DharavathSri commited on
Commit
baa4c6e
·
verified ·
1 Parent(s): f95f42e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +330 -46
app.py CHANGED
@@ -1,66 +1,350 @@
1
- # We'll generate a sample Streamlit app for LLM fine-tuning and deployment simulation.
2
- # Since we can't actually fine-tune large models in this script due to constraints,
3
- # we'll simulate the UI and interaction as if the model was already fine-tuned.
4
-
5
- import os
6
-
7
- # Create a simple streamlit app template
8
- streamlit_app_code = """
9
  import streamlit as st
10
- from transformers import pipeline
 
 
 
 
 
 
 
 
11
 
12
- st.set_page_config(page_title="LLM Fine-Tuned Chatbot", page_icon="🧠", layout="wide")
 
 
 
 
 
 
13
 
14
- # Custom CSS styling
15
- st.markdown(\"""
16
  <style>
17
- .main {
18
- background-color: #f4f4f9;
19
- }
20
- .stTextInput>div>div>input {
21
- border-radius: 10px;
22
  }
23
  .stButton>button {
24
  background-color: #4CAF50;
25
  color: white;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  border-radius: 10px;
27
- height: 3em;
28
- width: 100%;
 
 
 
 
 
 
 
 
 
 
 
29
  }
30
  </style>
31
- \""", unsafe_allow_html=True)
32
 
33
- st.title("🧠 Fine-Tuned LLM Chatbot")
34
- st.subheader("Chat with your own fine-tuned LLM model")
 
 
 
 
 
35
 
36
- # Sidebar Info
37
- st.sidebar.title("Model Info")
38
- st.sidebar.info("This chatbot uses a fine-tuned LLM (simulated via Hugging Face pipeline)")
 
 
 
 
 
 
39
 
40
- # Load pipeline (simulation for actual fine-tuned model)
41
- @st.cache_resource
42
- def load_pipeline():
43
- # Replace with your fine-tuned model, e.g., "your-username/your-fine-tuned-model"
44
- return pipeline("text-generation", model="gpt2")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- generator = load_pipeline()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- # User input
49
- user_input = st.text_input("Enter your prompt here")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- if st.button("Generate Response"):
52
- if user_input.strip() != "":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  with st.spinner("Generating response..."):
54
- response = generator(user_input, max_length=100, do_sample=True)[0]['generated_text']
55
- st.success("Response:")
56
- st.write(response)
57
- else:
58
- st.warning("Please enter a prompt to generate response.")
59
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
- # Save to file for deployment
62
- file_path = "/mnt/data/llm_finetuned_chatbot.py"
63
- with open(file_path, "w") as f:
64
- f.write(streamlit_app_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- file_path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from streamlit_option_menu import option_menu
3
+ import pandas as pd
4
+ import numpy as np
5
+ import time
6
+ from PIL import Image
7
+ import os
8
+ import json
9
+ import tempfile
10
+ from huggingface_hub import notebook_login, HfApi, Repository
11
 
12
+ # Set page config
13
+ st.set_page_config(
14
+ page_title="LLM Fine-Tuning & Deployment",
15
+ page_icon=":robot:",
16
+ layout="wide",
17
+ initial_sidebar_state="expanded"
18
+ )
19
 
20
+ # Custom CSS for styling
21
+ st.markdown("""
22
  <style>
23
+ .stApp {
24
+ background-color: #f5f5f5;
 
 
 
25
  }
26
  .stButton>button {
27
  background-color: #4CAF50;
28
  color: white;
29
+ border-radius: 5px;
30
+ padding: 0.5rem 1rem;
31
+ border: none;
32
+ }
33
+ .stTextInput>div>div>input {
34
+ border-radius: 5px;
35
+ padding: 0.5rem;
36
+ }
37
+ .stSelectbox>div>div>select {
38
+ border-radius: 5px;
39
+ padding: 0.5rem;
40
+ }
41
+ .css-1aumxhk {
42
+ background-color: #ffffff;
43
  border-radius: 10px;
44
+ padding: 2rem;
45
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
46
+ }
47
+ .header {
48
+ color: #4CAF50;
49
+ font-size: 2.5rem;
50
+ font-weight: bold;
51
+ margin-bottom: 1rem;
52
+ }
53
+ .subheader {
54
+ color: #333333;
55
+ font-size: 1.5rem;
56
+ margin-bottom: 1rem;
57
  }
58
  </style>
59
+ """, unsafe_allow_html=True)
60
 
61
+ # App header
62
+ col1, col2 = st.columns([1, 3])
63
+ with col1:
64
+ st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=100)
65
+ with col2:
66
+ st.markdown('<div class="header">LLM Fine-Tuning & Deployment</div>', unsafe_allow_html=True)
67
+ st.markdown("Fine-tune and deploy your large language models with ease")
68
 
69
+ # Navigation menu
70
+ with st.sidebar:
71
+ selected = option_menu(
72
+ menu_title="Main Menu",
73
+ options=["Home", "Data Preparation", "Model Selection", "Fine-Tuning", "Evaluation", "Deployment", "About"],
74
+ icons=["house", "file-earmark-text", "cpu", "gear", "graph-up", "cloud-upload", "info-circle"],
75
+ menu_icon="cast",
76
+ default_index=0,
77
+ )
78
 
79
+ # Home Page
80
+ if selected == "Home":
81
+ st.markdown('<div class="subheader">Welcome to LLM Fine-Tuning & Deployment</div>', unsafe_allow_html=True)
82
+ st.markdown("""
83
+ This application guides you through the process of fine-tuning large language models (LLMs)
84
+ and deploying them to Hugging Face Hub.
85
+
86
+ **Key Features:**
87
+ - Prepare your dataset for fine-tuning
88
+ - Select from popular base models
89
+ - Configure fine-tuning parameters
90
+ - Evaluate model performance
91
+ - Deploy to Hugging Face Hub
92
+
93
+ Get started by selecting a step from the sidebar menu.
94
+ """)
95
+
96
+ st.image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/hf-libraries.png",
97
+ caption="Hugging Face Ecosystem", use_column_width=True)
98
 
99
+ # Data Preparation Page
100
+ elif selected == "Data Preparation":
101
+ st.markdown('<div class="subheader">Data Preparation</div>', unsafe_allow_html=True)
102
+
103
+ tab1, tab2, tab3 = st.tabs(["Upload Data", "Preview Data", "Data Statistics"])
104
+
105
+ with tab1:
106
+ st.markdown("### Upload Your Dataset")
107
+ data_file = st.file_uploader("Choose a file (CSV, JSON, or TXT)", type=["csv", "json", "txt"])
108
+
109
+ if data_file is not None:
110
+ file_details = {"FileName": data_file.name, "FileType": data_file.type, "FileSize": data_file.size}
111
+ st.success("File uploaded successfully!")
112
+ st.json(file_details)
113
+
114
+ # Save uploaded file to temporary location
115
+ temp_dir = tempfile.mkdtemp()
116
+ path = os.path.join(temp_dir, data_file.name)
117
+ with open(path, "wb") as f:
118
+ f.write(data_file.getbuffer())
119
+
120
+ st.session_state['data_path'] = path
121
+ st.session_state['data_type'] = data_file.type
122
+
123
+ with tab2:
124
+ if 'data_path' in st.session_state:
125
+ st.markdown("### Data Preview")
126
+
127
+ if st.session_state['data_type'] == "text/csv":
128
+ df = pd.read_csv(st.session_state['data_path'])
129
+ st.dataframe(df.head())
130
+ elif st.session_state['data_type'] == "application/json":
131
+ with open(st.session_state['data_path']) as f:
132
+ data = json.load(f)
133
+ st.json(data)
134
+ else:
135
+ with open(st.session_state['data_path']) as f:
136
+ data = f.read()
137
+ st.text_area("Text Content", data, height=200)
138
+ else:
139
+ st.warning("Please upload a file first.")
140
+
141
+ with tab3:
142
+ if 'data_path' in st.session_state:
143
+ st.markdown("### Data Statistics")
144
+
145
+ if st.session_state['data_type'] == "text/csv":
146
+ df = pd.read_csv(st.session_state['data_path'])
147
+
148
+ col1, col2, col3 = st.columns(3)
149
+ col1.metric("Total Samples", len(df))
150
+ col2.metric("Columns", len(df.columns))
151
+ col3.metric("Missing Values", df.isnull().sum().sum())
152
+
153
+ st.markdown("**Column Types**")
154
+ st.table(df.dtypes.reset_index().rename(columns={"index": "Column", 0: "Type"}))
155
+ else:
156
+ st.info("Detailed statistics available for CSV files only.")
157
 
158
+ # Model Selection Page
159
+ elif selected == "Model Selection":
160
+ st.markdown('<div class="subheader">Model Selection</div>', unsafe_allow_html=True)
161
+
162
+ model_options = {
163
+ "GPT-like": ["gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"],
164
+ "BERT-like": ["bert-base-uncased", "bert-large-uncased"],
165
+ "RoBERTa": ["roberta-base", "roberta-large"],
166
+ "T5": ["t5-small", "t5-base", "t5-large"],
167
+ "Custom": ["Enter custom model name"]
168
+ }
169
+
170
+ model_family = st.selectbox("Select Model Family", list(model_options.keys()))
171
+
172
+ if model_family == "Custom":
173
+ model_name = st.text_input("Enter Hugging Face Model ID")
174
+ else:
175
+ model_name = st.selectbox("Select Model", model_options[model_family])
176
+
177
+ st.markdown("### Model Information")
178
+
179
+ if model_name:
180
+ st.info(f"You've selected: **{model_name}**")
181
+
182
+ # Display model card
183
+ st.markdown(f"View model card on [Hugging Face Hub](https://huggingface.co/{model_name})")
184
+
185
+ # Show estimated resource requirements
186
+ st.markdown("**Estimated Resource Requirements**")
187
+
188
+ if "gpt2" in model_name or "large" in model_name:
189
+ st.warning("This model requires significant GPU memory (8GB+ recommended)")
190
+ else:
191
+ st.success("This model can run on modest hardware (4GB GPU memory sufficient for fine-tuning)")
192
+
193
+ st.session_state['selected_model'] = model_name
194
+
195
+ # Fine-Tuning Page
196
+ elif selected == "Fine-Tuning":
197
+ st.markdown('<div class="subheader">Fine-Tuning Configuration</div>', unsafe_allow_html=True)
198
+
199
+ if 'selected_model' not in st.session_state:
200
+ st.warning("Please select a model first from the Model Selection page.")
201
+ st.stop()
202
+
203
+ st.info(f"Fine-tuning model: **{st.session_state['selected_model']}**")
204
+
205
+ col1, col2 = st.columns(2)
206
+
207
+ with col1:
208
+ st.markdown("### Training Parameters")
209
+ epochs = st.slider("Number of Epochs", 1, 20, 3)
210
+ batch_size = st.selectbox("Batch Size", [4, 8, 16, 32, 64], index=2)
211
+ learning_rate = st.selectbox("Learning Rate", [1e-5, 3e-5, 5e-5, 1e-4], index=1)
212
+
213
+ with col2:
214
+ st.markdown("### Advanced Options")
215
+ warmup_steps = st.number_input("Warmup Steps", 0, 1000, 100)
216
+ weight_decay = st.slider("Weight Decay", 0.0, 0.1, 0.01)
217
+ fp16 = st.checkbox("Use Mixed Precision (FP16)", value=True)
218
+
219
+ st.markdown("### Start Fine-Tuning")
220
+
221
+ if st.button("Begin Fine-Tuning Process"):
222
+ if 'data_path' not in st.session_state:
223
+ st.error("Please upload your dataset first.")
224
+ else:
225
+ with st.spinner("Setting up fine-tuning environment..."):
226
+ time.sleep(2)
227
+
228
+ progress_bar = st.progress(0)
229
+ status_text = st.empty()
230
+
231
+ for i in range(1, 101):
232
+ progress_bar.progress(i)
233
+ status_text.text(f"Training progress: {i}%")
234
+ time.sleep(0.05)
235
+
236
+ st.success("Fine-tuning completed successfully!")
237
+ st.balloons()
238
+
239
+ st.session_state['fine_tuned'] = True
240
+ st.session_state['model_path'] = f"./models/{st.session_state['selected_model']}-fine-tuned"
241
 
242
+ # Evaluation Page
243
+ elif selected == "Evaluation":
244
+ st.markdown('<div class="subheader">Model Evaluation</div>', unsafe_allow_html=True)
245
+
246
+ if 'fine_tuned' not in st.session_state:
247
+ st.warning("Please complete the fine-tuning process first.")
248
+ st.stop()
249
+
250
+ st.success(f"Evaluating fine-tuned model: **{st.session_state['selected_model']}**")
251
+
252
+ st.markdown("### Evaluation Metrics")
253
+
254
+ # Simulated metrics
255
+ col1, col2, col3 = st.columns(3)
256
+ col1.metric("Training Loss", "0.456", "-0.124 from baseline")
257
+ col2.metric("Validation Loss", "0.512", "-0.098 from baseline")
258
+ col3.metric("Accuracy", "0.872", "+0.15 from baseline")
259
+
260
+ st.markdown("### Sample Predictions")
261
+
262
+ sample_text = st.text_area("Enter text to test the model", "The movie was...")
263
+
264
+ if st.button("Generate Prediction"):
265
  with st.spinner("Generating response..."):
266
+ time.sleep(2)
267
+
268
+ # Simulate different responses
269
+ responses = {
270
+ "positive": "The movie was absolutely fantastic! The acting was superb and the storyline kept me engaged throughout.",
271
+ "negative": "The movie was terrible. Poor acting and a predictable plot made it a complete waste of time.",
272
+ "neutral": "The movie was okay. It had some good moments but nothing particularly memorable."
273
+ }
274
+
275
+ selected_response = np.random.choice(list(responses.values()))
276
+
277
+ st.markdown("**Model Output:**")
278
+ st.info(selected_response)
279
+
280
+ # Deployment Page
281
+ elif selected == "Deployment":
282
+ st.markdown('<div class="subheader">Model Deployment</div>', unsafe_allow_html=True)
283
+
284
+ if 'fine_tuned' not in st.session_state:
285
+ st.warning("Please complete the fine-tuning process first.")
286
+ st.stop()
287
+
288
+ st.info(f"Ready to deploy: **{st.session_state['selected_model']}-fine-tuned**")
289
+
290
+ st.markdown("### Hugging Face Hub Deployment")
291
+
292
+ hf_token = st.text_input("Hugging Face Access Token", type="password")
293
+ repo_name = st.text_input("Repository Name", "my-fine-tuned-model")
294
+ privacy = st.radio("Repository Visibility", ["Public", "Private"])
295
+
296
+ if st.button("Deploy to Hugging Face Hub"):
297
+ if not hf_token:
298
+ st.error("Please provide your Hugging Face access token")
299
+ else:
300
+ with st.spinner("Uploading model to Hugging Face Hub..."):
301
+ time.sleep(3)
302
+
303
+ # In a real app, you would use:
304
+ # api = HfApi()
305
+ # api.create_repo(repo_name, private=(privacy == "Private"), token=hf_token)
306
+ # api.upload_folder(folder_path=st.session_state['model_path'], repo_id=repo_name)
307
+
308
+ st.success(f"Model successfully deployed to Hugging Face Hub!")
309
+ st.markdown(f"Your model is available at: [https://huggingface.co/{repo_name}](https://huggingface.co/{repo_name})")
310
+
311
+ st.session_state['deployed'] = True
312
 
313
+ # About Page
314
+ elif selected == "About":
315
+ st.markdown('<div class="subheader">About This App</div>', unsafe_allow_html=True)
316
+
317
+ st.markdown("""
318
+ **LLM Fine-Tuning & Deployment App**
319
+
320
+ This application provides an intuitive interface for fine-tuning large language models
321
+ and deploying them to Hugging Face Hub.
322
+
323
+ **Features:**
324
+ - Streamlined workflow for LLM fine-tuning
325
+ - Support for various model architectures
326
+ - Easy deployment to Hugging Face Hub
327
+ - Beautiful and responsive UI
328
+
329
+ **Technologies Used:**
330
+ - Streamlit for the web interface
331
+ - Hugging Face Transformers for model handling
332
+ - Hugging Face Hub for model deployment
333
+
334
+ Developed with ❤️ for the AI community.
335
+ """)
336
+
337
+ st.markdown("---")
338
+ st.markdown("""
339
+ **Disclaimer:** This is a demo application. For production use,
340
+ please ensure you have proper hardware resources and follow best practices
341
+ for model training and deployment.
342
+ """)
343
 
344
+ # Footer
345
+ st.markdown("---")
346
+ st.markdown("""
347
+ <div style="text-align: center; color: #666666; font-size: 0.9rem;">
348
+ LLM Fine-Tuning & Deployment App | Powered by Streamlit and Hugging Face
349
+ </div>
350
+ """, unsafe_allow_html=True)