Spaces:
Runtime error
Runtime error
Commit
·
ba1be70
1
Parent(s):
e09f725
trying to fix issuenot getting output
Browse files
app.py
CHANGED
|
@@ -7,34 +7,20 @@ from langchain.tools import Tool
|
|
| 7 |
from langchain_huggingface import HuggingFacePipeline
|
| 8 |
import os
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
| 11 |
import torch
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
|
| 14 |
-
# Load environment variables
|
| 15 |
-
load_dotenv()
|
| 16 |
-
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
|
| 17 |
-
access_token = os.getenv("API_KEY")
|
| 18 |
-
|
| 19 |
-
# Initialize model and pipeline
|
| 20 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=access_token)
|
| 21 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
-
"google/gemma-2b-it",
|
| 23 |
-
torch_dtype=torch.bfloat16,
|
| 24 |
-
token=access_token
|
| 25 |
-
)
|
| 26 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 27 |
-
|
| 28 |
-
# Define improved prompt template
|
| 29 |
prompt_template = PromptTemplate(
|
| 30 |
input_variables=["input"],
|
| 31 |
template="""Answer the following question as best you can. You have access to the following tools:
|
| 32 |
|
| 33 |
-
Stock Data Fetcher(ticker) - Fetch recent stock data for a valid stock ticker
|
| 34 |
Stock News Fetcher(ticker) - Fetch recent news articles about a stock ticker.
|
| 35 |
Moving Average Calculator(ticker, window=5) - Calculate the moving average of a stock over a 5-day window.
|
| 36 |
|
| 37 |
Use the following format:
|
|
|
|
| 38 |
Question: the input question you must answer
|
| 39 |
Thought: you should always think about what to do
|
| 40 |
Action: the action to take, should be one of [Stock Data Fetcher, Stock News Fetcher, Moving Average Calculator]
|
|
@@ -44,16 +30,33 @@ Observation: the result of the action
|
|
| 44 |
Thought: I now know the final answer
|
| 45 |
Final Answer: the final answer to the original input question
|
| 46 |
|
| 47 |
-
Strictly follow this format. Do not provide a Final Answer until all Observations are collected.
|
| 48 |
-
|
| 49 |
Begin!
|
|
|
|
| 50 |
Question: {input}
|
| 51 |
"""
|
| 52 |
)
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def fetch_stock_data(ticker):
|
| 56 |
try:
|
|
|
|
| 57 |
stock = yf.Ticker(ticker)
|
| 58 |
hist = stock.history(period="1mo")
|
| 59 |
if hist.empty:
|
|
@@ -62,6 +65,7 @@ def fetch_stock_data(ticker):
|
|
| 62 |
except Exception as e:
|
| 63 |
return {"error": str(e)}
|
| 64 |
|
|
|
|
| 65 |
def fetch_stock_news(ticker, NEWSAPI_KEY):
|
| 66 |
api_url = f"https://newsapi.org/v2/everything?q={ticker}&apiKey={NEWSAPI_KEY}"
|
| 67 |
response = requests.get(api_url)
|
|
@@ -77,13 +81,15 @@ def calculate_moving_average(ticker, window=5):
|
|
| 77 |
hist[f"{window}-day MA"] = hist["Close"].rolling(window=window).mean()
|
| 78 |
return hist[["Close", f"{window}-day MA"]].tail(5)
|
| 79 |
|
| 80 |
-
|
|
|
|
| 81 |
stock_data_tool = Tool(
|
| 82 |
name="Stock Data Fetcher",
|
| 83 |
func=fetch_stock_data,
|
| 84 |
description="Fetch recent stock data for a valid stock ticker symbol (e.g., AAPL for Apple)."
|
| 85 |
)
|
| 86 |
|
|
|
|
| 87 |
stock_news_tool = Tool(
|
| 88 |
name="Stock News Fetcher",
|
| 89 |
func=lambda ticker: fetch_stock_news(ticker, NEWSAPI_KEY),
|
|
@@ -96,9 +102,7 @@ moving_average_tool = Tool(
|
|
| 96 |
description="Calculate the moving average of a stock over a 5-day window."
|
| 97 |
)
|
| 98 |
|
| 99 |
-
# Initialize agent
|
| 100 |
tools = [stock_data_tool, stock_news_tool, moving_average_tool]
|
| 101 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
| 102 |
|
| 103 |
agent = initialize_agent(
|
| 104 |
tools=tools,
|
|
@@ -109,19 +113,29 @@ agent = initialize_agent(
|
|
| 109 |
handle_parsing_errors=True
|
| 110 |
)
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
st.title("Trading Helper Agent")
|
| 114 |
|
| 115 |
query = st.text_input("Enter your query:")
|
| 116 |
|
| 117 |
if st.button("Submit"):
|
| 118 |
if query:
|
|
|
|
| 119 |
with st.spinner("Processing..."):
|
| 120 |
try:
|
| 121 |
response = agent.run(query)
|
|
|
|
| 122 |
st.success("Response:")
|
| 123 |
st.write(response)
|
| 124 |
except Exception as e:
|
| 125 |
st.error(f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
| 126 |
else:
|
| 127 |
st.warning("Please enter a query.")
|
|
|
|
| 7 |
from langchain_huggingface import HuggingFacePipeline
|
| 8 |
import os
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer,pipeline
|
| 11 |
import torch
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
prompt_template = PromptTemplate(
|
| 15 |
input_variables=["input"],
|
| 16 |
template="""Answer the following question as best you can. You have access to the following tools:
|
| 17 |
|
| 18 |
+
Stock Data Fetcher(ticker) - Fetch recent stock data for a valid stock ticker (e.g., AAPL for Apple).
|
| 19 |
Stock News Fetcher(ticker) - Fetch recent news articles about a stock ticker.
|
| 20 |
Moving Average Calculator(ticker, window=5) - Calculate the moving average of a stock over a 5-day window.
|
| 21 |
|
| 22 |
Use the following format:
|
| 23 |
+
|
| 24 |
Question: the input question you must answer
|
| 25 |
Thought: you should always think about what to do
|
| 26 |
Action: the action to take, should be one of [Stock Data Fetcher, Stock News Fetcher, Moving Average Calculator]
|
|
|
|
| 30 |
Thought: I now know the final answer
|
| 31 |
Final Answer: the final answer to the original input question
|
| 32 |
|
|
|
|
|
|
|
| 33 |
Begin!
|
| 34 |
+
|
| 35 |
Question: {input}
|
| 36 |
"""
|
| 37 |
)
|
| 38 |
|
| 39 |
+
|
| 40 |
+
load_dotenv()
|
| 41 |
+
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
|
| 42 |
+
access_token = os.getenv("API_KEY")
|
| 43 |
+
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token = access_token)
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
"google/gemma-2b-it",
|
| 47 |
+
torch_dtype=torch.bfloat16,
|
| 48 |
+
token = access_token
|
| 49 |
+
)
|
| 50 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=2048)
|
| 51 |
+
|
| 52 |
+
def validate_ticker(ticker):
|
| 53 |
+
# Ensure ticker is uppercase and length is reasonable (1-5 characters)
|
| 54 |
+
return ticker.strip().upper()
|
| 55 |
+
|
| 56 |
+
|
| 57 |
def fetch_stock_data(ticker):
|
| 58 |
try:
|
| 59 |
+
ticker = ticker.strip().upper()
|
| 60 |
stock = yf.Ticker(ticker)
|
| 61 |
hist = stock.history(period="1mo")
|
| 62 |
if hist.empty:
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
return {"error": str(e)}
|
| 67 |
|
| 68 |
+
|
| 69 |
def fetch_stock_news(ticker, NEWSAPI_KEY):
|
| 70 |
api_url = f"https://newsapi.org/v2/everything?q={ticker}&apiKey={NEWSAPI_KEY}"
|
| 71 |
response = requests.get(api_url)
|
|
|
|
| 81 |
hist[f"{window}-day MA"] = hist["Close"].rolling(window=window).mean()
|
| 82 |
return hist[["Close", f"{window}-day MA"]].tail(5)
|
| 83 |
|
| 84 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 85 |
+
|
| 86 |
stock_data_tool = Tool(
|
| 87 |
name="Stock Data Fetcher",
|
| 88 |
func=fetch_stock_data,
|
| 89 |
description="Fetch recent stock data for a valid stock ticker symbol (e.g., AAPL for Apple)."
|
| 90 |
)
|
| 91 |
|
| 92 |
+
|
| 93 |
stock_news_tool = Tool(
|
| 94 |
name="Stock News Fetcher",
|
| 95 |
func=lambda ticker: fetch_stock_news(ticker, NEWSAPI_KEY),
|
|
|
|
| 102 |
description="Calculate the moving average of a stock over a 5-day window."
|
| 103 |
)
|
| 104 |
|
|
|
|
| 105 |
tools = [stock_data_tool, stock_news_tool, moving_average_tool]
|
|
|
|
| 106 |
|
| 107 |
agent = initialize_agent(
|
| 108 |
tools=tools,
|
|
|
|
| 113 |
handle_parsing_errors=True
|
| 114 |
)
|
| 115 |
|
| 116 |
+
|
| 117 |
+
print(fetch_stock_data("AAPL"))
|
| 118 |
+
print(fetch_stock_news("AAPL", NEWSAPI_KEY))
|
| 119 |
+
print(calculate_moving_average("AAPL"))
|
| 120 |
+
|
| 121 |
+
|
| 122 |
st.title("Trading Helper Agent")
|
| 123 |
|
| 124 |
query = st.text_input("Enter your query:")
|
| 125 |
|
| 126 |
if st.button("Submit"):
|
| 127 |
if query:
|
| 128 |
+
st.write("Debug: User Query ->", query)
|
| 129 |
with st.spinner("Processing..."):
|
| 130 |
try:
|
| 131 |
response = agent.run(query)
|
| 132 |
+
st.write("Debug: Agent Response ->", response)
|
| 133 |
st.success("Response:")
|
| 134 |
st.write(response)
|
| 135 |
except Exception as e:
|
| 136 |
st.error(f"An error occurred: {e}")
|
| 137 |
+
# Log the full LLM output for debugging
|
| 138 |
+
if hasattr(e, "output"):
|
| 139 |
+
st.write("Raw Output:", e.output)
|
| 140 |
else:
|
| 141 |
st.warning("Please enter a query.")
|