mp4,fake
|
| 538 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id00761_wavtolip.mp4,fake
|
| 539 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id01171_wavtolip.mp4,fake
|
| 540 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id01530_wavtolip.mp4,fake
|
| 541 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00166\00010_id01637_5VjcPZm8knM_faceswap_id01598_wavtolip.mp4,fake
|
| 542 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id00166_wavtolip.mp4,fake
|
| 543 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id00173_wavtolip.mp4,fake
|
| 544 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id01530_wavtolip.mp4,fake
|
| 545 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id01598_wavtolip.mp4,fake
|
| 546 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00173\00118_id00476_UgdYVJ6xPYg_faceswap_id01779_wavtolip.mp4,fake
|
| 547 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id01170_wavtolip.mp4,fake
|
| 548 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id01779_wavtolip.mp4,fake
|
| 549 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id02316_wavtolip.mp4,fake
|
| 550 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id02342_wavtolip.mp4,fake
|
| 551 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00366\00118_id00076_Isiq7cA-DNE_faceswap_id02494_wavtolip.mp4,fake
|
| 552 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id00761_wavtolip.mp4,fake
|
| 553 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id01179_wavtolip.mp4,fake
|
| 554 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id01610_wavtolip.mp4,fake
|
| 555 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id02005_wavtolip.mp4,fake
|
| 556 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00391\00052_id00476_UgdYVJ6xPYg_faceswap_id02342_wavtolip.mp4,fake
|
| 557 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id01530_wavtolip.mp4,fake
|
| 558 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id01920_wavtolip.mp4,fake
|
| 559 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id01972_wavtolip.mp4,fake
|
| 560 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id02316_wavtolip.mp4,fake
|
| 561 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00475\00099_0_id04727_wavtolip.mp4,fake
|
| 562 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00076_wavtolip.mp4,fake
|
| 563 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00761_wavtolip.mp4,fake
|
| 564 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00781_wavtolip.mp4,fake
|
| 565 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id00830_wavtolip.mp4,fake
|
| 566 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00476_UgdYVJ6xPYg_faceswap_id01207_wavtolip.mp4,fake
|
| 567 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id00476_wavtolip.mp4,fake
|
| 568 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id00944_wavtolip.mp4,fake
|
| 569 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id01597_wavtolip.mp4,fake
|
| 570 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id01691_wavtolip.mp4,fake
|
| 571 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00476\00109_id00781_fvsSae9yc0A_faceswap_id04727_wavtolip.mp4,fake
|
| 572 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id00478_wavtolip.mp4,fake
|
| 573 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id01610_wavtolip.mp4,fake
|
| 574 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id01856_wavtolip.mp4,fake
|
| 575 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id02005_wavtolip.mp4,fake
|
| 576 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00478\00109_11_id02342_wavtolip.mp4,fake
|
| 577 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id00166_wavtolip.mp4,fake
|
| 578 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id00391_wavtolip.mp4,fake
|
| 579 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id00830_wavtolip.mp4,fake
|
| 580 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id01170_wavtolip.mp4,fake
|
| 581 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_0_id02268_wavtolip.mp4,fake
|
| 582 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id00478_wavtolip.mp4,fake
|
| 583 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id00987_wavtolip.mp4,fake
|
| 584 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id01076_wavtolip.mp4,fake
|
| 585 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id01207_wavtolip.mp4,fake
|
| 586 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_1_id02494_wavtolip.mp4,fake
|
| 587 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01544_wavtolip.mp4,fake
|
| 588 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01598_wavtolip.mp4,fake
|
| 589 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01717_wavtolip.mp4,fake
|
| 590 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id01835_wavtolip.mp4,fake
|
| 591 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_2_id02296_wavtolip.mp4,fake
|
| 592 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id00475_wavtolip.mp4,fake
|
| 593 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id01528_wavtolip.mp4,fake
|
| 594 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id01691_wavtolip.mp4,fake
|
| 595 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id02040_wavtolip.mp4,fake
|
| 596 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00518\00031_3_id02268_wavtolip.mp4,fake
|
| 597 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id00391_wavtolip.mp4,fake
|
| 598 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01392_wavtolip.mp4,fake
|
| 599 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01528_wavtolip.mp4,fake
|
| 600 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01610_wavtolip.mp4,fake
|
| 601 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00701\00092_id01036_AohKaMtIHxA_faceswap_id01972_wavtolip.mp4,fake
|
| 602 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id00478_wavtolip.mp4,fake
|
| 603 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id00761_wavtolip.mp4,fake
|
| 604 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id01036_wavtolip.mp4,fake
|
| 605 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id01528_wavtolip.mp4,fake
|
| 606 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00761\00072_id01835_UZbWA0QfXXA_faceswap_id01717_wavtolip.mp4,fake
|
| 607 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01170_wavtolip.mp4,fake
|
| 608 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01610_wavtolip.mp4,fake
|
| 609 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01972_wavtolip.mp4,fake
|
| 610 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id01995_wavtolip.mp4,fake
|
| 611 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00781\00092_id00476_UgdYVJ6xPYg_faceswap_id02494_wavtolip.mp4,fake
|
| 612 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id00478_wavtolip.mp4,fake
|
| 613 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id01207_wavtolip.mp4,fake
|
| 614 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id01544_wavtolip.mp4,fake
|
| 615 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00830\00143_id00076_Isiq7cA-DNE_faceswap_id01920_wavtolip.mp4,fake
|
| 616 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00944\00135_id01528_SBAS9Kcb8QY_faceswap_id01179_wavtolip.mp4,fake
|
| 617 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id01236_wavtolip.mp4,fake
|
| 618 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id01528_wavtolip.mp4,fake
|
| 619 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id01691_wavtolip.mp4,fake
|
| 620 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id02040_wavtolip.mp4,fake
|
| 621 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id00987\00160_id02005_7_Egh9mW5y4_faceswap_id02342_wavtolip.mp4,fake
|
| 622 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id00475_wavtolip.mp4,fake
|
| 623 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id01171_wavtolip.mp4,fake
|
| 624 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id01530_wavtolip.mp4,fake
|
| 625 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01036\00010_id00701_lW6uzLIOwd0_faceswap_id01597_wavtolip.mp4,fake
|
| 626 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id00391_wavtolip.mp4,fake
|
| 627 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id00781_wavtolip.mp4,fake
|
| 628 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id01530_wavtolip.mp4,fake
|
| 629 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id02040_wavtolip.mp4,fake
|
| 630 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01076\00005_id01207_mt129WTRSII_faceswap_id02342_wavtolip.mp4,fake
|
| 631 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id00478_wavtolip.mp4,fake
|
| 632 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id01597_wavtolip.mp4,fake
|
| 633 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id01637_wavtolip.mp4,fake
|
| 634 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01170\00021_id01933_I5XXxgK7QpE_faceswap_id01856_wavtolip.mp4,fake
|
| 635 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id00475_wavtolip.mp4,fake
|
| 636 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id00476_wavtolip.mp4,fake
|
| 637 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id01779_wavtolip.mp4,fake
|
| 638 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id01835_wavtolip.mp4,fake
|
| 639 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01171\00053_id02494_lObg47hQleE_faceswap_id02051_wavtolip.mp4,fake
|
| 640 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01528_wavtolip.mp4,fake
|
| 641 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01779_wavtolip.mp4,fake
|
| 642 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01835_wavtolip.mp4,fake
|
| 643 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id01972_wavtolip.mp4,fake
|
| 644 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01179\00160_id02005_7_Egh9mW5y4_faceswap_id02316_wavtolip.mp4,fake
|
| 645 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id00366_wavtolip.mp4,fake
|
| 646 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id00701_wavtolip.mp4,fake
|
| 647 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id01530_wavtolip.mp4,fake
|
| 648 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id01597_wavtolip.mp4,fake
|
| 649 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01207\00320_id00076_Isiq7cA-DNE_faceswap_id04727_wavtolip.mp4,fake
|
| 650 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id00366_wavtolip.mp4,fake
|
| 651 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id00830_wavtolip.mp4,fake
|
| 652 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id01076_wavtolip.mp4,fake
|
| 653 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id01691_wavtolip.mp4,fake
|
| 654 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01236\00005_id01610_l8zb_iaDJJA_faceswap_id01779_wavtolip.mp4,fake
|
| 655 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id00166_wavtolip.mp4,fake
|
| 656 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id00475_wavtolip.mp4,fake
|
| 657 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id00478_wavtolip.mp4,fake
|
| 658 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id01207_wavtolip.mp4,fake
|
| 659 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_2_id01521_wavtolip.mp4,fake
|
| 660 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id00830_wavtolip.mp4,fake
|
| 661 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id01392_wavtolip.mp4,fake
|
| 662 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id01610_wavtolip.mp4,fake
|
| 663 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id01933_wavtolip.mp4,fake
|
| 664 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01392\00167_3_id02040_wavtolip.mp4,fake
|
| 665 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id00173_wavtolip.mp4,fake
|
| 666 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id00475_wavtolip.mp4,fake
|
| 667 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id00987_wavtolip.mp4,fake
|
| 668 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id01392_wavtolip.mp4,fake
|
| 669 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01452\00001_id01528_SBAS9Kcb8QY_faceswap_id01717_wavtolip.mp4,fake
|
| 670 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id00701_wavtolip.mp4,fake
|
| 671 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id01076_wavtolip.mp4,fake
|
| 672 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id01610_wavtolip.mp4,fake
|
| 673 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id02005_wavtolip.mp4,fake
|
| 674 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01528\00017_id01452_4MqeoSxSy3w_faceswap_id02494_wavtolip.mp4,fake
|
| 675 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id00166_wavtolip.mp4,fake
|
| 676 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id00173_wavtolip.mp4,fake
|
| 677 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id00830_wavtolip.mp4,fake
|
| 678 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id01530_wavtolip.mp4,fake
|
| 679 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01544\00044_3_id02268_wavtolip.mp4,fake
|
| 680 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_0_id00076_wavtolip.mp4,fake
|
| 681 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id01171_wavtolip.mp4,fake
|
| 682 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id01392_wavtolip.mp4,fake
|
| 683 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id01544_wavtolip.mp4,fake
|
| 684 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id02005_wavtolip.mp4,fake
|
| 685 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_1_id02494_wavtolip.mp4,fake
|
| 686 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id00987_wavtolip.mp4,fake
|
| 687 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id01236_wavtolip.mp4,fake
|
| 688 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id01995_wavtolip.mp4,fake
|
| 689 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id02040_wavtolip.mp4,fake
|
| 690 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_2_id02494_wavtolip.mp4,fake
|
| 691 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id00761_wavtolip.mp4,fake
|
| 692 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id00781_wavtolip.mp4,fake
|
| 693 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id01528_wavtolip.mp4,fake
|
| 694 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id01920_wavtolip.mp4,fake
|
| 695 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01597\00005_3_id02268_wavtolip.mp4,fake
|
| 696 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id01637_wavtolip.mp4,fake
|
| 697 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id01691_wavtolip.mp4,fake
|
| 698 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id02005_wavtolip.mp4,fake
|
| 699 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id02051_wavtolip.mp4,fake
|
| 700 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01598\00109_1_id02316_wavtolip.mp4,fake
|
| 701 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id00475_wavtolip.mp4,fake
|
| 702 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id00761_wavtolip.mp4,fake
|
| 703 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id01392_wavtolip.mp4,fake
|
| 704 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id02040_wavtolip.mp4,fake
|
| 705 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01610\00090_id01236_7WdumGR5-JM_faceswap_id02051_wavtolip.mp4,fake
|
| 706 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id01598_wavtolip.mp4,fake
|
| 707 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id01610_wavtolip.mp4,fake
|
| 708 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id01920_wavtolip.mp4,fake
|
| 709 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id02296_wavtolip.mp4,fake
|
| 710 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_1_id02342_wavtolip.mp4,fake
|
| 711 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id00701_wavtolip.mp4,fake
|
| 712 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id00761_wavtolip.mp4,fake
|
| 713 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id00944_wavtolip.mp4,fake
|
| 714 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id01392_wavtolip.mp4,fake
|
| 715 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01637\00002_2_id01452_wavtolip.mp4,fake
|
| 716 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id00830_wavtolip.mp4,fake
|
| 717 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id01236_wavtolip.mp4,fake
|
| 718 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id02040_wavtolip.mp4,fake
|
| 719 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01691\00045_id01779_HgyHpDEo_jk_faceswap_id02268_wavtolip.mp4,fake
|
| 720 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01170_wavtolip.mp4,fake
|
| 721 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01392_wavtolip.mp4,fake
|
| 722 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01691_wavtolip.mp4,fake
|
| 723 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id01779_wavtolip.mp4,fake
|
| 724 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01717\00005_id02005_7_Egh9mW5y4_faceswap_id04727_wavtolip.mp4,fake
|
| 725 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id00173_wavtolip.mp4,fake
|
| 726 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id00478_wavtolip.mp4,fake
|
| 727 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id00701_wavtolip.mp4,fake
|
| 728 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id01170_wavtolip.mp4,fake
|
| 729 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01779\00010_id01691_IVtS5z8Jrrk_faceswap_id01779_wavtolip.mp4,fake
|
| 730 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id00391_wavtolip.mp4,fake
|
| 731 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id00518_wavtolip.mp4,fake
|
| 732 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id01170_wavtolip.mp4,fake
|
| 733 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id02051_wavtolip.mp4,fake
|
| 734 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01835\00130_id00761_QtTNFhCCgzw_faceswap_id02494_wavtolip.mp4,fake
|
| 735 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01207_wavtolip.mp4,fake
|
| 736 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01392_wavtolip.mp4,fake
|
| 737 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01530_wavtolip.mp4,fake
|
| 738 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id01610_wavtolip.mp4,fake
|
| 739 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01856\00109_3_id02051_wavtolip.mp4,fake
|
| 740 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id00476_wavtolip.mp4,fake
|
| 741 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id00944_wavtolip.mp4,fake
|
| 742 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id01597_wavtolip.mp4,fake
|
| 743 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id01779_wavtolip.mp4,fake
|
| 744 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01920\00099_id00476_UgdYVJ6xPYg_faceswap_id02316_wavtolip.mp4,fake
|
| 745 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id00475_wavtolip.mp4,fake
|
| 746 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id00518_wavtolip.mp4,fake
|
| 747 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id00987_wavtolip.mp4,fake
|
| 748 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id01995_wavtolip.mp4,fake
|
| 749 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01933\00028_3_id02494_wavtolip.mp4,fake
|
| 750 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01171_wavtolip.mp4,fake
|
| 751 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01179_wavtolip.mp4,fake
|
| 752 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01207_wavtolip.mp4,fake
|
| 753 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01597_wavtolip.mp4,fake
|
| 754 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_2_id01717_wavtolip.mp4,fake
|
| 755 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id00366_wavtolip.mp4,fake
|
| 756 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id01392_wavtolip.mp4,fake
|
| 757 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id01544_wavtolip.mp4,fake
|
| 758 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id01779_wavtolip.mp4,fake
|
| 759 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id01972\00078_3_id02005_wavtolip.mp4,fake
|
| 760 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id00478_wavtolip.mp4,fake
|
| 761 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id00518_wavtolip.mp4,fake
|
| 762 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id01207_wavtolip.mp4,fake
|
| 763 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id01544_wavtolip.mp4,fake
|
| 764 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02005\00052_id02342_RJPBPhJB8TA_faceswap_id01717_wavtolip.mp4,fake
|
| 765 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id00761_wavtolip.mp4,fake
|
| 766 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id01076_wavtolip.mp4,fake
|
| 767 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id01835_wavtolip.mp4,fake
|
| 768 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id02051_wavtolip.mp4,fake
|
| 769 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_0_id02296_wavtolip.mp4,fake
|
| 770 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id00478_wavtolip.mp4,fake
|
| 771 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01170_wavtolip.mp4,fake
|
| 772 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01452_wavtolip.mp4,fake
|
| 773 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01610_wavtolip.mp4,fake
|
| 774 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02296\00019_2_id01920_wavtolip.mp4,fake
|
| 775 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id01076_wavtolip.mp4,fake
|
| 776 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id01598_wavtolip.mp4,fake
|
| 777 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id01835_wavtolip.mp4,fake
|
| 778 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id02316_wavtolip.mp4,fake
|
| 779 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02342\00191_id02005_7_Egh9mW5y4_faceswap_id02342_wavtolip.mp4,fake
|
| 780 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id00475_wavtolip.mp4,fake
|
| 781 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id01995_wavtolip.mp4,fake
|
| 782 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id02005_wavtolip.mp4,fake
|
| 783 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id02296_wavtolip.mp4,fake
|
| 784 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\men\id02494\00050_id00475_xQjvXRcnPvw_faceswap_id04727_wavtolip.mp4,fake
|
| 785 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id02586_wavtolip.mp4,fake
|
| 786 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id03569_wavtolip.mp4,fake
|
| 787 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id03658_wavtolip.mp4,fake
|
| 788 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id04376_wavtolip.mp4,fake
|
| 789 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00220\00027_id05251_wavtolip.mp4,fake
|
| 790 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id00568_wavtolip.mp4,fake
|
| 791 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id03658_wavtolip.mp4,fake
|
| 792 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id04736_wavtolip.mp4,fake
|
| 793 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id05106_wavtolip.mp4,fake
|
| 794 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00359\00053_id01838_q_lUk55OrL0_faceswap_id05252_wavtolip.mp4,fake
|
| 795 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id00371_wavtolip.mp4,fake
|
| 796 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id00460_wavtolip.mp4,fake
|
| 797 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id01178_wavtolip.mp4,fake
|
| 798 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id02721_wavtolip.mp4,fake
|
| 799 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00460\00005_id02808_wavtolip.mp4,fake
|
| 800 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id00577_wavtolip.mp4,fake
|
| 801 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id00707_wavtolip.mp4,fake
|
| 802 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id01661_wavtolip.mp4,fake
|
| 803 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id03747_wavtolip.mp4,fake
|
| 804 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00568\00384_id05252_CMxIX3absYM_faceswap_id05252_wavtolip.mp4,fake
|
| 805 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id01532_wavtolip.mp4,fake
|
| 806 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id01907_wavtolip.mp4,fake
|
| 807 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id04055_wavtolip.mp4,fake
|
| 808 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id04376_wavtolip.mp4,fake
|
| 809 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00577\00010_id04736_wavtolip.mp4,fake
|
| 810 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id00371_wavtolip.mp4,fake
|
| 811 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id01661_wavtolip.mp4,fake
|
| 812 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id01838_wavtolip.mp4,fake
|
| 813 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id04055_wavtolip.mp4,fake
|
| 814 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00592\00017_id05252_wavtolip.mp4,fake
|
| 815 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id02824_wavtolip.mp4,fake
|
| 816 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04376_wavtolip.mp4,fake
|
| 817 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04547_wavtolip.mp4,fake
|
| 818 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04689_wavtolip.mp4,fake
|
| 819 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00707\00052_id04820_64ybrA1atlM_faceswap_id04820_wavtolip.mp4,fake
|
| 820 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id01178_wavtolip.mp4,fake
|
| 821 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id03103_wavtolip.mp4,fake
|
| 822 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id04705_wavtolip.mp4,fake
|
| 823 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id04736_wavtolip.mp4,fake
|
| 824 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00829\00271_id05106_wavtolip.mp4,fake
|
| 825 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id00371_wavtolip.mp4,fake
|
| 826 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id00832_wavtolip.mp4,fake
|
| 827 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id01178_wavtolip.mp4,fake
|
| 828 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id04055_wavtolip.mp4,fake
|
| 829 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id00832\00078_id00371_t20i0HtPwW0_faceswap_id04540_wavtolip.mp4,fake
|
| 830 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id00371_wavtolip.mp4,fake
|
| 831 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id01838_wavtolip.mp4,fake
|
| 832 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id02071_wavtolip.mp4,fake
|
| 833 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id02721_wavtolip.mp4,fake
|
| 834 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01178\00028_id05252_CMxIX3absYM_faceswap_id04437_wavtolip.mp4,fake
|
| 835 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id00220_wavtolip.mp4,fake
|
| 836 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id00371_wavtolip.mp4,fake
|
| 837 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id02508_wavtolip.mp4,fake
|
| 838 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id02824_wavtolip.mp4,fake
|
| 839 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01532\00065_id05231_wavtolip.mp4,fake
|
| 840 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id00577_wavtolip.mp4,fake
|
| 841 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id00832_wavtolip.mp4,fake
|
| 842 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id01178_wavtolip.mp4,fake
|
| 843 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id02586_wavtolip.mp4,fake
|
| 844 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01661\00059_id04055_wavtolip.mp4,fake
|
| 845 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id02948_wavtolip.mp4,fake
|
| 846 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id03569_wavtolip.mp4,fake
|
| 847 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id03713_wavtolip.mp4,fake
|
| 848 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id04705_wavtolip.mp4,fake
|
| 849 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01783\00015_id05235_wavtolip.mp4,fake
|
| 850 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id00568_wavtolip.mp4,fake
|
| 851 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id00829_wavtolip.mp4,fake
|
| 852 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id01838_wavtolip.mp4,fake
|
| 853 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id02071_wavtolip.mp4,fake
|
| 854 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01838\00126_id05235_ASy8lP3SRtw_faceswap_id05106_wavtolip.mp4,fake
|
| 855 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id00371_wavtolip.mp4,fake
|
| 856 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id03656_wavtolip.mp4,fake
|
| 857 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id04437_wavtolip.mp4,fake
|
| 858 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id05251_wavtolip.mp4,fake
|
| 859 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id01907\00148_id05235_ASy8lP3SRtw_faceswap_id05252_wavtolip.mp4,fake
|
| 860 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id00371_wavtolip.mp4,fake
|
| 861 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id01838_wavtolip.mp4,fake
|
| 862 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id02508_wavtolip.mp4,fake
|
| 863 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id04055_wavtolip.mp4,fake
|
| 864 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02301\00092_id00829_aMEvVaUBq2Y_faceswap_id04705_wavtolip.mp4,fake
|
| 865 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id01532_wavtolip.mp4,fake
|
| 866 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id01661_wavtolip.mp4,fake
|
| 867 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id04540_wavtolip.mp4,fake
|
| 868 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id04705_wavtolip.mp4,fake
|
| 869 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02508\00083_id03658_8Wtu9VXKqjY_faceswap_id05980_wavtolip.mp4,fake
|
| 870 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id00460_wavtolip.mp4,fake
|
| 871 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id04245_wavtolip.mp4,fake
|
| 872 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id04374_wavtolip.mp4,fake
|
| 873 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id04820_wavtolip.mp4,fake
|
| 874 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02586\00042_id04939_i4v2cXo9HIQ_faceswap_id05106_wavtolip.mp4,fake
|
| 875 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id00592_wavtolip.mp4,fake
|
| 876 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id02838_wavtolip.mp4,fake
|
| 877 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id03713_wavtolip.mp4,fake
|
| 878 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id04689_wavtolip.mp4,fake
|
| 879 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02617\00028_id04736_wavtolip.mp4,fake
|
| 880 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id00371_wavtolip.mp4,fake
|
| 881 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id02824_wavtolip.mp4,fake
|
| 882 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id02838_wavtolip.mp4,fake
|
| 883 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id02948_wavtolip.mp4,fake
|
| 884 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02721\00424_id03658_8Wtu9VXKqjY_faceswap_id04820_wavtolip.mp4,fake
|
| 885 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id00371_wavtolip.mp4,fake
|
| 886 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id00832_wavtolip.mp4,fake
|
| 887 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id02301_wavtolip.mp4,fake
|
| 888 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id05235_wavtolip.mp4,fake
|
| 889 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02808\00056_id03103_wiCYm3THQPw_faceswap_id05252_wavtolip.mp4,fake
|
| 890 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id01783_wavtolip.mp4,fake
|
| 891 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id02617_wavtolip.mp4,fake
|
| 892 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id04245_wavtolip.mp4,fake
|
| 893 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id05106_wavtolip.mp4,fake
|
| 894 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02824\00130_id03747_wQOOhZvnrq4_faceswap_id05231_wavtolip.mp4,fake
|
| 895 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id00460_wavtolip.mp4,fake
|
| 896 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id01178_wavtolip.mp4,fake
|
| 897 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id02721_wavtolip.mp4,fake
|
| 898 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id04374_wavtolip.mp4,fake
|
| 899 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id02948\00298_id04820_64ybrA1atlM_faceswap_id05251_wavtolip.mp4,fake
|
| 900 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id00220_wavtolip.mp4,fake
|
| 901 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id01178_wavtolip.mp4,fake
|
| 902 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id02586_wavtolip.mp4,fake
|
| 903 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id04705_wavtolip.mp4,fake
|
| 904 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03569\00065_id00220_WlHLlTQKj8g_faceswap_id05252_wavtolip.mp4,fake
|
| 905 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id00359_wavtolip.mp4,fake
|
| 906 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id00460_wavtolip.mp4,fake
|
| 907 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id00592_wavtolip.mp4,fake
|
| 908 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id02721_wavtolip.mp4,fake
|
| 909 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_1_id02838_wavtolip.mp4,fake
|
| 910 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id00371_wavtolip.mp4,fake
|
| 911 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id00592_wavtolip.mp4,fake
|
| 912 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id01532_wavtolip.mp4,fake
|
| 913 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id02301_wavtolip.mp4,fake
|
| 914 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03656\00052_3_id04705_wavtolip.mp4,fake
|
| 915 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id00220_wavtolip.mp4,fake
|
| 916 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id02301_wavtolip.mp4,fake
|
| 917 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id03713_wavtolip.mp4,fake
|
| 918 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id04245_wavtolip.mp4,fake
|
| 919 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03658\00077_id00371_t20i0HtPwW0_faceswap_id04705_wavtolip.mp4,fake
|
| 920 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id00220_wavtolip.mp4,fake
|
| 921 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id00832_wavtolip.mp4,fake
|
| 922 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id01178_wavtolip.mp4,fake
|
| 923 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id01532_wavtolip.mp4,fake
|
| 924 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03713\00249_id02617_4EZjRXC4fLk_faceswap_id04245_wavtolip.mp4,fake
|
| 925 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id01661_wavtolip.mp4,fake
|
| 926 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id04055_wavtolip.mp4,fake
|
| 927 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id04374_wavtolip.mp4,fake
|
| 928 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id04547_wavtolip.mp4,fake
|
| 929 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id03747\00273_id02824_glBy_mYcXZw_faceswap_id05235_wavtolip.mp4,fake
|
| 930 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id00577_wavtolip.mp4,fake
|
| 931 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id03569_wavtolip.mp4,fake
|
| 932 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id04705_wavtolip.mp4,fake
|
| 933 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id05251_wavtolip.mp4,fake
|
| 934 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04055\00001_id05252_CMxIX3absYM_faceswap_id05980_wavtolip.mp4,fake
|
| 935 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id00371_wavtolip.mp4,fake
|
| 936 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id01532_wavtolip.mp4,fake
|
| 937 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id04689_wavtolip.mp4,fake
|
| 938 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04374\00032_id04689_0YqK1ksKjLg_faceswap_id05231_wavtolip.mp4,fake
|
| 939 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id00371_wavtolip.mp4,fake
|
| 940 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id00460_wavtolip.mp4,fake
|
| 941 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id00577_wavtolip.mp4,fake
|
| 942 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id01838_wavtolip.mp4,fake
|
| 943 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04376\00181_id04437_2csrqaF55pk_faceswap_id02721_wavtolip.mp4,fake
|
| 944 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id00832_wavtolip.mp4,fake
|
| 945 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id02617_wavtolip.mp4,fake
|
| 946 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id02808_wavtolip.mp4,fake
|
| 947 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id02824_wavtolip.mp4,fake
|
| 948 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04547\00052_2_id05251_wavtolip.mp4,fake
|
| 949 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id00460_wavtolip.mp4,fake
|
| 950 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id01838_wavtolip.mp4,fake
|
| 951 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id02948_wavtolip.mp4,fake
|
| 952 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id03747_wavtolip.mp4,fake
|
| 953 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04705\00408_id05252_CMxIX3absYM_faceswap_id04736_wavtolip.mp4,fake
|
| 954 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id00592_wavtolip.mp4,fake
|
| 955 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id01907_wavtolip.mp4,fake
|
| 956 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id02721_wavtolip.mp4,fake
|
| 957 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04736\00083_id05235_ASy8lP3SRtw_faceswap_id04245_wavtolip.mp4,fake
|
| 958 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id00568_wavtolip.mp4,fake
|
| 959 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id01783_wavtolip.mp4,fake
|
| 960 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id02721_wavtolip.mp4,fake
|
| 961 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id04376_wavtolip.mp4,fake
|
| 962 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04820\00015_id02948__ZEDGNWjuFE_faceswap_id04689_wavtolip.mp4,fake
|
| 963 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id00460_wavtolip.mp4,fake
|
| 964 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id01907_wavtolip.mp4,fake
|
| 965 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id03747_wavtolip.mp4,fake
|
| 966 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id04939_wavtolip.mp4,fake
|
| 967 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id04939\00174_id02586_dEYzYDsbAeo_faceswap_id05235_wavtolip.mp4,fake
|
| 968 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id00371_wavtolip.mp4,fake
|
| 969 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id00592_wavtolip.mp4,fake
|
| 970 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id01661_wavtolip.mp4,fake
|
| 971 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id04437_wavtolip.mp4,fake
|
| 972 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05106\00078_id04820_64ybrA1atlM_faceswap_id05231_wavtolip.mp4,fake
|
| 973 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id00371_wavtolip.mp4,fake
|
| 974 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id00592_wavtolip.mp4,fake
|
| 975 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id01907_wavtolip.mp4,fake
|
| 976 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id02301_wavtolip.mp4,fake
|
| 977 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05231\00149_id01178_6XpgYMiKxhc_faceswap_id02721_wavtolip.mp4,fake
|
| 978 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id01783_wavtolip.mp4,fake
|
| 979 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id02808_wavtolip.mp4,fake
|
| 980 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id04055_wavtolip.mp4,fake
|
| 981 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id04736_wavtolip.mp4,fake
|
| 982 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05235\00052_id01907_LBcRkuRq0uY_faceswap_id05251_wavtolip.mp4,fake
|
| 983 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id00568_wavtolip.mp4,fake
|
| 984 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id03569_wavtolip.mp4,fake
|
| 985 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id03658_wavtolip.mp4,fake
|
| 986 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05251\00033_id01178_6XpgYMiKxhc_faceswap_id04437_wavtolip.mp4,fake
|
| 987 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id00220_wavtolip.mp4,fake
|
| 988 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id00832_wavtolip.mp4,fake
|
| 989 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id02824_wavtolip.mp4,fake
|
| 990 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id04376_wavtolip.mp4,fake
|
| 991 |
+
FakeAVCeleb\FakeVideo-FakeAudio\African\women\id05252\00052_id01178_6XpgYMiKxhc_faceswap_id04437_wavtolip.mp4,fake
|
| 992 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id00243_wavtolip.mp4,fake
|
| 993 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id00777_wavtolip.mp4,fake
|
| 994 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id00945_wavtolip.mp4,fake
|
| 995 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id01239_wavtolip.mp4,fake
|
| 996 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00018\00181_id01201_Q8XWfmNiWYA_faceswap_id03678_wavtolip.mp4,fake
|
| 997 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id00018_wavtolip.mp4,fake
|
| 998 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id00049_wavtolip.mp4,fake
|
| 999 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id00696_wavtolip.mp4,fake
|
| 1000 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id01048_wavtolip.mp4,fake
|
| 1001 |
+
FakeAVCeleb\FakeVideo-FakeAudio\Caucasian (American)\men\id00020\00206_id01182_zca-PHR_U40_faceswap_id01201_wavtolip.mp4,fake
|
datasets/train/.gitkeep
ADDED
|
File without changes
|
datasets/train/demo.txt
ADDED
|
File without changes
|
datasets/val/.gitkeep
ADDED
|
File without changes
|
datasets/val/demo.txt
ADDED
|
File without changes
|
images/demo.txt
ADDED
|
File without changes
|
images/fake_image.jpg
ADDED
|
images/lady.jpg
ADDED
|
images/real.jpeg
ADDED
|
inference.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import argparse
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from models.TMC import ETMC
|
| 8 |
+
from models import image
|
| 9 |
+
|
| 10 |
+
#Set random seed for reproducibility.
|
| 11 |
+
torch.manual_seed(42)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Define the audio_args dictionary
|
| 15 |
+
audio_args = {
|
| 16 |
+
'nb_samp': 64600,
|
| 17 |
+
'first_conv': 1024,
|
| 18 |
+
'in_channels': 1,
|
| 19 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 20 |
+
'blocks': [2, 4],
|
| 21 |
+
'nb_fc_node': 1024,
|
| 22 |
+
'gru_node': 1024,
|
| 23 |
+
'nb_gru_layer': 3,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(parser):
|
| 28 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 29 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 30 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 31 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 32 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 33 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 34 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 35 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 36 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 37 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 38 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 39 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 40 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 41 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 42 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 43 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 44 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 45 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 46 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 47 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 48 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 49 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 50 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 51 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 52 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 53 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
| 54 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 55 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
| 56 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 57 |
+
|
| 58 |
+
for key, value in audio_args.items():
|
| 59 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 60 |
+
|
| 61 |
+
def model_summary(args):
|
| 62 |
+
'''Prints the model summary.'''
|
| 63 |
+
model = ETMC(args)
|
| 64 |
+
|
| 65 |
+
for name, layer in model.named_modules():
|
| 66 |
+
print(name, layer)
|
| 67 |
+
|
| 68 |
+
def load_multimodal_model(args):
|
| 69 |
+
'''Load multimodal model'''
|
| 70 |
+
model = ETMC(args)
|
| 71 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
| 72 |
+
model.load_state_dict(ckpt,strict = False)
|
| 73 |
+
model.eval()
|
| 74 |
+
return model
|
| 75 |
+
|
| 76 |
+
def load_img_modality_model(args):
|
| 77 |
+
'''Loads image modality model.'''
|
| 78 |
+
rgb_encoder = image.ImageEncoder(args)
|
| 79 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
| 80 |
+
rgb_encoder.load_state_dict(ckpt,strict = False)
|
| 81 |
+
rgb_encoder.eval()
|
| 82 |
+
return rgb_encoder
|
| 83 |
+
|
| 84 |
+
def load_spec_modality_model(args):
|
| 85 |
+
spec_encoder = image.RawNet(args)
|
| 86 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
| 87 |
+
spec_encoder.load_state_dict(ckpt,strict = False)
|
| 88 |
+
spec_encoder.eval()
|
| 89 |
+
return spec_encoder
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
#Load models.
|
| 93 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
| 94 |
+
get_args(parser)
|
| 95 |
+
args, remaining_args = parser.parse_known_args()
|
| 96 |
+
assert remaining_args == [], remaining_args
|
| 97 |
+
|
| 98 |
+
multimodal = load_multimodal_model(args)
|
| 99 |
+
spec_model = load_spec_modality_model(args)
|
| 100 |
+
img_model = load_img_modality_model(args)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def preprocess_img(face):
|
| 104 |
+
face = face / 255
|
| 105 |
+
face = cv2.resize(face, (256, 256))
|
| 106 |
+
face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
| 107 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
| 108 |
+
return face_pt
|
| 109 |
+
|
| 110 |
+
def preprocess_audio(audio_file):
|
| 111 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
| 112 |
+
return audio_pt
|
| 113 |
+
|
| 114 |
+
def deepfakes_spec_predict(input_audio):
|
| 115 |
+
x, _ = input_audio
|
| 116 |
+
audio = preprocess_audio(x)
|
| 117 |
+
spec_grads = spec_model.forward(audio)
|
| 118 |
+
multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
| 119 |
+
|
| 120 |
+
out = nn.Softmax()(multimodal_grads)
|
| 121 |
+
max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
| 122 |
+
max_value = out[max] #Actual value of the tensor.
|
| 123 |
+
max_value = np.argmax(out[max].detach().numpy())
|
| 124 |
+
|
| 125 |
+
if max_value > 0.5:
|
| 126 |
+
preds = round(100 - (max_value*100), 3)
|
| 127 |
+
text2 = f"The audio is REAL."
|
| 128 |
+
|
| 129 |
+
else:
|
| 130 |
+
preds = round(max_value*100, 3)
|
| 131 |
+
text2 = f"The audio is FAKE."
|
| 132 |
+
|
| 133 |
+
return text2
|
| 134 |
+
|
| 135 |
+
def deepfakes_image_predict(input_image):
|
| 136 |
+
face = preprocess_img(input_image)
|
| 137 |
+
|
| 138 |
+
img_grads = img_model.forward(face)
|
| 139 |
+
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
| 140 |
+
|
| 141 |
+
out = nn.Softmax()(multimodal_grads)
|
| 142 |
+
max = torch.argmax(out, dim=-1) #Index of the max value in the tensor.
|
| 143 |
+
max = max.cpu().detach().numpy()
|
| 144 |
+
max_value = out[max] #Actual value of the tensor.
|
| 145 |
+
max_value = np.argmax(out[max].detach().numpy())
|
| 146 |
+
|
| 147 |
+
if max_value > 0.5:
|
| 148 |
+
preds = round(100 - (max_value*100), 3)
|
| 149 |
+
text2 = f"The image is REAL."
|
| 150 |
+
|
| 151 |
+
else:
|
| 152 |
+
preds = round(max_value*100, 3)
|
| 153 |
+
text2 = f"The image is FAKE."
|
| 154 |
+
|
| 155 |
+
return text2
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def preprocess_video(input_video, n_frames = 5):
|
| 159 |
+
v_cap = cv2.VideoCapture(input_video)
|
| 160 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 161 |
+
|
| 162 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
| 163 |
+
if n_frames is None:
|
| 164 |
+
sample = np.arange(0, v_len)
|
| 165 |
+
else:
|
| 166 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 167 |
+
|
| 168 |
+
#Loop through frames.
|
| 169 |
+
frames = []
|
| 170 |
+
for j in range(v_len):
|
| 171 |
+
success = v_cap.grab()
|
| 172 |
+
if j in sample:
|
| 173 |
+
# Load frame
|
| 174 |
+
success, frame = v_cap.retrieve()
|
| 175 |
+
if not success:
|
| 176 |
+
continue
|
| 177 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 178 |
+
frame = preprocess_img(frame)
|
| 179 |
+
frames.append(frame)
|
| 180 |
+
v_cap.release()
|
| 181 |
+
return frames
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def deepfakes_video_predict(input_video):
|
| 185 |
+
'''Perform inference on a video.'''
|
| 186 |
+
video_frames = preprocess_video(input_video)
|
| 187 |
+
|
| 188 |
+
real_grads = []
|
| 189 |
+
fake_grads = []
|
| 190 |
+
|
| 191 |
+
for face in video_frames:
|
| 192 |
+
img_grads = img_model.forward(face)
|
| 193 |
+
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
| 194 |
+
|
| 195 |
+
out = nn.Softmax()(multimodal_grads)
|
| 196 |
+
real_grads.append(out.cpu().detach().numpy()[0])
|
| 197 |
+
print(f"Video out tensor shape is: {out.shape}, {out}")
|
| 198 |
+
|
| 199 |
+
fake_grads.append(out.cpu().detach().numpy()[0])
|
| 200 |
+
|
| 201 |
+
real_grads_mean = np.mean(real_grads)
|
| 202 |
+
fake_grads_mean = np.mean(fake_grads)
|
| 203 |
+
|
| 204 |
+
if real_grads_mean > fake_grads_mean:
|
| 205 |
+
res = round(real_grads_mean * 100, 3)
|
| 206 |
+
text = f"The video is REAL."
|
| 207 |
+
else:
|
| 208 |
+
res = round(100 - (real_grads_mean * 100), 3)
|
| 209 |
+
text = f"The video is FAKE."
|
| 210 |
+
return text
|
| 211 |
+
|
inference_2.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import onnx
|
| 4 |
+
import torch
|
| 5 |
+
import argparse
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from models.TMC import ETMC
|
| 9 |
+
from models import image
|
| 10 |
+
|
| 11 |
+
from onnx2pytorch import ConvertModel
|
| 12 |
+
|
| 13 |
+
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
| 14 |
+
pytorch_model = ConvertModel(onnx_model)
|
| 15 |
+
|
| 16 |
+
#Set random seed for reproducibility.
|
| 17 |
+
torch.manual_seed(42)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Define the audio_args dictionary
|
| 21 |
+
audio_args = {
|
| 22 |
+
'nb_samp': 64600,
|
| 23 |
+
'first_conv': 1024,
|
| 24 |
+
'in_channels': 1,
|
| 25 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 26 |
+
'blocks': [2, 4],
|
| 27 |
+
'nb_fc_node': 1024,
|
| 28 |
+
'gru_node': 1024,
|
| 29 |
+
'nb_gru_layer': 3,
|
| 30 |
+
'nb_classes': 2
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
import torch
|
| 34 |
+
from torchvision import transforms
|
| 35 |
+
from PIL import Image
|
| 36 |
+
from timm import create_model
|
| 37 |
+
import os
|
| 38 |
+
import numpy as np
|
| 39 |
+
|
| 40 |
+
# Constants
|
| 41 |
+
MODEL_PATH = r"models\ai_detector\pytorch_model.pth"
|
| 42 |
+
IMG_SIZE = 380
|
| 43 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 44 |
+
LABEL_MAPPING = {0: "AI-generated", 1: "Human-created"}
|
| 45 |
+
|
| 46 |
+
# Load model from local file
|
| 47 |
+
model = create_model('efficientnet_b4', pretrained=False, num_classes=2)
|
| 48 |
+
state_dict = torch.load(MODEL_PATH, map_location=DEVICE)
|
| 49 |
+
model.load_state_dict(state_dict)
|
| 50 |
+
model.to(DEVICE).eval()
|
| 51 |
+
|
| 52 |
+
# Define preprocessing transform
|
| 53 |
+
transform = transforms.Compose([
|
| 54 |
+
transforms.Resize(IMG_SIZE + 20),
|
| 55 |
+
transforms.CenterCrop(IMG_SIZE),
|
| 56 |
+
transforms.ToTensor(),
|
| 57 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 58 |
+
std=[0.229, 0.224, 0.225]),
|
| 59 |
+
])
|
| 60 |
+
|
| 61 |
+
def detect_ai_generated_image(img):
|
| 62 |
+
# Handle file path or numpy input
|
| 63 |
+
if isinstance(img, str) and os.path.isfile(img):
|
| 64 |
+
img = Image.open(img).convert("RGB")
|
| 65 |
+
elif isinstance(img, np.ndarray):
|
| 66 |
+
img = Image.fromarray(img.astype('uint8'), 'RGB')
|
| 67 |
+
elif isinstance(img, Image.Image):
|
| 68 |
+
img = img.convert("RGB")
|
| 69 |
+
else:
|
| 70 |
+
raise ValueError("Invalid image input")
|
| 71 |
+
|
| 72 |
+
input_tensor = transform(img).unsqueeze(0).to(DEVICE)
|
| 73 |
+
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
output = model(input_tensor)
|
| 76 |
+
probs = torch.nn.functional.softmax(output, dim=1)
|
| 77 |
+
pred_class = probs.argmax().item()
|
| 78 |
+
confidence = probs[0, pred_class].item()
|
| 79 |
+
|
| 80 |
+
return f"{LABEL_MAPPING[pred_class]} (confidence: {confidence:.2%})"
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def get_args(parser):
|
| 84 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 85 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 86 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 87 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 88 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 89 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 90 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 91 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 92 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 93 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 94 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 95 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 96 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 97 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 98 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 99 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 100 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 101 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 102 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 103 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 104 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 105 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 106 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 107 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 108 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 109 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
| 110 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 111 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
| 112 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 113 |
+
|
| 114 |
+
for key, value in audio_args.items():
|
| 115 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 116 |
+
|
| 117 |
+
def model_summary(args):
|
| 118 |
+
'''Prints the model summary.'''
|
| 119 |
+
model = ETMC(args)
|
| 120 |
+
|
| 121 |
+
for name, layer in model.named_modules():
|
| 122 |
+
print(name, layer)
|
| 123 |
+
|
| 124 |
+
def load_multimodal_model(args):
|
| 125 |
+
'''Load multimodal model'''
|
| 126 |
+
model = ETMC(args)
|
| 127 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 128 |
+
model.load_state_dict(ckpt, strict = True)
|
| 129 |
+
model.eval()
|
| 130 |
+
return model
|
| 131 |
+
|
| 132 |
+
def load_img_modality_model(args):
|
| 133 |
+
'''Loads image modality model.'''
|
| 134 |
+
rgb_encoder = pytorch_model
|
| 135 |
+
|
| 136 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 137 |
+
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
|
| 138 |
+
rgb_encoder.eval()
|
| 139 |
+
return rgb_encoder
|
| 140 |
+
|
| 141 |
+
def load_spec_modality_model(args):
|
| 142 |
+
spec_encoder = image.RawNet(args)
|
| 143 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 144 |
+
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
|
| 145 |
+
spec_encoder.eval()
|
| 146 |
+
return spec_encoder
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
#Load models.
|
| 150 |
+
parser = argparse.ArgumentParser(description="Inference models")
|
| 151 |
+
get_args(parser)
|
| 152 |
+
args, remaining_args = parser.parse_known_args()
|
| 153 |
+
assert remaining_args == [], remaining_args
|
| 154 |
+
|
| 155 |
+
spec_model = load_spec_modality_model(args)
|
| 156 |
+
|
| 157 |
+
img_model = load_img_modality_model(args)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def preprocess_img(face):
|
| 161 |
+
face = face / 255
|
| 162 |
+
face = cv2.resize(face, (256, 256))
|
| 163 |
+
# face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
| 164 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
| 165 |
+
return face_pt
|
| 166 |
+
|
| 167 |
+
def preprocess_audio(audio_file):
|
| 168 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
| 169 |
+
return audio_pt
|
| 170 |
+
|
| 171 |
+
def deepfakes_spec_predict(input_audio):
|
| 172 |
+
x, _ = input_audio
|
| 173 |
+
audio = preprocess_audio(x)
|
| 174 |
+
spec_grads = spec_model.forward(audio)
|
| 175 |
+
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
|
| 176 |
+
|
| 177 |
+
# multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
| 178 |
+
|
| 179 |
+
# out = nn.Softmax()(multimodal_grads)
|
| 180 |
+
# max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
| 181 |
+
# max_value = out[max] #Actual value of the tensor.
|
| 182 |
+
max_value = np.argmax(spec_grads_inv)
|
| 183 |
+
|
| 184 |
+
if max_value > 0.5:
|
| 185 |
+
preds = round(100 - (max_value*100), 3)
|
| 186 |
+
text2 = f"The audio is REAL."
|
| 187 |
+
|
| 188 |
+
else:
|
| 189 |
+
preds = round(max_value*100, 3)
|
| 190 |
+
text2 = f"The audio is FAKE."
|
| 191 |
+
|
| 192 |
+
return text2
|
| 193 |
+
|
| 194 |
+
def deepfakes_image_predict(input_image):
|
| 195 |
+
face = preprocess_img(input_image)
|
| 196 |
+
print(f"Face shape is: {face.shape}")
|
| 197 |
+
img_grads = img_model.forward(face)
|
| 198 |
+
img_grads = img_grads.cpu().detach().numpy()
|
| 199 |
+
img_grads_np = np.squeeze(img_grads)
|
| 200 |
+
|
| 201 |
+
if img_grads_np[0] > 0.5:
|
| 202 |
+
preds = round(img_grads_np[0] * 100, 3)
|
| 203 |
+
text2 = f"The image is REAL. \nConfidence score is: {preds}"
|
| 204 |
+
|
| 205 |
+
else:
|
| 206 |
+
preds = round(img_grads_np[1] * 100, 3)
|
| 207 |
+
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
|
| 208 |
+
|
| 209 |
+
return text2
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def preprocess_video(input_video, n_frames = 3):
|
| 213 |
+
v_cap = cv2.VideoCapture(input_video)
|
| 214 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 215 |
+
|
| 216 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
| 217 |
+
if n_frames is None:
|
| 218 |
+
sample = np.arange(0, v_len)
|
| 219 |
+
else:
|
| 220 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 221 |
+
|
| 222 |
+
#Loop through frames.
|
| 223 |
+
frames = []
|
| 224 |
+
for j in range(v_len):
|
| 225 |
+
success = v_cap.grab()
|
| 226 |
+
if j in sample:
|
| 227 |
+
# Load frame
|
| 228 |
+
success, frame = v_cap.retrieve()
|
| 229 |
+
if not success:
|
| 230 |
+
continue
|
| 231 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 232 |
+
frame = preprocess_img(frame)
|
| 233 |
+
frames.append(frame)
|
| 234 |
+
v_cap.release()
|
| 235 |
+
return frames
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def deepfakes_video_predict(input_video):
|
| 239 |
+
'''Perform inference on a video.'''
|
| 240 |
+
video_frames = preprocess_video(input_video)
|
| 241 |
+
real_faces_list = []
|
| 242 |
+
fake_faces_list = []
|
| 243 |
+
|
| 244 |
+
for face in video_frames:
|
| 245 |
+
# face = preprocess_img(face)
|
| 246 |
+
|
| 247 |
+
img_grads = img_model.forward(face)
|
| 248 |
+
img_grads = img_grads.cpu().detach().numpy()
|
| 249 |
+
img_grads_np = np.squeeze(img_grads)
|
| 250 |
+
real_faces_list.append(img_grads_np[0])
|
| 251 |
+
fake_faces_list.append(img_grads_np[1])
|
| 252 |
+
|
| 253 |
+
real_faces_mean = np.mean(real_faces_list)
|
| 254 |
+
fake_faces_mean = np.mean(fake_faces_list)
|
| 255 |
+
|
| 256 |
+
if real_faces_mean > 0.5:
|
| 257 |
+
preds = round(real_faces_mean * 100, 3)
|
| 258 |
+
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
|
| 259 |
+
|
| 260 |
+
else:
|
| 261 |
+
preds = round(fake_faces_mean * 100, 3)
|
| 262 |
+
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
|
| 263 |
+
|
| 264 |
+
return text2
|
| 265 |
+
|
inference_3.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# inference_2.py
|
| 2 |
+
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def detect_ai_generated_image(img):
|
| 7 |
+
# if img is a path, load as array
|
| 8 |
+
if isinstance(img, str):
|
| 9 |
+
img = np.array(Image.open(img).convert("RGB"))
|
| 10 |
+
|
| 11 |
+
# 🧠 PLACEHOLDER: fake logic
|
| 12 |
+
# Replace with actual AI detection logic or model
|
| 13 |
+
mean_pixel = img.mean()
|
| 14 |
+
if mean_pixel > 120:
|
| 15 |
+
return "Possibly AI-generated"
|
| 16 |
+
else:
|
| 17 |
+
return "Likely Real"
|
main.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
import torch.optim as optim
|
| 7 |
+
|
| 8 |
+
from models.TMC import ETMC, ce_loss
|
| 9 |
+
import torchvision.transforms as transforms
|
| 10 |
+
from data.dfdt_dataset import FakeAVCelebDatasetTrain, FakeAVCelebDatasetVal
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from utils.utils import *
|
| 14 |
+
from utils.logger import create_logger
|
| 15 |
+
from sklearn.metrics import accuracy_score
|
| 16 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 17 |
+
|
| 18 |
+
# Define the audio_args dictionary
|
| 19 |
+
audio_args = {
|
| 20 |
+
'nb_samp': 64600,
|
| 21 |
+
'first_conv': 1024,
|
| 22 |
+
'in_channels': 1,
|
| 23 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 24 |
+
'blocks': [2, 4],
|
| 25 |
+
'nb_fc_node': 1024,
|
| 26 |
+
'gru_node': 1024,
|
| 27 |
+
'nb_gru_layer': 3,
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_args(parser):
|
| 32 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 33 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 34 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 35 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 36 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 37 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 38 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 39 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 40 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 41 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 42 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 43 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 44 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 45 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 46 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 47 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 48 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 49 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 50 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 51 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 52 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 53 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 54 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 55 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 56 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 57 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = True)
|
| 58 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 59 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = True)
|
| 60 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 61 |
+
|
| 62 |
+
for key, value in audio_args.items():
|
| 63 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 64 |
+
|
| 65 |
+
def get_optimizer(model, args):
|
| 66 |
+
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
| 67 |
+
return optimizer
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_scheduler(optimizer, args):
|
| 71 |
+
return optim.lr_scheduler.ReduceLROnPlateau(
|
| 72 |
+
optimizer, "max", patience=args.lr_patience, verbose=True, factor=args.lr_factor
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def model_forward(i_epoch, model, args, ce_loss, batch):
|
| 76 |
+
rgb, spec, tgt = batch['video_reshaped'], batch['spectrogram'], batch['label_map']
|
| 77 |
+
rgb_pt = torch.Tensor(rgb.numpy())
|
| 78 |
+
spec = spec.numpy()
|
| 79 |
+
spec_pt = torch.Tensor(spec)
|
| 80 |
+
tgt_pt = torch.Tensor(tgt.numpy())
|
| 81 |
+
|
| 82 |
+
if torch.cuda.is_available():
|
| 83 |
+
rgb_pt, spec_pt, tgt_pt = rgb_pt.cuda(), spec_pt.cuda(), tgt_pt.cuda()
|
| 84 |
+
|
| 85 |
+
# depth_alpha, rgb_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
|
| 86 |
+
|
| 87 |
+
# loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 88 |
+
# ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 89 |
+
# ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
|
| 90 |
+
# return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
|
| 91 |
+
|
| 92 |
+
depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
|
| 93 |
+
|
| 94 |
+
loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 95 |
+
ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 96 |
+
ce_loss(tgt_pt, pseudo_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 97 |
+
ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
|
| 98 |
+
return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def model_eval(i_epoch, data, model, args, criterion):
|
| 103 |
+
model.eval()
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
losses, depth_preds, rgb_preds, depthrgb_preds, tgts = [], [], [], [], []
|
| 106 |
+
for batch in tqdm(data):
|
| 107 |
+
loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt = model_forward(i_epoch, model, args, criterion, batch)
|
| 108 |
+
losses.append(loss.item())
|
| 109 |
+
|
| 110 |
+
depth_pred = depth_alpha.argmax(dim=1).cpu().detach().numpy()
|
| 111 |
+
rgb_pred = rgb_alpha.argmax(dim=1).cpu().detach().numpy()
|
| 112 |
+
depth_rgb_pred = depth_rgb_alpha.argmax(dim=1).cpu().detach().numpy()
|
| 113 |
+
|
| 114 |
+
depth_preds.append(depth_pred)
|
| 115 |
+
rgb_preds.append(rgb_pred)
|
| 116 |
+
depthrgb_preds.append(depth_rgb_pred)
|
| 117 |
+
tgt = tgt.cpu().detach().numpy()
|
| 118 |
+
tgts.append(tgt)
|
| 119 |
+
|
| 120 |
+
metrics = {"loss": np.mean(losses)}
|
| 121 |
+
print(f"Mean loss is: {metrics['loss']}")
|
| 122 |
+
|
| 123 |
+
tgts = [l for sl in tgts for l in sl]
|
| 124 |
+
depth_preds = [l for sl in depth_preds for l in sl]
|
| 125 |
+
rgb_preds = [l for sl in rgb_preds for l in sl]
|
| 126 |
+
depthrgb_preds = [l for sl in depthrgb_preds for l in sl]
|
| 127 |
+
metrics["spec_acc"] = accuracy_score(tgts, depth_preds)
|
| 128 |
+
metrics["rgb_acc"] = accuracy_score(tgts, rgb_preds)
|
| 129 |
+
metrics["specrgb_acc"] = accuracy_score(tgts, depthrgb_preds)
|
| 130 |
+
return metrics
|
| 131 |
+
|
| 132 |
+
def write_weight_histograms(writer, step, model):
|
| 133 |
+
for idx, item in enumerate(model.named_parameters()):
|
| 134 |
+
name = item[0]
|
| 135 |
+
weights = item[1].data
|
| 136 |
+
if weights.size(dim = 0) > 2:
|
| 137 |
+
try:
|
| 138 |
+
writer.add_histogram(name, weights, idx)
|
| 139 |
+
except ValueError as e:
|
| 140 |
+
continue
|
| 141 |
+
|
| 142 |
+
writer = SummaryWriter()
|
| 143 |
+
|
| 144 |
+
def train(args):
|
| 145 |
+
set_seed(args.seed)
|
| 146 |
+
args.savedir = os.path.join(args.savedir, args.name)
|
| 147 |
+
os.makedirs(args.savedir, exist_ok=True)
|
| 148 |
+
|
| 149 |
+
train_ds = FakeAVCelebDatasetTrain(args)
|
| 150 |
+
train_ds = train_ds.load_features_from_tfrec()
|
| 151 |
+
|
| 152 |
+
val_ds = FakeAVCelebDatasetVal(args)
|
| 153 |
+
val_ds = val_ds.load_features_from_tfrec()
|
| 154 |
+
|
| 155 |
+
model = ETMC(args)
|
| 156 |
+
optimizer = get_optimizer(model, args)
|
| 157 |
+
scheduler = get_scheduler(optimizer, args)
|
| 158 |
+
logger = create_logger("%s/logfile.log" % args.savedir, args)
|
| 159 |
+
if torch.cuda.is_available():
|
| 160 |
+
model.cuda()
|
| 161 |
+
|
| 162 |
+
torch.save(args, os.path.join(args.savedir, "checkpoint.pt"))
|
| 163 |
+
start_epoch, global_step, n_no_improve, best_metric = 0, 0, 0, -np.inf
|
| 164 |
+
|
| 165 |
+
for i_epoch in range(start_epoch, args.max_epochs):
|
| 166 |
+
train_losses = []
|
| 167 |
+
model.train()
|
| 168 |
+
optimizer.zero_grad()
|
| 169 |
+
|
| 170 |
+
for index, batch in tqdm(enumerate(train_ds)):
|
| 171 |
+
loss, depth_out, rgb_out, depthrgb, tgt = model_forward(i_epoch, model, args, ce_loss, batch)
|
| 172 |
+
if args.gradient_accumulation_steps > 1:
|
| 173 |
+
loss = loss / args.gradient_accumulation_steps
|
| 174 |
+
|
| 175 |
+
train_losses.append(loss.item())
|
| 176 |
+
loss.backward()
|
| 177 |
+
global_step += 1
|
| 178 |
+
if global_step % args.gradient_accumulation_steps == 0:
|
| 179 |
+
optimizer.step()
|
| 180 |
+
optimizer.zero_grad()
|
| 181 |
+
|
| 182 |
+
#Write weight histograms to Tensorboard.
|
| 183 |
+
write_weight_histograms(writer, i_epoch, model)
|
| 184 |
+
|
| 185 |
+
model.eval()
|
| 186 |
+
metrics = model_eval(
|
| 187 |
+
np.inf, val_ds, model, args, ce_loss
|
| 188 |
+
)
|
| 189 |
+
logger.info("Train Loss: {:.4f}".format(np.mean(train_losses)))
|
| 190 |
+
log_metrics("val", metrics, logger)
|
| 191 |
+
logger.info(
|
| 192 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
|
| 193 |
+
"val", metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"], metrics["specrgb_acc"]
|
| 194 |
+
)
|
| 195 |
+
)
|
| 196 |
+
tuning_metric = metrics["specrgb_acc"]
|
| 197 |
+
|
| 198 |
+
scheduler.step(tuning_metric)
|
| 199 |
+
is_improvement = tuning_metric > best_metric
|
| 200 |
+
if is_improvement:
|
| 201 |
+
best_metric = tuning_metric
|
| 202 |
+
n_no_improve = 0
|
| 203 |
+
else:
|
| 204 |
+
n_no_improve += 1
|
| 205 |
+
|
| 206 |
+
save_checkpoint(
|
| 207 |
+
{
|
| 208 |
+
"epoch": i_epoch + 1,
|
| 209 |
+
"optimizer": optimizer.state_dict(),
|
| 210 |
+
"scheduler": scheduler.state_dict(),
|
| 211 |
+
"n_no_improve": n_no_improve,
|
| 212 |
+
"best_metric": best_metric,
|
| 213 |
+
},
|
| 214 |
+
is_improvement,
|
| 215 |
+
args.savedir,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
if n_no_improve >= args.patience:
|
| 219 |
+
logger.info("No improvement. Breaking out of loop.")
|
| 220 |
+
break
|
| 221 |
+
writer.close()
|
| 222 |
+
# load_checkpoint(model, os.path.join(args.savedir, "model_best.pt"))
|
| 223 |
+
model.eval()
|
| 224 |
+
test_metrics = model_eval(
|
| 225 |
+
np.inf, val_ds, model, args, ce_loss
|
| 226 |
+
)
|
| 227 |
+
logger.info(
|
| 228 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
|
| 229 |
+
"Test", test_metrics["loss"], test_metrics["spec_acc"], test_metrics["rgb_acc"],
|
| 230 |
+
test_metrics["depthrgb_acc"]
|
| 231 |
+
)
|
| 232 |
+
)
|
| 233 |
+
log_metrics(f"Test", test_metrics, logger)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def cli_main():
|
| 237 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
| 238 |
+
get_args(parser)
|
| 239 |
+
args, remaining_args = parser.parse_known_args()
|
| 240 |
+
assert remaining_args == [], remaining_args
|
| 241 |
+
train(args)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
if __name__ == "__main__":
|
| 245 |
+
import warnings
|
| 246 |
+
warnings.filterwarnings("ignore")
|
| 247 |
+
cli_main()
|
model.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights
|
| 2 |
+
|
| 3 |
+
model = efficientnet_v2_s(weights=EfficientNet_V2_S_Weights.IMAGENET1K_V1)
|
models/TMC.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from models import image
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# loss function
|
| 8 |
+
def KL(alpha, c):
|
| 9 |
+
if torch.cuda.is_available():
|
| 10 |
+
beta = torch.ones((1, c)).cuda()
|
| 11 |
+
else:
|
| 12 |
+
beta = torch.ones((1, c))
|
| 13 |
+
S_alpha = torch.sum(alpha, dim=1, keepdim=True)
|
| 14 |
+
S_beta = torch.sum(beta, dim=1, keepdim=True)
|
| 15 |
+
lnB = torch.lgamma(S_alpha) - torch.sum(torch.lgamma(alpha), dim=1, keepdim=True)
|
| 16 |
+
lnB_uni = torch.sum(torch.lgamma(beta), dim=1, keepdim=True) - torch.lgamma(S_beta)
|
| 17 |
+
dg0 = torch.digamma(S_alpha)
|
| 18 |
+
dg1 = torch.digamma(alpha)
|
| 19 |
+
kl = torch.sum((alpha - beta) * (dg1 - dg0), dim=1, keepdim=True) + lnB + lnB_uni
|
| 20 |
+
return kl
|
| 21 |
+
|
| 22 |
+
def ce_loss(p, alpha, c, global_step, annealing_step):
|
| 23 |
+
S = torch.sum(alpha, dim=1, keepdim=True)
|
| 24 |
+
E = alpha - 1
|
| 25 |
+
label = p
|
| 26 |
+
A = torch.sum(label * (torch.digamma(S) - torch.digamma(alpha)), dim=1, keepdim=True)
|
| 27 |
+
|
| 28 |
+
annealing_coef = min(1, global_step / annealing_step)
|
| 29 |
+
alp = E * (1 - label) + 1
|
| 30 |
+
B = annealing_coef * KL(alp, c)
|
| 31 |
+
return torch.mean((A + B))
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class TMC(nn.Module):
|
| 35 |
+
def __init__(self, args):
|
| 36 |
+
super(TMC, self).__init__()
|
| 37 |
+
self.args = args
|
| 38 |
+
self.rgbenc = image.ImageEncoder(args)
|
| 39 |
+
self.specenc = image.RawNet(args)
|
| 40 |
+
|
| 41 |
+
spec_last_size = args.img_hidden_sz * 1
|
| 42 |
+
rgb_last_size = args.img_hidden_sz * args.num_image_embeds
|
| 43 |
+
self.spec_depth = nn.ModuleList()
|
| 44 |
+
self.clf_rgb = nn.ModuleList()
|
| 45 |
+
|
| 46 |
+
for hidden in args.hidden:
|
| 47 |
+
self.spec_depth.append(nn.Linear(spec_last_size, hidden))
|
| 48 |
+
self.spec_depth.append(nn.ReLU())
|
| 49 |
+
self.spec_depth.append(nn.Dropout(args.dropout))
|
| 50 |
+
spec_last_size = hidden
|
| 51 |
+
self.spec_depth.append(nn.Linear(spec_last_size, args.n_classes))
|
| 52 |
+
|
| 53 |
+
for hidden in args.hidden:
|
| 54 |
+
self.clf_rgb.append(nn.Linear(rgb_last_size, hidden))
|
| 55 |
+
self.clf_rgb.append(nn.ReLU())
|
| 56 |
+
self.clf_rgb.append(nn.Dropout(args.dropout))
|
| 57 |
+
rgb_last_size = hidden
|
| 58 |
+
self.clf_rgb.append(nn.Linear(rgb_last_size, args.n_classes))
|
| 59 |
+
|
| 60 |
+
def DS_Combin_two(self, alpha1, alpha2):
|
| 61 |
+
# Calculate the merger of two DS evidences
|
| 62 |
+
alpha = dict()
|
| 63 |
+
alpha[0], alpha[1] = alpha1, alpha2
|
| 64 |
+
b, S, E, u = dict(), dict(), dict(), dict()
|
| 65 |
+
for v in range(2):
|
| 66 |
+
S[v] = torch.sum(alpha[v], dim=1, keepdim=True)
|
| 67 |
+
E[v] = alpha[v] - 1
|
| 68 |
+
b[v] = E[v] / (S[v].expand(E[v].shape))
|
| 69 |
+
u[v] = self.args.n_classes / S[v]
|
| 70 |
+
|
| 71 |
+
# b^0 @ b^(0+1)
|
| 72 |
+
bb = torch.bmm(b[0].view(-1, self.args.n_classes, 1), b[1].view(-1, 1, self.args.n_classes))
|
| 73 |
+
# b^0 * u^1
|
| 74 |
+
uv1_expand = u[1].expand(b[0].shape)
|
| 75 |
+
bu = torch.mul(b[0], uv1_expand)
|
| 76 |
+
# b^1 * u^0
|
| 77 |
+
uv_expand = u[0].expand(b[0].shape)
|
| 78 |
+
ub = torch.mul(b[1], uv_expand)
|
| 79 |
+
# calculate K
|
| 80 |
+
bb_sum = torch.sum(bb, dim=(1, 2), out=None)
|
| 81 |
+
bb_diag = torch.diagonal(bb, dim1=-2, dim2=-1).sum(-1)
|
| 82 |
+
# bb_diag1 = torch.diag(torch.mm(b[v], torch.transpose(b[v+1], 0, 1)))
|
| 83 |
+
K = bb_sum - bb_diag
|
| 84 |
+
|
| 85 |
+
# calculate b^a
|
| 86 |
+
b_a = (torch.mul(b[0], b[1]) + bu + ub) / ((1 - K).view(-1, 1).expand(b[0].shape))
|
| 87 |
+
# calculate u^a
|
| 88 |
+
u_a = torch.mul(u[0], u[1]) / ((1 - K).view(-1, 1).expand(u[0].shape))
|
| 89 |
+
# test = torch.sum(b_a, dim = 1, keepdim = True) + u_a #Verify programming errors
|
| 90 |
+
|
| 91 |
+
# calculate new S
|
| 92 |
+
S_a = self.args.n_classes / u_a
|
| 93 |
+
# calculate new e_k
|
| 94 |
+
e_a = torch.mul(b_a, S_a.expand(b_a.shape))
|
| 95 |
+
alpha_a = e_a + 1
|
| 96 |
+
return alpha_a
|
| 97 |
+
|
| 98 |
+
def forward(self, rgb, spec):
|
| 99 |
+
spec = self.specenc(spec)
|
| 100 |
+
spec = torch.flatten(spec, start_dim=1)
|
| 101 |
+
|
| 102 |
+
rgb = self.rgbenc(rgb)
|
| 103 |
+
rgb = torch.flatten(rgb, start_dim=1)
|
| 104 |
+
|
| 105 |
+
spec_out = spec
|
| 106 |
+
|
| 107 |
+
for layer in self.spec_depth:
|
| 108 |
+
spec_out = layer(spec_out)
|
| 109 |
+
|
| 110 |
+
rgb_out = rgb
|
| 111 |
+
|
| 112 |
+
for layer in self.clf_rgb:
|
| 113 |
+
rgb_out = layer(rgb_out)
|
| 114 |
+
|
| 115 |
+
spec_evidence, rgb_evidence = F.softplus(spec_out), F.softplus(rgb_out)
|
| 116 |
+
spec_alpha, rgb_alpha = spec_evidence+1, rgb_evidence+1
|
| 117 |
+
spec_rgb_alpha = self.DS_Combin_two(spec_alpha, rgb_alpha)
|
| 118 |
+
return spec_alpha, rgb_alpha, spec_rgb_alpha
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class ETMC(TMC):
|
| 122 |
+
def __init__(self, args):
|
| 123 |
+
super(ETMC, self).__init__(args)
|
| 124 |
+
last_size = args.img_hidden_sz * args.num_image_embeds + args.img_hidden_sz * args.num_image_embeds
|
| 125 |
+
self.clf = nn.ModuleList()
|
| 126 |
+
for hidden in args.hidden:
|
| 127 |
+
self.clf.append(nn.Linear(last_size, hidden))
|
| 128 |
+
self.clf.append(nn.ReLU())
|
| 129 |
+
self.clf.append(nn.Dropout(args.dropout))
|
| 130 |
+
last_size = hidden
|
| 131 |
+
self.clf.append(nn.Linear(last_size, args.n_classes))
|
| 132 |
+
|
| 133 |
+
def forward(self, rgb, spec):
|
| 134 |
+
spec = self.specenc(spec)
|
| 135 |
+
spec = torch.flatten(spec, start_dim=1)
|
| 136 |
+
|
| 137 |
+
rgb = self.rgbenc(rgb)
|
| 138 |
+
rgb = torch.flatten(rgb, start_dim=1)
|
| 139 |
+
|
| 140 |
+
spec_out = spec
|
| 141 |
+
for layer in self.spec_depth:
|
| 142 |
+
spec_out = layer(spec_out)
|
| 143 |
+
|
| 144 |
+
rgb_out = rgb
|
| 145 |
+
for layer in self.clf_rgb:
|
| 146 |
+
rgb_out = layer(rgb_out)
|
| 147 |
+
|
| 148 |
+
pseudo_out = torch.cat([rgb, spec], -1)
|
| 149 |
+
for layer in self.clf:
|
| 150 |
+
pseudo_out = layer(pseudo_out)
|
| 151 |
+
|
| 152 |
+
depth_evidence, rgb_evidence, pseudo_evidence = F.softplus(spec_out), F.softplus(rgb_out), F.softplus(pseudo_out)
|
| 153 |
+
depth_alpha, rgb_alpha, pseudo_alpha = depth_evidence+1, rgb_evidence+1, pseudo_evidence+1
|
| 154 |
+
depth_rgb_alpha = self.DS_Combin_two(self.DS_Combin_two(depth_alpha, rgb_alpha), pseudo_alpha)
|
| 155 |
+
return depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha
|
| 156 |
+
|
models/__pycache__/TMC.cpython-310.pyc
ADDED
|
Binary file (4.34 kB). View file
|
|
|
models/__pycache__/TMC.cpython-39.pyc
ADDED
|
Binary file (4.35 kB). View file
|
|
|
models/__pycache__/classifiers.cpython-310.pyc
ADDED
|
Binary file (5.54 kB). View file
|
|
|
models/__pycache__/classifiers.cpython-39.pyc
ADDED
|
Binary file (5.68 kB). View file
|
|
|
models/__pycache__/demo.txt
ADDED
|
File without changes
|
models/__pycache__/image.cpython-310.pyc
ADDED
|
Binary file (5.58 kB). View file
|
|
|
models/__pycache__/image.cpython-39.pyc
ADDED
|
Binary file (5.58 kB). View file
|
|
|