Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from fastai.text.all import*
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
learn = load_learner('nlp_model.pkl')
|
| 6 |
+
|
| 7 |
+
labels = learn.dls.vocab
|
| 8 |
+
|
| 9 |
+
examples = ["I can't believe you lied to me again! This is unacceptable!",
|
| 10 |
+
"Got a surprise gift today, feeling overjoyed!"]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def classify_text(text):
|
| 15 |
+
pred,pred_idx,probs = learn.predict(text)
|
| 16 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
interface = gr.Interface(fn=classify_text,
|
| 20 |
+
inputs = gr.inputs.Texbox(placeholder="Enter Text here", label='Input text',lines=5)),
|
| 21 |
+
outputs=gr.outputs.Label(num_top_classes=4, label='Emotion inthe Text'),
|
| 22 |
+
verbose=True,
|
| 23 |
+
title="Emotion Classifier",
|
| 24 |
+
theme='soft')
|
| 25 |
+
|
| 26 |
+
interface.launch()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|