DharavathSri's picture
Update app.py
f37351a verified
raw
history blame
1.99 kB
# We'll generate a sample Streamlit app for LLM fine-tuning and deployment simulation.
# Since we can't actually fine-tune large models in this script due to constraints,
# we'll simulate the UI and interaction as if the model was already fine-tuned.
import os
# Create a simple streamlit app template
streamlit_app_code = """
import streamlit as st
from transformers import pipeline
st.set_page_config(page_title="LLM Fine-Tuned Chatbot", page_icon="🧠", layout="wide")
# Custom CSS styling
st.markdown(\"""
<style>
.main {
background-color: #f4f4f9;
}
.stTextInput>div>div>input {
border-radius: 10px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
border-radius: 10px;
height: 3em;
width: 100%;
}
</style>
\""", unsafe_allow_html=True)
st.title("🧠 Fine-Tuned LLM Chatbot")
st.subheader("Chat with your own fine-tuned LLM model")
# Sidebar Info
st.sidebar.title("Model Info")
st.sidebar.info("This chatbot uses a fine-tuned LLM (simulated via Hugging Face pipeline)")
# Load pipeline (simulation for actual fine-tuned model)
@st.cache_resource
def load_pipeline():
# Replace with your fine-tuned model, e.g., "your-username/your-fine-tuned-model"
return pipeline("text-generation", model="gpt2")
generator = load_pipeline()
# User input
user_input = st.text_input("Enter your prompt here")
if st.button("Generate Response"):
if user_input.strip() != "":
with st.spinner("Generating response..."):
response = generator(user_input, max_length=100, do_sample=True)[0]['generated_text']
st.success("Response:")
st.write(response)
else:
st.warning("Please enter a prompt to generate response.")
"""
# Save to file for deployment
file_path = "/mnt/data/llm_finetuned_chatbot.py"
with open(file_path, "w") as f:
f.write(streamlit_app_code)
file_path