Spaces:
Sleeping
Sleeping
| import uuid | |
| from fastapi import FastAPI, HTTPException, Depends | |
| from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
| from fastapi.responses import StreamingResponse | |
| from pydantic import BaseModel | |
| from typing import List, Optional | |
| import json | |
| from API_provider import API_Inference | |
| from core_logic import ( | |
| check_api_key_validity, | |
| update_request_count, | |
| get_rate_limit_status, | |
| get_subscription_status, | |
| get_available_models, | |
| get_model_info, | |
| ) | |
| app = FastAPI() | |
| security = HTTPBearer() | |
| class Message(BaseModel): | |
| role: str | |
| content: str | |
| class ChatCompletionRequest(BaseModel): | |
| model: str | |
| messages: List[Message] | |
| stream: Optional[bool] = False | |
| max_tokens: Optional[int] = 4000 | |
| temperature: Optional[float] = 0.5 | |
| top_p: Optional[float] = 0.95 | |
| def get_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)): | |
| return credentials.credentials | |
| async def chat_completions(request: ChatCompletionRequest, api_key: str = Depends(get_api_key)): | |
| try: | |
| # Check API key validity and rate limit | |
| is_valid, error_message = check_api_key_validity(api_key) | |
| if not is_valid: | |
| raise HTTPException(status_code=401, detail=error_message) | |
| messages = [{"role": msg.role, "content": msg.content} for msg in request.messages] | |
| # Get model info | |
| model_info = get_model_info(request.model) | |
| if not model_info: | |
| raise HTTPException(status_code=400, detail="Invalid model specified") | |
| if "meta-llama-405b-turbo" in request.model: | |
| request.model = "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo" | |
| if "claude-3.5-sonnet" in request.model: | |
| request.model = "claude-3-sonnet-20240229" | |
| if request.stream: | |
| def generate(): | |
| for chunk in API_Inference(messages, model=request.model, stream=True, | |
| max_tokens=request.max_tokens, | |
| temperature=request.temperature, | |
| top_p=request.top_p): | |
| yield f"data: {json.dumps({'choices': [{'delta': {'content': chunk}}]})}\n\n" | |
| yield "data: [DONE]\n\nCredits used: 1\n\n" | |
| # Update request count | |
| if request.model == "gpt-4o" or request.model == "claude-3-sonnet-20240229" or request.model == "gemini-1.5-pro" or request.model == "gemini-1-5-flash" or request.model == "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": | |
| update_request_count(api_key, 1) | |
| elif request.model == "o1-mini": | |
| update_request_count(api_key, 2) | |
| elif request.model == "o1-preview": | |
| update_request_count(api_key, 3) | |
| return StreamingResponse(generate(), media_type="text/event-stream") | |
| else: | |
| response = API_Inference(messages, model=request.model, stream=False, | |
| max_tokens=request.max_tokens, | |
| temperature=request.temperature, | |
| top_p=request.top_p) | |
| # Update request count | |
| update_request_count(api_key, 1) # Assume 1 credit per request, adjust as needed | |
| return { | |
| "id": f"chatcmpl-{uuid.uuid4()}", | |
| "object": "chat.completion", | |
| "created": int(uuid.uuid1().time // 1e7), | |
| "model": request.model, | |
| "choices": [ | |
| { | |
| "index": 0, | |
| "message": { | |
| "role": "assistant", | |
| "content": response | |
| }, | |
| "finish_reason": "stop" | |
| } | |
| ], | |
| "usage": { | |
| "prompt_tokens": len(' '.join(msg['content'] for msg in messages).split()), | |
| "completion_tokens": len(response.split()), | |
| "total_tokens": len(' '.join(msg['content'] for msg in messages).split()) + len(response.split()) | |
| }, | |
| "credits_used": 1 | |
| } | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| async def get_rate_limit_status_endpoint(api_key: str = Depends(get_api_key)): | |
| is_valid, error_message = check_api_key_validity(api_key, check_rate_limit=False) | |
| if not is_valid: | |
| raise HTTPException(status_code=401, detail=error_message) | |
| return get_rate_limit_status(api_key) | |
| async def get_subscription_status_endpoint(api_key: str = Depends(get_api_key)): | |
| is_valid, error_message = check_api_key_validity(api_key, check_rate_limit=False) | |
| if not is_valid: | |
| raise HTTPException(status_code=401, detail=error_message) | |
| return get_subscription_status(api_key) | |
| async def get_available_models_endpoint(api_key: str = Depends(get_api_key)): | |
| is_valid, error_message = check_api_key_validity(api_key, check_rate_limit=False) | |
| if not is_valid: | |
| raise HTTPException(status_code=401, detail=error_message) | |
| return {"data": [{"id": model} for model in get_available_models().values()]} | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=8000) |