diff --git a/yolov5/.dockerignore b/yolov5/.dockerignore
new file mode 100644
index 0000000000000000000000000000000000000000..3b669254e7799c0460d6be8523ed15ef1d2c3ac6
--- /dev/null
+++ b/yolov5/.dockerignore
@@ -0,0 +1,222 @@
+# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
+.git
+.cache
+.idea
+runs
+output
+coco
+storage.googleapis.com
+
+data/samples/*
+**/results*.csv
+*.jpg
+
+# Neural Network weights -----------------------------------------------------------------------------------------------
+**/*.pt
+**/*.pth
+**/*.onnx
+**/*.engine
+**/*.mlmodel
+**/*.torchscript
+**/*.torchscript.pt
+**/*.tflite
+**/*.h5
+**/*.pb
+*_saved_model/
+*_web_model/
+*_openvino_model/
+
+# Below Copied From .gitignore -----------------------------------------------------------------------------------------
+# Below Copied From .gitignore -----------------------------------------------------------------------------------------
+
+
+# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+wandb/
+.installed.cfg
+*.egg
+
+# PyInstaller
+#  Usually these files are written by a python script from a template
+#  before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# dotenv
+.env
+
+# virtualenv
+.venv*
+venv*/
+ENV*/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+
+
+# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
+
+# General
+.DS_Store
+.AppleDouble
+.LSOverride
+
+# Icon must end with two \r
+Icon
+Icon?
+
+# Thumbnails
+._*
+
+# Files that might appear in the root of a volume
+.DocumentRevisions-V100
+.fseventsd
+.Spotlight-V100
+.TemporaryItems
+.Trashes
+.VolumeIcon.icns
+.com.apple.timemachine.donotpresent
+
+# Directories potentially created on remote AFP share
+.AppleDB
+.AppleDesktop
+Network Trash Folder
+Temporary Items
+.apdisk
+
+
+# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
+# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
+# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
+
+# User-specific stuff:
+.idea/*
+.idea/**/workspace.xml
+.idea/**/tasks.xml
+.idea/dictionaries
+.html  # Bokeh Plots
+.pg  # TensorFlow Frozen Graphs
+.avi # videos
+
+# Sensitive or high-churn files:
+.idea/**/dataSources/
+.idea/**/dataSources.ids
+.idea/**/dataSources.local.xml
+.idea/**/sqlDataSources.xml
+.idea/**/dynamic.xml
+.idea/**/uiDesigner.xml
+
+# Gradle:
+.idea/**/gradle.xml
+.idea/**/libraries
+
+# CMake
+cmake-build-debug/
+cmake-build-release/
+
+# Mongo Explorer plugin:
+.idea/**/mongoSettings.xml
+
+## File-based project format:
+*.iws
+
+## Plugin-specific files:
+
+# IntelliJ
+out/
+
+# mpeltonen/sbt-idea plugin
+.idea_modules/
+
+# JIRA plugin
+atlassian-ide-plugin.xml
+
+# Cursive Clojure plugin
+.idea/replstate.xml
+
+# Crashlytics plugin (for Android Studio and IntelliJ)
+com_crashlytics_export_strings.xml
+crashlytics.properties
+crashlytics-build.properties
+fabric.properties
diff --git a/yolov5/.gitattributes b/yolov5/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..dad4239ebad5b72917cbc4bba95206c1e55d519e
--- /dev/null
+++ b/yolov5/.gitattributes
@@ -0,0 +1,2 @@
+# this drop notebooks from GitHub language stats
+*.ipynb linguist-vendored
diff --git a/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml b/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
new file mode 100644
index 0000000000000000000000000000000000000000..04f9c76fde1f6b9887f3145af3b89030edba223f
--- /dev/null
+++ b/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
@@ -0,0 +1,85 @@
+name: 🐛 Bug Report
+# title: " "
+description: Problems with YOLOv5
+labels: [bug, triage]
+body:
+  - type: markdown
+    attributes:
+      value: |
+        Thank you for submitting a YOLOv5 🐛 Bug Report!
+
+  - type: checkboxes
+    attributes:
+      label: Search before asking
+      description: >
+        Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
+      options:
+        - label: >
+            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
+          required: true
+
+  - type: dropdown
+    attributes:
+      label: YOLOv5 Component
+      description: |
+        Please select the part of YOLOv5 where you found the bug.
+      multiple: true
+      options:
+        - "Training"
+        - "Validation"
+        - "Detection"
+        - "Export"
+        - "PyTorch Hub"
+        - "Multi-GPU"
+        - "Evolution"
+        - "Integrations"
+        - "Other"
+    validations:
+      required: false
+
+  - type: textarea
+    attributes:
+      label: Bug
+      description: Provide console output with error messages and/or screenshots of the bug.
+      placeholder: |
+        💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
+    validations:
+      required: true
+
+  - type: textarea
+    attributes:
+      label: Environment
+      description: Please specify the software and hardware you used to produce the bug.
+      placeholder: |
+        - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
+        - OS: Ubuntu 20.04
+        - Python: 3.9.0
+    validations:
+      required: false
+
+  - type: textarea
+    attributes:
+      label: Minimal Reproducible Example
+      description: >
+        When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
+        This is referred to by community members as creating a [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/).
+      placeholder: |
+        ```
+        # Code to reproduce your issue here
+        ```
+    validations:
+      required: false
+
+  - type: textarea
+    attributes:
+      label: Additional
+      description: Anything else you would like to share?
+
+  - type: checkboxes
+    attributes:
+      label: Are you willing to submit a PR?
+      description: >
+        (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
+        See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
+      options:
+        - label: Yes I'd like to help by submitting a PR!
diff --git a/yolov5/.github/ISSUE_TEMPLATE/config.yml b/yolov5/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 0000000000000000000000000000000000000000..37080927c0b96655951725153e513068b6a2e97a
--- /dev/null
+++ b/yolov5/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1,11 @@
+blank_issues_enabled: true
+contact_links:
+  - name: 📄 Docs
+    url: https://docs.ultralytics.com/yolov5
+    about: View Ultralytics YOLOv5 Docs
+  - name: đŸ’Ŧ Forum
+    url: https://community.ultralytics.com/
+    about: Ask on Ultralytics Community Forum
+  - name: 🎧 Discord
+    url: https://ultralytics.com/discord
+    about: Ask on Ultralytics Discord
diff --git a/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml b/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
new file mode 100644
index 0000000000000000000000000000000000000000..1d3d53df217e03fddd68d35bc3017586a86b37e1
--- /dev/null
+++ b/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
@@ -0,0 +1,50 @@
+name: 🚀 Feature Request
+description: Suggest a YOLOv5 idea
+# title: " "
+labels: [enhancement]
+body:
+  - type: markdown
+    attributes:
+      value: |
+        Thank you for submitting a YOLOv5 🚀 Feature Request!
+
+  - type: checkboxes
+    attributes:
+      label: Search before asking
+      description: >
+        Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
+      options:
+        - label: >
+            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
+          required: true
+
+  - type: textarea
+    attributes:
+      label: Description
+      description: A short description of your feature.
+      placeholder: |
+        What new feature would you like to see in YOLOv5?
+    validations:
+      required: true
+
+  - type: textarea
+    attributes:
+      label: Use case
+      description: |
+        Describe the use case of your feature request. It will help us understand and prioritize the feature request.
+      placeholder: |
+        How would this feature be used, and who would use it?
+
+  - type: textarea
+    attributes:
+      label: Additional
+      description: Anything else you would like to share?
+
+  - type: checkboxes
+    attributes:
+      label: Are you willing to submit a PR?
+      description: >
+        (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
+        See the YOLOv5 [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
+      options:
+        - label: Yes I'd like to help by submitting a PR!
diff --git a/yolov5/.github/ISSUE_TEMPLATE/question.yml b/yolov5/.github/ISSUE_TEMPLATE/question.yml
new file mode 100644
index 0000000000000000000000000000000000000000..8e0993c68bab9170d972189cffeaf106c3222ae0
--- /dev/null
+++ b/yolov5/.github/ISSUE_TEMPLATE/question.yml
@@ -0,0 +1,33 @@
+name: ❓ Question
+description: Ask a YOLOv5 question
+# title: " "
+labels: [question]
+body:
+  - type: markdown
+    attributes:
+      value: |
+        Thank you for asking a YOLOv5 ❓ Question!
+
+  - type: checkboxes
+    attributes:
+      label: Search before asking
+      description: >
+        Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
+      options:
+        - label: >
+            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
+          required: true
+
+  - type: textarea
+    attributes:
+      label: Question
+      description: What is your question?
+      placeholder: |
+        💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
+    validations:
+      required: true
+
+  - type: textarea
+    attributes:
+      label: Additional
+      description: Anything else you would like to share?
diff --git a/yolov5/.github/dependabot.yml b/yolov5/.github/dependabot.yml
new file mode 100644
index 0000000000000000000000000000000000000000..2d4ae31873b84b7ac1595ff23f4fd54ec1e8a791
--- /dev/null
+++ b/yolov5/.github/dependabot.yml
@@ -0,0 +1,27 @@
+# Ultralytics YOLO 🚀, AGPL-3.0 license
+# Dependabot for package version updates
+# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
+
+version: 2
+updates:
+  - package-ecosystem: pip
+    directory: "/"
+    schedule:
+      interval: weekly
+      time: "04:00"
+    open-pull-requests-limit: 10
+    reviewers:
+      - glenn-jocher
+    labels:
+      - dependencies
+
+  - package-ecosystem: github-actions
+    directory: "/.github/workflows"
+    schedule:
+      interval: weekly
+      time: "04:00"
+    open-pull-requests-limit: 5
+    reviewers:
+      - glenn-jocher
+    labels:
+      - dependencies
diff --git a/yolov5/.github/workflows/ci-testing.yml b/yolov5/.github/workflows/ci-testing.yml
new file mode 100644
index 0000000000000000000000000000000000000000..b70e0eb892450636d28bc2629168884bdaf2f1a9
--- /dev/null
+++ b/yolov5/.github/workflows/ci-testing.yml
@@ -0,0 +1,149 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# YOLOv5 Continuous Integration (CI) GitHub Actions tests
+
+name: YOLOv5 CI
+
+on:
+  push:
+    branches: [master]
+  pull_request:
+    branches: [master]
+  schedule:
+    - cron: "0 0 * * *" # runs at 00:00 UTC every day
+
+jobs:
+  Benchmarks:
+    runs-on: ${{ matrix.os }}
+    strategy:
+      fail-fast: false
+      matrix:
+        os: [ubuntu-latest]
+        python-version: ["3.11"] # requires python<=3.11
+        model: [yolov5n]
+    steps:
+      - uses: actions/checkout@v4
+      - uses: actions/setup-python@v5
+        with:
+          python-version: ${{ matrix.python-version }}
+          cache: "pip" # cache pip dependencies
+      - name: Install requirements
+        run: |
+          python -m pip install --upgrade pip wheel
+          pip install -r requirements.txt coremltools openvino-dev "tensorflow-cpu<2.15.1" --extra-index-url https://download.pytorch.org/whl/cpu
+          yolo checks
+          pip list
+      - name: Benchmark DetectionModel
+        run: |
+          python benchmarks.py --data coco128.yaml --weights ${{ matrix.model }}.pt --img 320 --hard-fail 0.29
+      - name: Benchmark SegmentationModel
+        run: |
+          python benchmarks.py --data coco128-seg.yaml --weights ${{ matrix.model }}-seg.pt --img 320 --hard-fail 0.22
+      - name: Test predictions
+        run: |
+          python export.py --weights ${{ matrix.model }}-cls.pt --include onnx --img 224
+          python detect.py --weights ${{ matrix.model }}.onnx --img 320
+          python segment/predict.py --weights ${{ matrix.model }}-seg.onnx --img 320
+          python classify/predict.py --weights ${{ matrix.model }}-cls.onnx --img 224
+
+  Tests:
+    timeout-minutes: 60
+    runs-on: ${{ matrix.os }}
+    strategy:
+      fail-fast: false
+      matrix:
+        os: [ubuntu-latest, windows-latest, macos-14] # macos-latest bug https://github.com/ultralytics/yolov5/pull/9049
+        python-version: ["3.11"]
+        model: [yolov5n]
+        include:
+          - os: ubuntu-latest
+            python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
+            model: yolov5n
+            torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
+    steps:
+      - uses: actions/checkout@v4
+      - uses: actions/setup-python@v5
+        with:
+          python-version: ${{ matrix.python-version }}
+          cache: "pip" # caching pip dependencies
+      - name: Install requirements
+        run: |
+          python -m pip install --upgrade pip wheel
+          if [ "${{ matrix.torch }}" == "1.8.0" ]; then
+              pip install -r requirements.txt torch==1.8.0 torchvision==0.9.0 --extra-index-url https://download.pytorch.org/whl/cpu
+          else
+              pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
+          fi
+        shell: bash # for Windows compatibility
+      - name: Check environment
+        run: |
+          yolo checks
+          pip list
+      - name: Test detection
+        shell: bash # for Windows compatibility
+        run: |
+          # export PYTHONPATH="$PWD"  # to run '$ python *.py' files in subdirectories
+          m=${{ matrix.model }}  # official weights
+          b=runs/train/exp/weights/best  # best.pt checkpoint
+          python train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu  # train
+          for d in cpu; do  # devices
+            for w in $m $b; do  # weights
+              python val.py --imgsz 64 --batch 32 --weights $w.pt --device $d  # val
+              python detect.py --imgsz 64 --weights $w.pt --device $d  # detect
+            done
+          done
+          python hubconf.py --model $m  # hub
+          # python models/tf.py --weights $m.pt  # build TF model
+          python models/yolo.py --cfg $m.yaml  # build PyTorch model
+          python export.py --weights $m.pt --img 64 --include torchscript  # export
+          python - <<EOF
+          import torch
+          im = torch.zeros([1, 3, 64, 64])
+          for path in '$m', '$b':
+              model = torch.hub.load('.', 'custom', path=path, source='local')
+              print(model('data/images/bus.jpg'))
+              model(im)  # warmup, build grids for trace
+              torch.jit.trace(model, [im])
+          EOF
+      - name: Test segmentation
+        shell: bash # for Windows compatibility
+        run: |
+          m=${{ matrix.model }}-seg  # official weights
+          b=runs/train-seg/exp/weights/best  # best.pt checkpoint
+          python segment/train.py --imgsz 64 --batch 32 --weights $m.pt --cfg $m.yaml --epochs 1 --device cpu  # train
+          python segment/train.py --imgsz 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device cpu  # train
+          for d in cpu; do  # devices
+            for w in $m $b; do  # weights
+              python segment/val.py --imgsz 64 --batch 32 --weights $w.pt --device $d  # val
+              python segment/predict.py --imgsz 64 --weights $w.pt --device $d  # predict
+              python export.py --weights $w.pt --img 64 --include torchscript --device $d  # export
+            done
+          done
+      - name: Test classification
+        shell: bash # for Windows compatibility
+        run: |
+          m=${{ matrix.model }}-cls.pt  # official weights
+          b=runs/train-cls/exp/weights/best.pt  # best.pt checkpoint
+          python classify/train.py --imgsz 32 --model $m --data mnist160 --epochs 1  # train
+          python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist160  # val
+          python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist160/test/7/60.png  # predict
+          python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg  # predict
+          python export.py --weights $b --img 64 --include torchscript  # export
+          python - <<EOF
+          import torch
+          for path in '$m', '$b':
+              model = torch.hub.load('.', 'custom', path=path, source='local')
+          EOF
+
+  Summary:
+    runs-on: ubuntu-latest
+    needs: [Benchmarks, Tests] # Add job names that you want to check for failure
+    if: always() # This ensures the job runs even if previous jobs fail
+    steps:
+      - name: Check for failure and notify
+        if: (needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.Benchmarks.result == 'cancelled' || needs.Tests.result == 'cancelled') && github.repository == 'ultralytics/yolov5' && (github.event_name == 'schedule' || github.event_name == 'push')
+        uses: slackapi/slack-github-action@v1.26.0
+        with:
+          payload: |
+            {"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"}
+        env:
+          SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
diff --git a/yolov5/.github/workflows/cla.yml b/yolov5/.github/workflows/cla.yml
new file mode 100644
index 0000000000000000000000000000000000000000..4f87c77701dd7edd426bc8a0d580485a303ad9f7
--- /dev/null
+++ b/yolov5/.github/workflows/cla.yml
@@ -0,0 +1,39 @@
+# Ultralytics YOLO 🚀, AGPL-3.0 license
+# Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA
+# This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged
+
+name: CLA Assistant
+on:
+  issue_comment:
+    types:
+      - created
+  pull_request_target:
+    types:
+      - reopened
+      - opened
+      - synchronize
+
+jobs:
+  CLA:
+    if: github.repository == 'ultralytics/yolov5'
+    runs-on: ubuntu-latest
+    steps:
+      - name: CLA Assistant
+        if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
+        uses: contributor-assistant/github-action@v2.3.2
+        env:
+          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+          # must be repository secret token
+          PERSONAL_ACCESS_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
+        with:
+          path-to-signatures: "signatures/version1/cla.json"
+          path-to-document: "https://docs.ultralytics.com/help/CLA" # CLA document
+          # branch should not be protected
+          branch: "main"
+          allowlist: dependabot[bot],github-actions,[pre-commit*,pre-commit*,bot*
+
+          remote-organization-name: ultralytics
+          remote-repository-name: cla
+          custom-pr-sign-comment: "I have read the CLA Document and I sign the CLA"
+          custom-allsigned-prcomment: All Contributors have signed the CLA. ✅
+          #custom-notsigned-prcomment: 'pull request comment with Introductory message to ask new contributors to sign'
diff --git a/yolov5/.github/workflows/codeql-analysis.yml b/yolov5/.github/workflows/codeql-analysis.yml
new file mode 100644
index 0000000000000000000000000000000000000000..2897fd0b454dbe24ec2f47a002f51fe91a3061e4
--- /dev/null
+++ b/yolov5/.github/workflows/codeql-analysis.yml
@@ -0,0 +1,55 @@
+# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
+# https://github.com/github/codeql-action
+
+name: "CodeQL"
+
+on:
+  schedule:
+    - cron: "0 0 1 * *" # Runs at 00:00 UTC on the 1st of every month
+  workflow_dispatch:
+
+jobs:
+  analyze:
+    name: Analyze
+    runs-on: ubuntu-latest
+
+    strategy:
+      fail-fast: false
+      matrix:
+        language: ["python"]
+        # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
+        # Learn more:
+        # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
+
+    steps:
+      - name: Checkout repository
+        uses: actions/checkout@v4
+
+      # Initializes the CodeQL tools for scanning.
+      - name: Initialize CodeQL
+        uses: github/codeql-action/init@v3
+        with:
+          languages: ${{ matrix.language }}
+          # If you wish to specify custom queries, you can do so here or in a config file.
+          # By default, queries listed here will override any specified in a config file.
+          # Prefix the list here with "+" to use these queries and those in the config file.
+          # queries: ./path/to/local/query, your-org/your-repo/queries@main
+
+      # Autobuild attempts to build any compiled languages  (C/C++, C#, or Java).
+      # If this step fails, then you should remove it and run the build manually (see below)
+      - name: Autobuild
+        uses: github/codeql-action/autobuild@v3
+
+      # ℹī¸ Command-line programs to run using the OS shell.
+      # 📚 https://git.io/JvXDl
+
+      # ✏ī¸ If the Autobuild fails above, remove it and uncomment the following three lines
+      #    and modify them (or add more) to build your code if your project
+      #    uses a compiled language
+
+      #- run: |
+      #   make bootstrap
+      #   make release
+
+      - name: Perform CodeQL Analysis
+        uses: github/codeql-action/analyze@v3
diff --git a/yolov5/.github/workflows/docker.yml b/yolov5/.github/workflows/docker.yml
new file mode 100644
index 0000000000000000000000000000000000000000..8b035e26c9021e4268f23bef44fd23052ebe0385
--- /dev/null
+++ b/yolov5/.github/workflows/docker.yml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Builds ultralytics/yolov5:latest images on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+
+name: Publish Docker Images
+
+on:
+  push:
+    branches: [master]
+  workflow_dispatch:
+
+jobs:
+  docker:
+    if: github.repository == 'ultralytics/yolov5'
+    name: Push Docker image to Docker Hub
+    runs-on: ubuntu-latest
+    steps:
+      - name: Checkout repo
+        uses: actions/checkout@v4
+        with:
+          fetch-depth: 0 # copy full .git directory to access full git history in Docker images
+
+      - name: Set up QEMU
+        uses: docker/setup-qemu-action@v3
+
+      - name: Set up Docker Buildx
+        uses: docker/setup-buildx-action@v3
+
+      - name: Login to Docker Hub
+        uses: docker/login-action@v3
+        with:
+          username: ${{ secrets.DOCKERHUB_USERNAME }}
+          password: ${{ secrets.DOCKERHUB_TOKEN }}
+
+      - name: Build and push arm64 image
+        uses: docker/build-push-action@v5
+        continue-on-error: true
+        with:
+          context: .
+          platforms: linux/arm64
+          file: utils/docker/Dockerfile-arm64
+          push: true
+          tags: ultralytics/yolov5:latest-arm64
+
+      - name: Build and push CPU image
+        uses: docker/build-push-action@v5
+        continue-on-error: true
+        with:
+          context: .
+          file: utils/docker/Dockerfile-cpu
+          push: true
+          tags: ultralytics/yolov5:latest-cpu
+
+      - name: Build and push GPU image
+        uses: docker/build-push-action@v5
+        continue-on-error: true
+        with:
+          context: .
+          file: utils/docker/Dockerfile
+          push: true
+          tags: ultralytics/yolov5:latest
diff --git a/yolov5/.github/workflows/format.yml b/yolov5/.github/workflows/format.yml
new file mode 100644
index 0000000000000000000000000000000000000000..4723d0f7dc7052e6ab851ef753f59a260458db0d
--- /dev/null
+++ b/yolov5/.github/workflows/format.yml
@@ -0,0 +1,27 @@
+# Ultralytics 🚀 - AGPL-3.0 license
+# Ultralytics Actions https://github.com/ultralytics/actions
+# This workflow automatically formats code and documentation in PRs to official Ultralytics standards
+
+name: Ultralytics Actions
+
+on:
+  push:
+    branches: [main, master]
+  pull_request_target:
+    branches: [main, master]
+
+jobs:
+  format:
+    runs-on: ubuntu-latest
+    steps:
+      - name: Run Ultralytics Formatting
+        uses: ultralytics/actions@main
+        with:
+          token: ${{ secrets.GITHUB_TOKEN }} # automatically generated, do not modify
+          python: true # format Python code and docstrings
+          markdown: true # format Markdown and YAML
+          spelling: true # check spelling
+          links: false # check broken links
+          summary: true # print PR summary with GPT4 (requires 'openai_api_key' or 'openai_azure_api_key' and 'openai_azure_endpoint')
+          openai_azure_api_key: ${{ secrets.OPENAI_AZURE_API_KEY }}
+          openai_azure_endpoint: ${{ secrets.OPENAI_AZURE_ENDPOINT }}
diff --git a/yolov5/.github/workflows/greetings.yml b/yolov5/.github/workflows/greetings.yml
new file mode 100644
index 0000000000000000000000000000000000000000..3058d78b0a66ef39c1d4b382b3aaea99a4cb551c
--- /dev/null
+++ b/yolov5/.github/workflows/greetings.yml
@@ -0,0 +1,65 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+name: Greetings
+
+on:
+  pull_request_target:
+    types: [opened]
+  issues:
+    types: [opened]
+
+jobs:
+  greeting:
+    runs-on: ubuntu-latest
+    steps:
+      - uses: actions/first-interaction@v1
+        with:
+          repo-token: ${{ secrets.GITHUB_TOKEN }}
+          pr-message: |
+            👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv5 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
+
+            - ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
+            - ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
+            - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_  — Bruce Lee
+
+          issue-message: |
+            👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our ⭐ī¸ [Tutorials](https://docs.ultralytics.com/yolov5/) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/) all the way to advanced concepts like [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/).
+
+            If this is a 🐛 Bug Report, please provide a **minimum reproducible example** to help us debug it.
+
+            If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/).
+
+            ## Requirements
+
+            [**Python>=3.8.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). To get started:
+            ```bash
+            git clone https://github.com/ultralytics/yolov5  # clone
+            cd yolov5
+            pip install -r requirements.txt  # install
+            ```
+
+            ## Environments
+
+            YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
+
+            - **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+            - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
+            - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
+            - **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+
+            ## Status
+
+            <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
+
+            If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
+
+            ## Introducing YOLOv8 🚀
+
+            We're excited to announce the launch of our latest state-of-the-art (SOTA) object detection model for 2023 - [YOLOv8](https://github.com/ultralytics/ultralytics) 🚀!
+
+            Designed to be fast, accurate, and easy to use, YOLOv8 is an ideal choice for a wide range of object detection, image segmentation and image classification tasks. With YOLOv8, you'll be able to quickly and accurately detect objects in real-time, streamline your workflows, and achieve new levels of accuracy in your projects.
+
+            Check out our [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with:
+            ```bash
+            pip install ultralytics
+            ```
diff --git a/yolov5/.github/workflows/links.yml b/yolov5/.github/workflows/links.yml
new file mode 100644
index 0000000000000000000000000000000000000000..3acae3ec2d4d2a799413de49164a34ed0897b2ed
--- /dev/null
+++ b/yolov5/.github/workflows/links.yml
@@ -0,0 +1,71 @@
+# Ultralytics YOLO 🚀, AGPL-3.0 license
+# Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
+# Ignores the following status codes to reduce false positives:
+#   - 403(OpenVINO, 'forbidden')
+#   - 429(Instagram, 'too many requests')
+#   - 500(Zenodo, 'cached')
+#   - 502(Zenodo, 'bad gateway')
+#   - 999(LinkedIn, 'unknown status code')
+
+name: Check Broken links
+
+on:
+  workflow_dispatch:
+  schedule:
+    - cron: "0 0 * * *" # runs at 00:00 UTC every day
+
+jobs:
+  Links:
+    runs-on: ubuntu-latest
+    steps:
+      - uses: actions/checkout@v4
+
+      - name: Download and install lychee
+        run: |
+          LYCHEE_URL=$(curl -s https://api.github.com/repos/lycheeverse/lychee/releases/latest | grep "browser_download_url" | grep "x86_64-unknown-linux-gnu.tar.gz" | cut -d '"' -f 4)
+          curl -L $LYCHEE_URL -o lychee.tar.gz
+          tar xzf lychee.tar.gz
+          sudo mv lychee /usr/local/bin
+
+      - name: Test Markdown and HTML links with retry
+        uses: nick-invision/retry@v3
+        with:
+          timeout_minutes: 5
+          retry_wait_seconds: 60
+          max_attempts: 3
+          command: |
+            lychee \
+            --scheme 'https' \
+            --timeout 60 \
+            --insecure \
+            --accept 403,429,500,502,999 \
+            --exclude-all-private \
+            --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
+            --exclude-path '**/ci.yaml' \
+            --github-token ${{ secrets.GITHUB_TOKEN }} \
+            './**/*.md' \
+            './**/*.html'
+
+      - name: Test Markdown, HTML, YAML, Python and Notebook links with retry
+        if: github.event_name == 'workflow_dispatch'
+        uses: nick-invision/retry@v3
+        with:
+          timeout_minutes: 5
+          retry_wait_seconds: 60
+          max_attempts: 3
+          command: |
+            lychee \
+            --scheme 'https' \
+            --timeout 60 \
+            --insecure \
+            --accept 429,999 \
+            --exclude-all-private \
+            --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
+            --exclude-path '**/ci.yaml' \
+            --github-token ${{ secrets.GITHUB_TOKEN }} \
+            './**/*.md' \
+            './**/*.html' \
+            './**/*.yml' \
+            './**/*.yaml' \
+            './**/*.py' \
+            './**/*.ipynb'
diff --git a/yolov5/.github/workflows/merge-main-into-prs.yml b/yolov5/.github/workflows/merge-main-into-prs.yml
new file mode 100644
index 0000000000000000000000000000000000000000..9ed945c7897800317a4c26e48fd1593c5a65b4e2
--- /dev/null
+++ b/yolov5/.github/workflows/merge-main-into-prs.yml
@@ -0,0 +1,56 @@
+# Ultralytics YOLO 🚀, AGPL-3.0 license
+# Automatically merges repository 'main' branch into all open PRs to keep them up-to-date
+# Action runs on updates to main branch so when one PR merges to main all others update
+
+name: Merge main into PRs
+
+on:
+  workflow_dispatch:
+  push:
+    branches:
+      - main
+      - master
+  
+jobs:
+  Merge:
+    if: github.repository == 'ultralytics/yolov5'
+    runs-on: ubuntu-latest
+    steps:
+    - name: Checkout repository
+      uses: actions/checkout@v4
+      with:
+        fetch-depth: 0
+    - uses: actions/setup-python@v5
+      with:
+        python-version: "3.11"
+        cache: "pip" # caching pip dependencies
+    - name: Install requirements
+      run: |
+        pip install pygithub
+    - name: Merge main into PRs
+      shell: python
+      run: |
+        from github import Github
+        import os
+        
+        # Authenticate with the GitHub Token
+        g = Github(os.getenv('GITHUB_TOKEN'))
+        
+        # Get the repository dynamically
+        repo = g.get_repo(os.getenv('GITHUB_REPOSITORY'))
+        
+        # List all open pull requests
+        open_pulls = repo.get_pulls(state='open', sort='created')
+        
+        for pr in open_pulls:
+            # Compare PR head with main to see if it's behind
+            try:
+                # Merge main into the PR branch
+                success = pr.update_branch()
+                assert success, "Branch update failed"
+                print(f"Merged 'master' into PR #{pr.number} ({pr.head.ref}) successfully.")
+            except Exception as e:
+                print(f"Could not merge 'master' into PR #{pr.number} ({pr.head.ref}): {e}")
+      env:
+        GITHUB_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
+        GITHUB_REPOSITORY: ${{ github.repository }}
diff --git a/yolov5/.github/workflows/stale.yml b/yolov5/.github/workflows/stale.yml
new file mode 100644
index 0000000000000000000000000000000000000000..720ba10b08cec5f1be8b84525463ae0c5cda2ca7
--- /dev/null
+++ b/yolov5/.github/workflows/stale.yml
@@ -0,0 +1,47 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+name: Close stale issues
+on:
+  schedule:
+    - cron: "0 0 * * *" # Runs at 00:00 UTC every day
+
+jobs:
+  stale:
+    runs-on: ubuntu-latest
+    steps:
+      - uses: actions/stale@v9
+        with:
+          repo-token: ${{ secrets.GITHUB_TOKEN }}
+
+          stale-issue-message: |
+            👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
+
+            For additional resources and information, please see the links below:
+
+            - **Docs**: https://docs.ultralytics.com
+            - **HUB**: https://hub.ultralytics.com
+            - **Community**: https://community.ultralytics.com
+
+            Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
+
+            Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
+
+          stale-pr-message: |
+            👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
+
+            We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
+
+            For additional resources and information, please see the links below:
+
+            - **Docs**: https://docs.ultralytics.com
+            - **HUB**: https://hub.ultralytics.com
+            - **Community**: https://community.ultralytics.com
+
+            Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
+
+          days-before-issue-stale: 30
+          days-before-issue-close: 10
+          days-before-pr-stale: 90
+          days-before-pr-close: 30
+          exempt-issue-labels: "documentation,tutorial,TODO"
+          operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
diff --git a/yolov5/.gitignore b/yolov5/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..6bcedfac610d86354e51c3719bf48bd149f644a2
--- /dev/null
+++ b/yolov5/.gitignore
@@ -0,0 +1,257 @@
+# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
+*.jpg
+*.jpeg
+*.png
+*.bmp
+*.tif
+*.tiff
+*.heic
+*.JPG
+*.JPEG
+*.PNG
+*.BMP
+*.TIF
+*.TIFF
+*.HEIC
+*.mp4
+*.mov
+*.MOV
+*.avi
+*.data
+*.json
+*.cfg
+!setup.cfg
+!cfg/yolov3*.cfg
+
+storage.googleapis.com
+runs/*
+data/*
+data/images/*
+!data/*.yaml
+!data/hyps
+!data/scripts
+!data/images
+!data/images/zidane.jpg
+!data/images/bus.jpg
+!data/*.sh
+
+results*.csv
+
+# Datasets -------------------------------------------------------------------------------------------------------------
+coco/
+coco128/
+VOC/
+
+# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
+*.m~
+*.mat
+!targets*.mat
+
+# Neural Network weights -----------------------------------------------------------------------------------------------
+*.weights
+*.pt
+*.pb
+*.onnx
+*.engine
+*.mlmodel
+*.torchscript
+*.tflite
+*.h5
+*_saved_model/
+*_web_model/
+*_openvino_model/
+*_paddle_model/
+darknet53.conv.74
+yolov3-tiny.conv.15
+
+# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+/wandb/
+.installed.cfg
+*.egg
+
+
+# PyInstaller
+#  Usually these files are written by a python script from a template
+#  before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# dotenv
+.env
+
+# virtualenv
+.venv*
+venv*/
+ENV*/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+
+
+# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
+
+# General
+.DS_Store
+.AppleDouble
+.LSOverride
+
+# Icon must end with two \r
+Icon
+Icon?
+
+# Thumbnails
+._*
+
+# Files that might appear in the root of a volume
+.DocumentRevisions-V100
+.fseventsd
+.Spotlight-V100
+.TemporaryItems
+.Trashes
+.VolumeIcon.icns
+.com.apple.timemachine.donotpresent
+
+# Directories potentially created on remote AFP share
+.AppleDB
+.AppleDesktop
+Network Trash Folder
+Temporary Items
+.apdisk
+
+
+# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
+# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
+# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
+
+# User-specific stuff:
+.idea/*
+.idea/**/workspace.xml
+.idea/**/tasks.xml
+.idea/dictionaries
+.html  # Bokeh Plots
+.pg  # TensorFlow Frozen Graphs
+.avi # videos
+
+# Sensitive or high-churn files:
+.idea/**/dataSources/
+.idea/**/dataSources.ids
+.idea/**/dataSources.local.xml
+.idea/**/sqlDataSources.xml
+.idea/**/dynamic.xml
+.idea/**/uiDesigner.xml
+
+# Gradle:
+.idea/**/gradle.xml
+.idea/**/libraries
+
+# CMake
+cmake-build-debug/
+cmake-build-release/
+
+# Mongo Explorer plugin:
+.idea/**/mongoSettings.xml
+
+## File-based project format:
+*.iws
+
+## Plugin-specific files:
+
+# IntelliJ
+out/
+
+# mpeltonen/sbt-idea plugin
+.idea_modules/
+
+# JIRA plugin
+atlassian-ide-plugin.xml
+
+# Cursive Clojure plugin
+.idea/replstate.xml
+
+# Crashlytics plugin (for Android Studio and IntelliJ)
+com_crashlytics_export_strings.xml
+crashlytics.properties
+crashlytics-build.properties
+fabric.properties
diff --git a/yolov5/CITATION.cff b/yolov5/CITATION.cff
new file mode 100644
index 0000000000000000000000000000000000000000..c277230d922f869978cedaabc214d5236c6cb191
--- /dev/null
+++ b/yolov5/CITATION.cff
@@ -0,0 +1,14 @@
+cff-version: 1.2.0
+preferred-citation:
+  type: software
+  message: If you use YOLOv5, please cite it as below.
+  authors:
+  - family-names: Jocher
+    given-names: Glenn
+    orcid: "https://orcid.org/0000-0001-5950-6979"
+  title: "YOLOv5 by Ultralytics"
+  version: 7.0
+  doi: 10.5281/zenodo.3908559
+  date-released: 2020-5-29
+  license: AGPL-3.0
+  url: "https://github.com/ultralytics/yolov5"
diff --git a/yolov5/CONTRIBUTING.md b/yolov5/CONTRIBUTING.md
new file mode 100644
index 0000000000000000000000000000000000000000..556c554a2514a2cb3969bbaadca0e63b5587eda3
--- /dev/null
+++ b/yolov5/CONTRIBUTING.md
@@ -0,0 +1,76 @@
+## Contributing to YOLOv5 🚀
+
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
+
+- Reporting a bug
+- Discussing the current state of the code
+- Submitting a fix
+- Proposing a new feature
+- Becoming a maintainer
+
+YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be helping push the frontiers of what's possible in AI 😃!
+
+## Submitting a Pull Request (PR) 🛠ī¸
+
+Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
+
+### 1. Select File to Update
+
+Select `requirements.txt` to update by clicking on it in GitHub.
+
+<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
+
+### 2. Click 'Edit this file'
+
+The button is in the top-right corner.
+
+<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
+
+### 3. Make Changes
+
+Change the `matplotlib` version from `3.2.2` to `3.3`.
+
+<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
+
+### 4. Preview Changes and Submit PR
+
+Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
+
+<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
+
+### PR recommendations
+
+To allow your work to be integrated as seamlessly as possible, we advise you to:
+
+- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
+
+<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
+
+- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
+
+<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
+
+- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
+
+## Submitting a Bug Report 🐛
+
+If you spot a problem with YOLOv5 please submit a Bug Report!
+
+For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few short guidelines below to help users provide what we need to get started.
+
+When asking a question, people will be better able to provide help if you provide **code** that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/). Your code that reproduces the problem should be:
+
+- ✅ **Minimal** – Use as little code as possible that still produces the same problem
+- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
+- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
+
+In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code should be:
+
+- ✅ **Current** – Verify that your code is up-to-date with the current GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new copy to ensure your problem has not already been resolved by previous commits.
+- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠ī¸.
+
+If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) to help us better understand and diagnose your problem.
+
+## License
+
+By contributing, you agree that your contributions will be licensed under the [AGPL-3.0 license](https://choosealicense.com/licenses/agpl-3.0/)
diff --git a/yolov5/LICENSE b/yolov5/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..be3f7b28e564e7dd05eaf59d64adba1a4065ac0e
--- /dev/null
+++ b/yolov5/LICENSE
@@ -0,0 +1,661 @@
+                    GNU AFFERO GENERAL PUBLIC LICENSE
+                       Version 3, 19 November 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU Affero General Public License is a free, copyleft license for
+software and other kinds of works, specifically designed to ensure
+cooperation with the community in the case of network server software.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+our General Public Licenses are intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  Developers that use our General Public Licenses protect your rights
+with two steps: (1) assert copyright on the software, and (2) offer
+you this License which gives you legal permission to copy, distribute
+and/or modify the software.
+
+  A secondary benefit of defending all users' freedom is that
+improvements made in alternate versions of the program, if they
+receive widespread use, become available for other developers to
+incorporate.  Many developers of free software are heartened and
+encouraged by the resulting cooperation.  However, in the case of
+software used on network servers, this result may fail to come about.
+The GNU General Public License permits making a modified version and
+letting the public access it on a server without ever releasing its
+source code to the public.
+
+  The GNU Affero General Public License is designed specifically to
+ensure that, in such cases, the modified source code becomes available
+to the community.  It requires the operator of a network server to
+provide the source code of the modified version running there to the
+users of that server.  Therefore, public use of a modified version, on
+a publicly accessible server, gives the public access to the source
+code of the modified version.
+
+  An older license, called the Affero General Public License and
+published by Affero, was designed to accomplish similar goals.  This is
+a different license, not a version of the Affero GPL, but Affero has
+released a new version of the Affero GPL which permits relicensing under
+this license.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU Affero General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Remote Network Interaction; Use with the GNU General Public License.
+
+  Notwithstanding any other provision of this License, if you modify the
+Program, your modified version must prominently offer all users
+interacting with it remotely through a computer network (if your version
+supports such interaction) an opportunity to receive the Corresponding
+Source of your version by providing access to the Corresponding Source
+from a network server at no charge, through some standard or customary
+means of facilitating copying of software.  This Corresponding Source
+shall include the Corresponding Source for any work covered by version 3
+of the GNU General Public License that is incorporated pursuant to the
+following paragraph.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the work with which it is combined will remain governed by version
+3 of the GNU General Public License.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU Affero General Public License from time to time.  Such new versions
+will be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU Affero General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU Affero General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU Affero General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    <one line to give the program's name and a brief idea of what it does.>
+    Copyright (C) <year>  <name of author>
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU Affero General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU Affero General Public License for more details.
+
+    You should have received a copy of the GNU Affero General Public License
+    along with this program.  If not, see <https://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If your software can interact with users remotely through a computer
+network, you should also make sure that it provides a way for users to
+get its source.  For example, if your program is a web application, its
+interface could display a "Source" link that leads users to an archive
+of the code.  There are many ways you could offer source, and different
+solutions will be better for different programs; see section 13 for the
+specific requirements.
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU AGPL, see
+<https://www.gnu.org/licenses/>.
diff --git a/yolov5/README.md b/yolov5/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..55f813747fe51cf6f23021187283102136c82c24
--- /dev/null
+++ b/yolov5/README.md
@@ -0,0 +1,474 @@
+<div align="center">
+  <p>
+    <a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
+      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
+    <!--
+    <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
+    -->
+  </p>
+
+[中文](https://docs.ultralytics.com/zh/) | [한ęĩ­ė–´](https://docs.ultralytics.com/ko/) | [æ—ĨæœŦčĒž](https://docs.ultralytics.com/ja/) | [Đ ŅƒŅŅĐēиК](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [EspaÃąol](https://docs.ultralytics.com/es/) | [PortuguÃĒs](https://docs.ultralytics.com/pt/) | [TÃŧrkçe](https://docs.ultralytics.com/tr/) | [Tiáēŋng Viáģ‡t](https://docs.ultralytics.com/vi/) | [ā¤šā¤ŋā¤¨āĨā¤ĻāĨ€](https://docs.ultralytics.com/hi/) | [اŲ„ØšØąØ¨ŲŠØŠ](https://docs.ultralytics.com/ar/)
+
+<div>
+    <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
+    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
+    <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+    <a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
+    <br>
+    <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
+    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
+    <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+  </div>
+  <br>
+
+YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
+
+We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
+
+To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
+
+<div align="center">
+  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
+</div>
+
+</div>
+<br>
+
+## <div align="center">YOLOv8 🚀 NEW</div>
+
+We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
+
+See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
+
+[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
+
+```bash
+pip install ultralytics
+```
+
+<div align="center">
+  <a href="https://ultralytics.com/yolov8" target="_blank">
+  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
+</div>
+
+## <div align="center">Documentation</div>
+
+See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
+
+<details open>
+<summary>Install</summary>
+
+Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
+
+```bash
+git clone https://github.com/ultralytics/yolov5  # clone
+cd yolov5
+pip install -r requirements.txt  # install
+```
+
+</details>
+
+<details>
+<summary>Inference</summary>
+
+YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
+
+```python
+import torch
+
+# Model
+model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom
+
+# Images
+img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list
+
+# Inference
+results = model(img)
+
+# Results
+results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
+```
+
+</details>
+
+<details>
+<summary>Inference with detect.py</summary>
+
+`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+
+```bash
+python detect.py --weights yolov5s.pt --source 0                               # webcam
+                                               img.jpg                         # image
+                                               vid.mp4                         # video
+                                               screen                          # screenshot
+                                               path/                           # directory
+                                               list.txt                        # list of images
+                                               list.streams                    # list of streams
+                                               'path/*.jpg'                    # glob
+                                               'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+```
+
+</details>
+
+<details>
+<summary>Training</summary>
+
+The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
+
+```bash
+python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
+                                                                 yolov5s                    64
+                                                                 yolov5m                    40
+                                                                 yolov5l                    24
+                                                                 yolov5x                    16
+```
+
+<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
+
+</details>
+
+<details open>
+<summary>Tutorials</summary>
+
+- [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) 🚀 RECOMMENDED
+- [Tips for Best Training Results](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results) ☘ī¸
+- [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training)
+- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 🌟 NEW
+- [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export) 🚀
+- [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano) 🌟 NEW
+- [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation)
+- [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling)
+- [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity)
+- [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution)
+- [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers)
+- [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description) 🌟 NEW
+- [Roboflow for Datasets, Labeling, and Active Learning](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration)
+- [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) 🌟 NEW
+- [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization) 🌟 NEW
+- [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration) 🌟 NEW
+
+</details>
+
+## <div align="center">Integrations</div>
+
+<br>
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
+<br>
+<br>
+
+<div align="center">
+  <a href="https://roboflow.com/?ref=ultralytics">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://cutt.ly/yolov5-readme-clearml">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-readme-comet2">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-neuralmagic">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
+</div>
+
+|                                                           Roboflow                                                           |                                                            ClearML ⭐ NEW                                                            |                                                                        Comet ⭐ NEW                                                                         |                                           Neural Magic ⭐ NEW                                           |
+| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
+| Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions | Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
+
+## <div align="center">Ultralytics HUB</div>
+
+Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
+
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
+
+## <div align="center">Why YOLOv5</div>
+
+YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
+<details>
+  <summary>YOLOv5-P5 640 Figure</summary>
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
+</details>
+<details>
+  <summary>Figure Notes</summary>
+
+- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
+- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
+- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
+- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+
+</details>
+
+### Pretrained Checkpoints
+
+| Model                                                                                           | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
+| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt)              | 640                   | 28.0                 | 45.7              | **45**                       | **6.3**                       | **0.6**                        | **1.9**            | **4.5**                |
+| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt)              | 640                   | 37.4                 | 56.8              | 98                           | 6.4                           | 0.9                            | 7.2                | 16.5                   |
+| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt)              | 640                   | 45.4                 | 64.1              | 224                          | 8.2                           | 1.7                            | 21.2               | 49.0                   |
+| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt)              | 640                   | 49.0                 | 67.3              | 430                          | 10.1                          | 2.7                            | 46.5               | 109.1                  |
+| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt)              | 640                   | 50.7                 | 68.9              | 766                          | 12.1                          | 4.8                            | 86.7               | 205.7                  |
+|                                                                                                 |                       |                      |                   |                              |                               |                                |                    |                        |
+| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt)            | 1280                  | 36.0                 | 54.4              | 153                          | 8.1                           | 2.1                            | 3.2                | 4.6                    |
+| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt)            | 1280                  | 44.8                 | 63.7              | 385                          | 8.2                           | 3.6                            | 12.6               | 16.8                   |
+| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt)            | 1280                  | 51.3                 | 69.3              | 887                          | 11.1                          | 6.8                            | 35.7               | 50.0                   |
+| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt)            | 1280                  | 53.7                 | 71.3              | 1784                         | 15.8                          | 10.5                           | 76.8               | 111.4                  |
+| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [TTA] | 1280<br>1536          | 55.0<br>**55.8**     | 72.7<br>**72.7**  | 3136<br>-                    | 26.2<br>-                     | 19.4<br>-                      | 140.7<br>-         | 209.8<br>-             |
+
+<details>
+  <summary>Table Notes</summary>
+
+- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
+- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
+- **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+
+</details>
+
+## <div align="center">Segmentation</div>
+
+Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
+
+<details>
+  <summary>Segmentation Checkpoints</summary>
+
+<div align="center">
+<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
+</div>
+
+We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
+
+| Model                                                                                      | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
+| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640                   | 27.6                 | 23.4                  | 80:17                                         | **62.7**                       | **1.2**                        | **2.0**            | **7.1**                |
+| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640                   | 37.6                 | 31.7                  | 88:16                                         | 173.3                          | 1.4                            | 7.6                | 26.4                   |
+| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640                   | 45.0                 | 37.1                  | 108:36                                        | 427.0                          | 2.2                            | 22.0               | 70.8                   |
+| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640                   | 49.0                 | 39.9                  | 66:43 (2x)                                    | 857.4                          | 2.9                            | 47.9               | 147.7                  |
+| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640                   | **50.7**             | **41.4**              | 62:56 (3x)                                    | 1579.2                         | 4.5                            | 88.8               | 265.7                  |
+
+- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
+- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
+- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
+- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
+
+</details>
+
+<details>
+  <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### Train
+
+YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
+
+```bash
+# Single-GPU
+python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
+
+# Multi-GPU DDP
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
+```
+
+### Val
+
+Validate YOLOv5s-seg mask mAP on COCO dataset:
+
+```bash
+bash data/scripts/get_coco.sh --val --segments  # download COCO val segments split (780MB, 5000 images)
+python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # validate
+```
+
+### Predict
+
+Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
+
+```bash
+python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
+)  # load from PyTorch Hub (WARNING: inference not yet supported)
+```
+
+| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
+| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
+
+### Export
+
+Export YOLOv5s-seg model to ONNX and TensorRT:
+
+```bash
+python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
+```
+
+</details>
+
+## <div align="center">Classification</div>
+
+YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
+
+<details>
+  <summary>Classification Checkpoints</summary>
+
+<br>
+
+We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
+
+| Model                                                                                              | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
+| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
+| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt)         | 224                   | 64.6             | 85.4             | 7:59                                         | **3.3**                        | **0.5**                             | **2.5**            | **0.5**                |
+| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt)         | 224                   | 71.5             | 90.2             | 8:09                                         | 6.6                            | 0.6                                 | 5.4                | 1.4                    |
+| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt)         | 224                   | 75.9             | 92.9             | 10:06                                        | 15.5                           | 0.9                                 | 12.9               | 3.9                    |
+| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt)         | 224                   | 78.0             | 94.0             | 11:56                                        | 26.9                           | 1.4                                 | 26.5               | 8.5                    |
+| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt)         | 224                   | **79.0**         | **94.4**         | 15:04                                        | 54.3                           | 1.8                                 | 48.1               | 15.9                   |
+|                                                                                                    |                       |                  |                  |                                              |                                |                                     |                    |                        |
+| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt)               | 224                   | 70.3             | 89.5             | **6:47**                                     | 11.2                           | 0.5                                 | 11.7               | 3.7                    |
+| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt)               | 224                   | 73.9             | 91.8             | 8:33                                         | 20.6                           | 0.9                                 | 21.8               | 7.4                    |
+| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt)               | 224                   | 76.8             | 93.4             | 11:10                                        | 23.4                           | 1.0                                 | 25.6               | 8.5                    |
+| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt)             | 224                   | 78.5             | 94.3             | 17:10                                        | 42.1                           | 1.9                                 | 44.5               | 15.9                   |
+|                                                                                                    |                       |                  |                  |                                              |                                |                                     |                    |                        |
+| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224                   | 75.1             | 92.4             | 13:03                                        | 12.5                           | 1.3                                 | 5.3                | 1.0                    |
+| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224                   | 76.4             | 93.2             | 17:04                                        | 14.9                           | 1.6                                 | 7.8                | 1.5                    |
+| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224                   | 76.6             | 93.4             | 17:10                                        | 15.9                           | 1.6                                 | 9.1                | 1.7                    |
+| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224                   | 77.7             | 94.0             | 19:19                                        | 18.9                           | 1.9                                 | 12.2               | 2.4                    |
+
+<details>
+  <summary>Table Notes (click to expand)</summary>
+
+- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
+- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
+- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
+- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
+
+</details>
+</details>
+
+<details>
+  <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### Train
+
+YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
+
+```bash
+# Single-GPU
+python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
+
+# Multi-GPU DDP
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+```
+
+### Val
+
+Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
+
+```bash
+bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
+python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate
+```
+
+### Predict
+
+Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
+
+```bash
+python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5s-cls.pt"
+)  # load from PyTorch Hub
+```
+
+### Export
+
+Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
+
+```bash
+python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
+```
+
+</details>
+
+## <div align="center">Environments</div>
+
+Get started in seconds with our verified environments. Click each icon below for details.
+
+<div align="center">
+  <a href="https://bit.ly/yolov5-paperspace-notebook">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://www.kaggle.com/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://hub.docker.com/r/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
+</div>
+
+## <div align="center">Contribute</div>
+
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
+
+<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
+
+<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
+<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
+
+## <div align="center">License</div>
+
+Ultralytics offers two licensing options to accommodate diverse use cases:
+
+- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for more details.
+- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
+
+## <div align="center">Contact</div>
+
+For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
+
+<br>
+<div align="center">
+  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="Ultralytics Instagram"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
+</div>
+
+[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
diff --git a/yolov5/README.zh-CN.md b/yolov5/README.zh-CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..69ce9b72d332a132ef90c43c9ef07dc58aa5a9bc
--- /dev/null
+++ b/yolov5/README.zh-CN.md
@@ -0,0 +1,473 @@
+<div align="center">
+  <p>
+    <a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
+      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
+    <!--
+    <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
+    -->
+  </p>
+
+[中文](https://docs.ultralytics.com/zh/) | [한ęĩ­ė–´](https://docs.ultralytics.com/ko/) | [æ—ĨæœŦčĒž](https://docs.ultralytics.com/ja/) | [Đ ŅƒŅŅĐēиК](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [EspaÃąol](https://docs.ultralytics.com/es/) | [PortuguÃĒs](https://docs.ultralytics.com/pt/) | [TÃŧrkçe](https://docs.ultralytics.com/tr/) | [Tiáēŋng Viáģ‡t](https://docs.ultralytics.com/vi/) | [ā¤šā¤ŋā¤¨āĨā¤ĻāĨ€](https://docs.ultralytics.com/hi/) | [اŲ„ØšØąØ¨ŲŠØŠ](https://docs.ultralytics.com/ar/)
+
+<div>
+    <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
+    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
+    <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+    <br>
+    <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
+    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
+    <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+  </div>
+  <br>
+
+YOLOv5 🚀 是世į•Œä¸Šæœ€å—æŦĸčŋŽįš„视觉 AIīŧŒäģŖ襨<a href="https://ultralytics.com"> Ultralytics </a>寚æœĒæĨ视觉 AI æ–šæŗ•įš„åŧ€æēį ”įŠļīŧŒįģ“合在数千小æ—ļįš„į ”įŠļ和åŧ€å‘中į§¯į´¯įš„įģéĒŒæ•™čŽ­å’Œæœ€äŊŗ厞čˇĩ。
+
+我äģŦ希望čŋ™é‡Œįš„čĩ„æēčƒŊ帎劊您充分刊į”¨ YOLOv5ã€‚č¯ˇæĩč§ˆ YOLOv5 <a href="https://docs.ultralytics.com/yolov5/">文æĄŖ</a> äē†č§Ŗč¯Ļįģ†äŋĄæ¯īŧŒåœ¨ <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> 上提äē¤é—Žéĸ˜äģĨčŽˇåž—æ”¯æŒīŧŒåšļ加å…Ĩ我äģŦįš„ <a href="https://ultralytics.com/discord">Discord</a> į¤žåŒēčŋ›čĄŒé—Žéĸ˜å’ŒčŽ¨čŽēīŧ
+
+åĻ‚需į”ŗč¯ˇäŧä¸ščŽ¸å¯īŧŒč¯ˇåœ¨ [Ultralytics Licensing](https://ultralytics.com/license) 处åĄĢå†™čĄ¨æ ŧ
+
+<div align="center">
+  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
+  <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
+</div>
+</div>
+
+## <div align="center">YOLOv8 🚀 新品</div>
+
+我äģŦ垈éĢ˜å…´åŽŖ布 Ultralytics YOLOv8 🚀 įš„发布īŧŒčŋ™æ˜¯æˆ‘äģŦ新推å‡ēįš„éĸ†å…ˆæ°´åšŗ、最先čŋ›įš„īŧˆSOTAīŧ‰æ¨Ąåž‹īŧŒå‘布äēŽ **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**。 YOLOv8 旨在åŋĢ速、准įĄŽä¸”易äēŽäŊŋį”¨īŧŒäŊŋå…ļ成ä¸ēåšŋæŗ›įš„į‰ŠäŊ“æŖ€æĩ‹ã€å›žåƒåˆ†å‰˛å’Œå›žåƒåˆ†įąģäģģåŠĄįš„极äŊŗ选拊。
+
+č¯ˇæŸĨįœ‹ [YOLOv8 文æĄŖ](https://docs.ultralytics.com)äē†č§Ŗč¯Ļįģ†äŋĄæ¯īŧŒåšļåŧ€å§‹äŊŋį”¨īŧš
+
+[![PyPI į‰ˆæœŦ](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![下čŊŊ量](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
+
+```commandline
+pip install ultralytics
+```
+
+<div align="center">
+  <a href="https://ultralytics.com/yolov8" target="_blank">
+  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
+</div>
+
+## <div align="center">文æĄŖ</div>
+
+有å…ŗ莭įģƒã€æĩ‹č¯•å’Œéƒ¨įŊ˛įš„厌整文æĄŖ见[YOLOv5 文æĄŖ](https://docs.ultralytics.com/yolov5/)ã€‚č¯ˇå‚é˜…ä¸‹éĸįš„åŋĢ速å…Ĩ门į¤ē䞋。
+
+<details open>
+<summary>厉čŖ…</summary>
+
+克隆 repoīŧŒåšļčĻæą‚在 [**Python>=3.8.0**](https://www.python.org/) įŽ¯åĸƒä¸­åŽ‰čŖ… [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) īŧŒä¸”čĻæą‚ [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) 。
+
+```bash
+git clone https://github.com/ultralytics/yolov5  # clone
+cd yolov5
+pip install -r requirements.txt  # install
+```
+
+</details>
+
+<details>
+<summary>推į†</summary>
+
+äŊŋį”¨ YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 推į†ã€‚最新 [æ¨Ąåž‹](https://github.com/ultralytics/yolov5/tree/master/models) 将č‡Ē动įš„äģŽ YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下čŊŊ。
+
+```python
+import torch
+
+# Model
+model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom
+
+# Images
+img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list
+
+# Inference
+results = model(img)
+
+# Results
+results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
+```
+
+</details>
+
+<details>
+<summary>äŊŋį”¨ detect.py 推į†</summary>
+
+`detect.py` 在各į§æĨæēä¸ŠčŋčĄŒæŽ¨į†īŧŒ [æ¨Ąåž‹](https://github.com/ultralytics/yolov5/tree/master/models) č‡Ē动äģŽ 最新įš„YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下čŊŊīŧŒåšļ将įģ“æžœäŋå­˜åˆ° `runs/detect` 。
+
+```bash
+python detect.py --weights yolov5s.pt --source 0                               # webcam
+                                               img.jpg                         # image
+                                               vid.mp4                         # video
+                                               screen                          # screenshot
+                                               path/                           # directory
+                                               list.txt                        # list of images
+                                               list.streams                    # list of streams
+                                               'path/*.jpg'                    # glob
+                                               'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+```
+
+</details>
+
+<details>
+<summary>莭įģƒ</summary>
+
+下éĸįš„å‘Ŋäģ¤é‡įŽ° YOLOv5 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数捎集上įš„įģ“果。 最新įš„ [æ¨Ąåž‹](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数捎集](https://github.com/ultralytics/yolov5/tree/master/data)
+将č‡Ē动įš„äģŽ YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下čŊŊ。 YOLOv5n/s/m/l/x 在 V100 GPU įš„莭įģƒæ—ļ间ä¸ē 1/2/4/6/8 夊īŧˆ [多GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) 莭įģƒé€ŸåēĻ更åŋĢīŧ‰ã€‚ å°Ŋ可čƒŊäŊŋį”¨æ›´å¤§įš„ `--batch-size` īŧŒæˆ–通čŋ‡ `--batch-size -1` 厞įŽ° YOLOv5 [č‡Ē动扚处į†](https://github.com/ultralytics/yolov5/pull/5092) 。下斚昞į¤ēįš„ batchsize 适į”¨äēŽ V100-16GB。
+
+```bash
+python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
+                                                                 yolov5s                    64
+                                                                 yolov5m                    40
+                                                                 yolov5l                    24
+                                                                 yolov5x                    16
+```
+
+<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
+
+</details>
+
+<details open>
+<summary>教į¨‹</summary>
+
+- [莭įģƒč‡Ē厚䚉数捎](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) 🚀 æŽ¨č
+- [čŽˇåž—æœ€äŊŗ莭įģƒįģ“æžœįš„æŠ€åˇ§](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results) ☘ī¸
+- [多GPU莭įģƒ](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training)
+- [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 🌟 新
+- [TFLiteīŧŒONNXīŧŒCoreMLīŧŒTensorRTå¯ŧå‡ē](https://docs.ultralytics.com/yolov5/tutorials/model_export) 🚀
+- [NVIDIA Jetsonåšŗ台部įŊ˛](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano) 🌟 新
+- [æĩ‹č¯•æ—ļåĸžåŧē (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation)
+- [æ¨Ąåž‹é›†æˆ](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling)
+- [æ¨Ąåž‹å‰Ē枝/į¨€į–](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity)
+- [čļ…参数čŋ›åŒ–](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution)
+- [å†ģįģ“åą‚įš„čŋį§ģå­Ļäš ](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers)
+- [æžļ构æĻ‚čŋ°](https://docs.ultralytics.com/yolov5/tutorials/architecture_description) 🌟 新
+- [Roboflowį”¨äēŽæ•°æŽé›†ã€æ ‡æŗ¨å’Œä¸ģ动å­Ļäš ](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration)
+- [ClearMLæ—Ĩåŋ—莰åŊ•](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) 🌟 新
+- [äŊŋį”¨Neural Magicįš„Deepsparseįš„YOLOv5](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization) 🌟 新
+- [Cometæ—Ĩåŋ—莰åŊ•](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration) 🌟 新
+
+</details>
+
+## <div align="center">æ¨Ąå—é›†æˆ</div>
+
+<br>
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
+<br>
+<br>
+
+<div align="center">
+  <a href="https://roboflow.com/?ref=ultralytics">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://cutt.ly/yolov5-readme-clearml">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-readme-comet2">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-neuralmagic">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
+</div>
+
+|                                                  Roboflow                                                  |                                         ClearML ⭐ 新                                          |                                                   Comet ⭐ 新                                                    |                                           Neural Magic ⭐ 新                                           |
+| :--------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
+| 将您įš„č‡Ē厚䚉数捎集čŋ›čĄŒæ ‡æŗ¨åšļį›´æŽĨå¯ŧå‡ē到 YOLOv5 äģĨčŋ›čĄŒčŽ­įģƒ [Roboflow](https://roboflow.com/?ref=ultralytics) | č‡ĒåŠ¨čˇŸč¸Ēã€å¯č§†åŒ–į”šč‡ŗčŋœį¨‹čŽ­įģƒ YOLOv5 [ClearML](https://cutt.ly/yolov5-readme-clearml)īŧˆåŧ€æēīŧīŧ‰ | æ°¸čŋœå…č´šīŧŒ[Comet](https://bit.ly/yolov5-readme-comet2)å¯čŽŠæ‚¨äŋå­˜ YOLOv5 æ¨Ąåž‹ã€æĸå¤čŽ­įģƒäģĨ及äē¤äē’åŧå¯č§†åŒ–å’Œč°ƒč¯•éĸ„æĩ‹ | äŊŋį”¨ [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic)īŧŒčŋčĄŒ YOLOv5 推į†įš„速åēĻ最éĢ˜å¯æéĢ˜6倍 |
+
+## <div align="center">Ultralytics HUB</div>
+
+[Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我äģŦįš„⭐**新įš„**į”¨äēŽå¯č§†åŒ–æ•°æŽé›†ã€čŽ­įģƒ YOLOv5 🚀 æ¨Ąåž‹åšļäģĨ无įŧäŊ“éĒŒéƒ¨įŊ˛åˆ°įŽ°åŽžä¸–į•Œįš„æ— äģŖį č§Ŗå†ŗæ–šæĄˆã€‚įŽ°åœ¨åŧ€å§‹ **å…č´š** äŊŋį”¨äģ–īŧ
+
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
+
+## <div align="center">ä¸ēäģ€äšˆé€‰æ‹Š YOLOv5</div>
+
+YOLOv5 čļ…įē§åŽšæ˜“上手īŧŒįŽ€å•æ˜“å­Ļ。我äģŦäŧ˜å…ˆč€ƒč™‘įŽ°åŽžä¸–į•Œįš„įģ“果。
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
+<details>
+  <summary>YOLOv5-P5 640 回</summary>
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
+</details>
+<details>
+  <summary>å›žčĄ¨įŦ”莰</summary>
+
+- **COCO AP val** 襨į¤ē mAP@0.5:0.95 指标īŧŒåœ¨ [COCO val2017](http://cocodataset.org) 数捎集įš„ 5000 åŧ å›žåƒä¸Šæĩ‹åž—īŧŒ 回像包åĢ 256 到 1536 各į§æŽ¨į†å¤§å°ã€‚
+- **æ˜žåĄæŽ¨į†é€ŸåēĻ** ä¸ē在 [COCO val2017](http://cocodataset.org) 数捎集上įš„åšŗ均推į†æ—ļ间īŧŒäŊŋį”¨ [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100厞䞋īŧŒbatchsize ä¸ē 32 。
+- **EfficientDet** 数捎æĨč‡Ē [google/automl](https://github.com/google/automl) īŧŒ batchsize ä¸ē32。
+- **复įŽ°å‘Ŋäģ¤** ä¸ē `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+
+</details>
+
+### éĸ„莭įģƒæ¨Ąåž‹
+
+| æ¨Ąåž‹                                                                                           | å°ē寸<br><sup>īŧˆåƒį´ īŧ‰ | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 推į†é€ŸåēĻ<br><sup>CPU b1<br>īŧˆmsīŧ‰ | 推į†é€ŸåēĻ<br><sup>V100 b1<br>īŧˆmsīŧ‰ | 速åēĻ<br><sup>V100 b32<br>īŧˆmsīŧ‰ | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ---------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | --------------------------------- | ---------------------------------- | ------------------------------- | ------------------ | ---------------------- |
+| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt)             | 640                   | 28.0                 | 45.7              | **45**                            | **6.3**                            | **0.6**                         | **1.9**            | **4.5**                |
+| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt)             | 640                   | 37.4                 | 56.8              | 98                                | 6.4                                | 0.9                             | 7.2                | 16.5                   |
+| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt)             | 640                   | 45.4                 | 64.1              | 224                               | 8.2                                | 1.7                             | 21.2               | 49.0                   |
+| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt)             | 640                   | 49.0                 | 67.3              | 430                               | 10.1                               | 2.7                             | 46.5               | 109.1                  |
+| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt)             | 640                   | 50.7                 | 68.9              | 766                               | 12.1                               | 4.8                             | 86.7               | 205.7                  |
+|                                                                                                |                       |                      |                   |                                   |                                    |                                 |                    |                        |
+| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt)           | 1280                  | 36.0                 | 54.4              | 153                               | 8.1                                | 2.1                             | 3.2                | 4.6                    |
+| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt)           | 1280                  | 44.8                 | 63.7              | 385                               | 8.2                                | 3.6                             | 12.6               | 16.8                   |
+| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt)           | 1280                  | 51.3                 | 69.3              | 887                               | 11.1                               | 6.8                             | 35.7               | 50.0                   |
+| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt)           | 1280                  | 53.7                 | 71.3              | 1784                              | 15.8                               | 10.5                            | 76.8               | 111.4                  |
+| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+[TTA] | 1280<br>1536          | 55.0<br>**55.8**     | 72.7<br>**72.7**  | 3136<br>-                         | 26.2<br>-                          | 19.4<br>-                       | 140.7<br>-         | 209.8<br>-             |
+
+<details>
+  <summary>įŦ”莰</summary>
+
+- æ‰€æœ‰æ¨Ąåž‹éƒŊäŊŋį”¨éģ˜čŽ¤é…įŊŽīŧŒčŽ­įģƒ 300 epochs。n和sæ¨Ąåž‹äŊŋį”¨ [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) īŧŒå…ļäģ–æ¨Ąåž‹éƒŊäŊŋį”¨ [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml) 。
+- \*\*mAP<sup>val</sup>\*\*åœ¨å•æ¨Ąåž‹å•å°ēåēĻ上计įŽ—īŧŒæ•°æŽé›†äŊŋį”¨ [COCO val2017](http://cocodataset.org) 。<br>复įŽ°å‘Ŋäģ¤ `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+- **推į†é€ŸåēĻ**在 COCO val 回像æ€ģäŊ“æ—ļ间上čŋ›čĄŒåšŗ均垗到īŧŒæĩ‹č¯•įŽ¯åĸƒäŊŋį”¨[AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)厞䞋。 NMS æ—ļ间 (大įēĻ 1 ms/img) 不包æ‹Ŧ在内。<br>复įŽ°å‘Ŋäģ¤ `python val.py --data coco.yaml --img 640 --task speed --batch 1`
+- **TTA** [æĩ‹č¯•æ—ļ数捎åĸžåŧē](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) 包æ‹Ŧ反射和å°ēåēĻ变æĸ。<br>复įŽ°å‘Ŋäģ¤ `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+
+</details>
+
+## <div align="center">åŽžäž‹åˆ†å‰˛æ¨Ąåž‹ ⭐ 新</div>
+
+我äģŦ新įš„ YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) åŽžäž‹åˆ†å‰˛æ¨Ąåž‹æ˜¯ä¸–į•Œä¸Šæœ€åŋĢ和最准įĄŽįš„æ¨Ąåž‹īŧŒå‡ģč´Ĩ所有åŊ“前 [SOTA åŸē准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我äģŦäŊŋ厃非常易äēŽčŽ­įģƒã€éĒŒč¯å’Œéƒ¨įŊ˛ã€‚更多įģ†čŠ‚č¯ˇæŸĨįœ‹ [å‘čĄŒč¯´æ˜Ž](https://github.com/ultralytics/yolov5/releases/v7.0) 或čŽŋ闎我äģŦįš„ [YOLOv5 åˆ†å‰˛ Colab įŦ”莰æœŦ](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) äģĨåŋĢ速å…Ĩ门。
+
+<details>
+  <summary>åŽžäž‹åˆ†å‰˛æ¨Ąåž‹åˆ—čĄ¨</summary>
+
+<br>
+
+<div align="center">
+<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
+</div>
+
+我äģŦäŊŋį”¨ A100 GPU 在 COCO 上äģĨ 640 å›žåƒå¤§å°čŽ­įģƒäē† 300 epochs 垗到 YOLOv5 åˆ†å‰˛æ¨Ąåž‹ã€‚æˆ‘äģŦå°†æ‰€æœ‰æ¨Ąåž‹å¯ŧå‡ē到 ONNX FP32 äģĨčŋ›čĄŒ CPU 速åēĻæĩ‹č¯•īŧŒåšļå¯ŧå‡ē到 TensorRT FP16 äģĨčŋ›čĄŒ GPU 速åēĻæĩ‹č¯•ã€‚ä¸ēäē†äžŋäēŽå†įŽ°īŧŒæˆ‘äģŦ在 Google [Colab Pro](https://colab.research.google.com/signup) 上čŋ›čĄŒäē†æ‰€æœ‰é€ŸåēĻæĩ‹č¯•ã€‚
+
+| æ¨Ąåž‹                                                                                       | å°ē寸<br><sup>īŧˆåƒį´ īŧ‰ | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 莭įģƒæ—ļé•ŋ<br><sup>300 epochs<br>A100 GPUīŧˆå°æ—ļīŧ‰ | 推į†é€ŸåēĻ<br><sup>ONNX CPU<br>īŧˆmsīŧ‰ | 推į†é€ŸåēĻ<br><sup>TRT A100<br>īŧˆmsīŧ‰ | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | ----------------------------------------------- | ----------------------------------- | ----------------------------------- | ------------------ | ---------------------- |
+| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640                   | 27.6                 | 23.4                  | 80:17                                           | **62.7**                            | **1.2**                             | **2.0**            | **7.1**                |
+| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640                   | 37.6                 | 31.7                  | 88:16                                           | 173.3                               | 1.4                                 | 7.6                | 26.4                   |
+| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640                   | 45.0                 | 37.1                  | 108:36                                          | 427.0                               | 2.2                                 | 22.0               | 70.8                   |
+| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640                   | 49.0                 | 39.9                  | 66:43 (2x)                                      | 857.4                               | 2.9                                 | 47.9               | 147.7                  |
+| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640                   | **50.7**             | **41.4**              | 62:56 (3x)                                      | 1579.2                              | 4.5                                 | 88.8               | 265.7                  |
+
+- æ‰€æœ‰æ¨Ąåž‹äŊŋį”¨ SGD äŧ˜åŒ–å™¨čŽ­įģƒīŧŒ éƒŊäŊŋį”¨ `lr0=0.01` 和 `weight_decay=5e-5` 参数īŧŒ 回像大小ä¸ē 640 。<br>莭įģƒ log 可äģĨæŸĨįœ‹ https://wandb.ai/glenn-jocher/YOLOv5_v70_official
+- **准įĄŽæ€§**įģ“æžœéƒŊ在 COCO 数捎集上īŧŒäŊŋį”¨å•æ¨Ąåž‹å•å°ēåēĻæĩ‹č¯•åž—到。<br>复įŽ°å‘Ŋäģ¤ `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
+- **推į†é€ŸåēĻ**是äŊŋį”¨ 100 åŧ å›žåƒæŽ¨į†æ—ļ间čŋ›čĄŒåšŗ均垗到īŧŒæĩ‹č¯•įŽ¯åĸƒäŊŋį”¨ [Colab Pro](https://colab.research.google.com/signup) 上 A100 éĢ˜ RAM 厞䞋。įģ“æžœäģ…襨į¤ē推į†é€ŸåēĻīŧˆNMS 每åŧ å›žåƒåĸžåŠ įēĻ 1 æ¯Ģį§’īŧ‰ã€‚<br>复įŽ°å‘Ŋäģ¤ `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
+- **æ¨Ąåž‹čŊŦæĸ**到 FP32 įš„ ONNX 和 FP16 įš„ TensorRT 脚æœŦä¸ē `export.py`.<br>čŋčĄŒå‘Ŋäģ¤ `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
+
+</details>
+
+<details>
+  <summary>åˆ†å‰˛æ¨Ąåž‹äŊŋį”¨į¤ē例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### 莭įģƒ
+
+YOLOv5åˆ†å‰˛čŽ­įģƒæ”¯æŒč‡Ē动下čŊŊ COCO128-seg åˆ†å‰˛æ•°æŽé›†īŧŒį”¨æˆˇäģ…需在启动指äģ¤ä¸­åŒ…åĢ `--data coco128-seg.yaml` 参数。 č‹ĨčĻæ‰‹åŠ¨ä¸‹čŊŊīŧŒäŊŋį”¨å‘Ŋäģ¤ `bash data/scripts/get_coco.sh --train --val --segments`īŧŒ 在下čŊŊ厌毕后īŧŒäŊŋį”¨å‘Ŋäģ¤ `python train.py --data coco.yaml` åŧ€å¯čŽ­įģƒã€‚
+
+```bash
+# 单 GPU
+python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
+
+# 多 GPUīŧŒ DDP æ¨Ąåŧ
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
+```
+
+### éĒŒč¯
+
+在 COCO 数捎集上éĒŒč¯ YOLOv5s-seg mask mAPīŧš
+
+```bash
+bash data/scripts/get_coco.sh --val --segments  # 下čŊŊ COCO val segments 数捎集 (780MB, 5000 images)
+python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # éĒŒč¯
+```
+
+### éĸ„æĩ‹
+
+äŊŋį”¨éĸ„莭įģƒįš„ YOLOv5m-seg.pt æĨéĸ„æĩ‹ bus.jpgīŧš
+
+```bash
+python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
+)  # äģŽload from PyTorch Hub 加čŊŊæ¨Ąåž‹ (WARNING: 推į†æš‚æœĒ支持)
+```
+
+| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
+| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
+
+### æ¨Ąåž‹å¯ŧå‡ē
+
+将 YOLOv5s-seg æ¨Ąåž‹å¯ŧå‡ē到 ONNX 和 TensorRTīŧš
+
+```bash
+python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
+```
+
+</details>
+
+## <div align="center">分įąģįŊ‘įģœ ⭐ 新</div>
+
+YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) å¸ĻæĨ寚分įąģæ¨Ąåž‹čŽ­įģƒã€éĒŒč¯å’Œéƒ¨įŊ˛įš„支持īŧč¯Ļæƒ…č¯ˇæŸĨįœ‹ [å‘čĄŒč¯´æ˜Ž](https://github.com/ultralytics/yolov5/releases/v6.2) 或čŽŋ闎我äģŦįš„ [YOLOv5 分įąģ Colab įŦ”莰æœŦ](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) äģĨåŋĢ速å…Ĩ门。
+
+<details>
+  <summary>分įąģįŊ‘įģœæ¨Ąåž‹</summary>
+
+<br>
+
+我äģŦäŊŋį”¨ 4xA100 厞䞋在 ImageNet 上训įģƒäē† 90 ä¸Ē epochs 垗到 YOLOv5-cls 分įąģæ¨Ąåž‹īŧŒæˆ‘äģŦ莭įģƒäē† ResNet 和 EfficientNet æ¨Ąåž‹äģĨ及į›¸åŒįš„éģ˜čŽ¤čŽ­įģƒčŽžįŊŽäģĨčŋ›čĄŒæ¯”čžƒã€‚æˆ‘äģŦå°†æ‰€æœ‰æ¨Ąåž‹å¯ŧå‡ē到 ONNX FP32 äģĨčŋ›čĄŒ CPU 速åēĻæĩ‹č¯•īŧŒåšļå¯ŧå‡ē到 TensorRT FP16 äģĨčŋ›čĄŒ GPU 速åēĻæĩ‹č¯•ã€‚ä¸ēäē†äžŋäēŽé‡įŽ°īŧŒæˆ‘äģŦ在 Google 上čŋ›čĄŒäē†æ‰€æœ‰é€ŸåēĻæĩ‹č¯• [Colab Pro](https://colab.research.google.com/signup) 。
+
+| æ¨Ąåž‹                                                                                               | å°ē寸<br><sup>īŧˆåƒį´ īŧ‰ | acc<br><sup>top1 | acc<br><sup>top5 | 莭įģƒæ—ļé•ŋ<br><sup>90 epochs<br>4xA100īŧˆå°æ—ļīŧ‰ | 推į†é€ŸåēĻ<br><sup>ONNX CPU<br>īŧˆmsīŧ‰ | 推į†é€ŸåēĻ<br><sup>TensorRT V100<br>īŧˆmsīŧ‰ | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ----------------------------------- | ---------------------------------------- | ---------------- | ---------------------- |
+| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt)         | 224                   | 64.6             | 85.4             | 7:59                                         | **3.3**                             | **0.5**                                  | **2.5**          | **0.5**                |
+| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt)         | 224                   | 71.5             | 90.2             | 8:09                                         | 6.6                                 | 0.6                                      | 5.4              | 1.4                    |
+| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt)         | 224                   | 75.9             | 92.9             | 10:06                                        | 15.5                                | 0.9                                      | 12.9             | 3.9                    |
+| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt)         | 224                   | 78.0             | 94.0             | 11:56                                        | 26.9                                | 1.4                                      | 26.5             | 8.5                    |
+| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt)         | 224                   | **79.0**         | **94.4**         | 15:04                                        | 54.3                                | 1.8                                      | 48.1             | 15.9                   |
+|                                                                                                    |                       |                  |                  |                                              |                                     |                                          |                  |                        |
+| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt)               | 224                   | 70.3             | 89.5             | **6:47**                                     | 11.2                                | 0.5                                      | 11.7             | 3.7                    |
+| [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt)              | 224                   | 73.9             | 91.8             | 8:33                                         | 20.6                                | 0.9                                      | 21.8             | 7.4                    |
+| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt)               | 224                   | 76.8             | 93.4             | 11:10                                        | 23.4                                | 1.0                                      | 25.6             | 8.5                    |
+| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt)             | 224                   | 78.5             | 94.3             | 17:10                                        | 42.1                                | 1.9                                      | 44.5             | 15.9                   |
+|                                                                                                    |                       |                  |                  |                                              |                                     |                                          |                  |                        |
+| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224                   | 75.1             | 92.4             | 13:03                                        | 12.5                                | 1.3                                      | 5.3              | 1.0                    |
+| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224                   | 76.4             | 93.2             | 17:04                                        | 14.9                                | 1.6                                      | 7.8              | 1.5                    |
+| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224                   | 76.6             | 93.4             | 17:10                                        | 15.9                                | 1.6                                      | 9.1              | 1.7                    |
+| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224                   | 77.7             | 94.0             | 19:19                                        | 18.9                                | 1.9                                      | 12.2             | 2.4                    |
+
+<details>
+  <summary>Table Notes (į‚šå‡ģäģĨåą•åŧ€)</summary>
+
+- æ‰€æœ‰æ¨Ąåž‹éƒŊäŊŋį”¨ SGD äŧ˜åŒ–å™¨čŽ­įģƒ 90 ä¸Ē epochsīŧŒéƒŊäŊŋį”¨ `lr0=0.001` 和 `weight_decay=5e-5` 参数īŧŒ 回像大小ä¸ē 224 īŧŒä¸”éƒŊäŊŋį”¨éģ˜čŽ¤čŽžįŊŽã€‚<br>莭įģƒ log 可äģĨæŸĨįœ‹ https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
+- **准įĄŽæ€§**éƒŊåœ¨å•æ¨Ąåž‹å•å°ēåēĻ上计įŽ—īŧŒæ•°æŽé›†äŊŋį”¨ [ImageNet-1k](https://www.image-net.org/index.php) 。<br>复įŽ°å‘Ŋäģ¤ `python classify/val.py --data ../datasets/imagenet --img 224`
+- **推į†é€ŸåēĻ**是äŊŋį”¨ 100 ä¸Ē推į†å›žåƒčŋ›čĄŒåšŗ均垗到īŧŒæĩ‹č¯•įŽ¯åĸƒäŊŋį”¨č°ˇæ­Œ [Colab Pro](https://colab.research.google.com/signup) V100 éĢ˜ RAM 厞䞋。<br>复įŽ°å‘Ŋäģ¤ `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
+- **æ¨Ąåž‹å¯ŧå‡ē**到 FP32 įš„ ONNX 和 FP16 įš„ TensorRT äŊŋį”¨ `export.py` 。<br>复įŽ°å‘Ŋäģ¤ `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
+  </details>
+  </details>
+
+<details>
+  <summary>分įąģ莭įģƒį¤ē例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### 莭įģƒ
+
+YOLOv5 分įąģ莭įģƒæ”¯æŒč‡Ē动下čŊŊ MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数捎集īŧŒå‘Ŋäģ¤ä¸­äŊŋį”¨ `--data` åŗ可。 MNIST į¤ē例 `--data mnist` 。
+
+```bash
+# 单 GPU
+python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
+
+# 多 GPUīŧŒ DDP æ¨Ąåŧ
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+```
+
+### éĒŒč¯
+
+在 ImageNet-1k 数捎集上éĒŒč¯ YOLOv5m-cls įš„准įĄŽæ€§īŧš
+
+```bash
+bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
+python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate
+```
+
+### éĸ„æĩ‹
+
+äŊŋį”¨éĸ„莭įģƒįš„ YOLOv5s-cls.pt æĨéĸ„æĩ‹ bus.jpgīŧš
+
+```bash
+python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5s-cls.pt"
+)  # load from PyTorch Hub
+```
+
+### æ¨Ąåž‹å¯ŧå‡ē
+
+将一įģ„įģčŋ‡čŽ­įģƒįš„ YOLOv5s-cls、ResNet 和 EfficientNet æ¨Ąåž‹å¯ŧå‡ē到 ONNX 和 TensorRTīŧš
+
+```bash
+python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
+```
+
+</details>
+
+## <div align="center">įŽ¯åĸƒ</div>
+
+äŊŋį”¨ä¸‹éĸ我äģŦįģčŋ‡éĒŒč¯įš„įŽ¯åĸƒīŧŒåœ¨å‡ į§’钟内åŧ€å§‹äŊŋį”¨ YOLOv5 。单å‡ģ下éĸįš„回标äē†č§Ŗč¯Ļįģ†äŋĄæ¯ã€‚
+
+<div align="center">
+  <a href="https://bit.ly/yolov5-paperspace-notebook">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://www.kaggle.com/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://hub.docker.com/r/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
+</div>
+
+## <div align="center">č´ĄįŒŽ</div>
+
+我äģŦ喜æŦĸ您įš„æ„č§æˆ–åģē莎īŧæˆ‘äģŦ希望å°Ŋ可čƒŊįŽ€å•å’Œé€æ˜Žåœ°ä¸ē YOLOv5 做å‡ēč´ĄįŒŽã€‚č¯ˇįœ‹æˆ‘äģŦįš„ [投į¨ŋ指南](https://docs.ultralytics.com/help/contributing/)īŧŒåšļåĄĢ写 [YOLOv5调æŸĨ](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我äģŦ发送您įš„äŊ“éĒŒåéĻˆã€‚æ„Ÿč°ĸ我äģŦ所有įš„č´ĄįŒŽč€…īŧ
+
+<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
+
+<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
+<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
+
+## <div align="center">čŽ¸å¯č¯</div>
+
+Ultralytics 提䞛两į§čŽ¸å¯č¯é€‰éĄšäģĨ适åē”各į§äŊŋį”¨åœē景īŧš
+
+- **AGPL-3.0 čŽ¸å¯č¯**īŧščŋ™ä¸Ē[OSI 扚准](https://opensource.org/licenses/)įš„åŧ€æēčŽ¸å¯č¯éžå¸¸é€‚合å­Ļį”Ÿå’ŒįˆąåĨŊ者īŧŒå¯äģĨ推动åŧ€æ”žįš„协äŊœå’ŒįŸĨč¯†åˆ†äēĢã€‚č¯ˇæŸĨįœ‹[LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文äģļäģĨäē†č§Ŗ更多įģ†čŠ‚。
+- **äŧä¸ščŽ¸å¯č¯**īŧšä¸“ä¸ē商业į”¨é€”莞莥īŧŒč¯ĨčŽ¸å¯č¯å…čŽ¸å°† Ultralytics įš„čŊ¯äģļ和 AI æ¨Ąåž‹æ— įŧé›†æˆåˆ°å•†ä¸šäē§å“å’ŒæœåŠĄä¸­īŧŒäģŽč€Œįģ•čŋ‡ AGPL-3.0 įš„åŧ€æēčĻæą‚。åĻ‚果您įš„åœē景æļ‰åŠå°†æˆ‘äģŦįš„č§Ŗå†ŗæ–šæĄˆåĩŒå…Ĩ到商业äē§å“ä¸­īŧŒč¯ˇé€ščŋ‡ [Ultralytics Licensing](https://ultralytics.com/license)与我äģŦ联įŗģ。
+
+## <div align="center">联įŗģæ–šåŧ</div>
+
+寚äēŽ Ultralytics įš„é”™č¯¯æŠĨ告和功čƒŊč¯ˇæą‚īŧŒč¯ˇčŽŋ问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues)īŧŒåšļ加å…Ĩ我äģŦįš„ [Discord](https://ultralytics.com/discord) į¤žåŒēčŋ›čĄŒé—Žéĸ˜å’ŒčŽ¨čŽēīŧ
+
+<br>
+<div align="center">
+  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="Ultralytics Instagram"></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%">
+  <a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
+</div>
+
+[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
diff --git a/yolov5/benchmarks.py b/yolov5/benchmarks.py
new file mode 100644
index 0000000000000000000000000000000000000000..100cabacdc97e2e593661868d62d791880ce7ad7
--- /dev/null
+++ b/yolov5/benchmarks.py
@@ -0,0 +1,176 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Run YOLOv5 benchmarks on all supported export formats.
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+    $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com  # TensorRT
+
+Usage:
+    $ python benchmarks.py --weights yolov5s.pt --img 640
+"""
+
+import argparse
+import platform
+import sys
+import time
+from pathlib import Path
+
+import pandas as pd
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+import export
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from segment.val import run as val_seg
+from utils import notebook_init
+from utils.general import LOGGER, check_yaml, file_size, print_args
+from utils.torch_utils import select_device
+from val import run as val_det
+
+
+def run(
+    weights=ROOT / "yolov5s.pt",  # weights path
+    imgsz=640,  # inference size (pixels)
+    batch_size=1,  # batch size
+    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    half=False,  # use FP16 half-precision inference
+    test=False,  # test exports only
+    pt_only=False,  # test PyTorch only
+    hard_fail=False,  # throw error on benchmark failure
+):
+    y, t = [], time.time()
+    device = select_device(device)
+    model_type = type(attempt_load(weights, fuse=False))  # DetectionModel, SegmentationModel, etc.
+    for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, CPU, GPU)
+        try:
+            assert i not in (9, 10), "inference not supported"  # Edge TPU and TF.js are unsupported
+            assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13"  # CoreML
+            if "cpu" in device.type:
+                assert cpu, "inference not supported on CPU"
+            if "cuda" in device.type:
+                assert gpu, "inference not supported on GPU"
+
+            # Export
+            if f == "-":
+                w = weights  # PyTorch format
+            else:
+                w = export.run(
+                    weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
+                )[-1]  # all others
+            assert suffix in str(w), "export failed"
+
+            # Validate
+            if model_type == SegmentationModel:
+                result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
+                metric = result[0][7]  # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
+            else:  # DetectionModel:
+                result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
+                metric = result[0][3]  # (p, r, map50, map, *loss(box, obj, cls))
+            speed = result[2][1]  # times (preprocess, inference, postprocess)
+            y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)])  # MB, mAP, t_inference
+        except Exception as e:
+            if hard_fail:
+                assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
+            LOGGER.warning(f"WARNING ⚠ī¸ Benchmark failure for {name}: {e}")
+            y.append([name, None, None, None])  # mAP, t_inference
+        if pt_only and i == 0:
+            break  # break after PyTorch
+
+    # Print results
+    LOGGER.info("\n")
+    parse_opt()
+    notebook_init()  # print system info
+    c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
+    py = pd.DataFrame(y, columns=c)
+    LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
+    LOGGER.info(str(py if map else py.iloc[:, :2]))
+    if hard_fail and isinstance(hard_fail, str):
+        metrics = py["mAP50-95"].array  # values to compare to floor
+        floor = eval(hard_fail)  # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
+        assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
+    return py
+
+
+def test(
+    weights=ROOT / "yolov5s.pt",  # weights path
+    imgsz=640,  # inference size (pixels)
+    batch_size=1,  # batch size
+    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    half=False,  # use FP16 half-precision inference
+    test=False,  # test exports only
+    pt_only=False,  # test PyTorch only
+    hard_fail=False,  # throw error on benchmark failure
+):
+    y, t = [], time.time()
+    device = select_device(device)
+    for i, (name, f, suffix, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, gpu-capable)
+        try:
+            w = (
+                weights
+                if f == "-"
+                else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
+            )  # weights
+            assert suffix in str(w), "export failed"
+            y.append([name, True])
+        except Exception:
+            y.append([name, False])  # mAP, t_inference
+
+    # Print results
+    LOGGER.info("\n")
+    parse_opt()
+    notebook_init()  # print system info
+    py = pd.DataFrame(y, columns=["Format", "Export"])
+    LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
+    LOGGER.info(str(py))
+    return py
+
+
+def parse_opt():
+    """Parses command-line arguments for YOLOv5 model inference configuration."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
+    parser.add_argument("--batch-size", type=int, default=1, help="batch size")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--test", action="store_true", help="test exports only")
+    parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
+    parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes a test run if `opt.test` is True, otherwise starts training or inference with provided options."""
+    test(**vars(opt)) if opt.test else run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/classify/predict.py b/yolov5/classify/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..3139d82e7b7d4b01df27369d1e6ad78f90b72b02
--- /dev/null
+++ b/yolov5/classify/predict.py
@@ -0,0 +1,240 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
+
+Usage - sources:
+    $ python classify/predict.py --weights yolov5s-cls.pt --source 0                               # webcam
+                                                                   img.jpg                         # image
+                                                                   vid.mp4                         # video
+                                                                   screen                          # screenshot
+                                                                   path/                           # directory
+                                                                   list.txt                        # list of images
+                                                                   list.streams                    # list of streams
+                                                                   'path/*.jpg'                    # glob
+                                                                   'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                                                   'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python classify/predict.py --weights yolov5s-cls.pt                 # PyTorch
+                                           yolov5s-cls.torchscript        # TorchScript
+                                           yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                           yolov5s-cls_openvino_model     # OpenVINO
+                                           yolov5s-cls.engine             # TensorRT
+                                           yolov5s-cls.mlmodel            # CoreML (macOS-only)
+                                           yolov5s-cls_saved_model        # TensorFlow SavedModel
+                                           yolov5s-cls.pb                 # TensorFlow GraphDef
+                                           yolov5s-cls.tflite             # TensorFlow Lite
+                                           yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
+                                           yolov5s-cls_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+import torch.nn.functional as F
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from ultralytics.utils.plotting import Annotator
+
+from models.common import DetectMultiBackend
+from utils.augmentations import classify_transforms
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (
+    LOGGER,
+    Profile,
+    check_file,
+    check_img_size,
+    check_imshow,
+    check_requirements,
+    colorstr,
+    cv2,
+    increment_path,
+    print_args,
+    strip_optimizer,
+)
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    weights=ROOT / "yolov5s-cls.pt",  # model.pt path(s)
+    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
+    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
+    imgsz=(224, 224),  # inference size (height, width)
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    view_img=False,  # show results
+    save_txt=False,  # save results to *.txt
+    nosave=False,  # do not save images/videos
+    augment=False,  # augmented inference
+    visualize=False,  # visualize features
+    update=False,  # update all models
+    project=ROOT / "runs/predict-cls",  # save results to project/name
+    name="exp",  # save results to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    vid_stride=1,  # video frame-rate stride
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith(".txt")  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
+    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
+    screenshot = source.lower().startswith("screen")
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.Tensor(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            results = model(im)
+
+        # Post-process
+        with dt[2]:
+            pred = F.softmax(results, dim=1)  # probabilities
+
+        # Process predictions
+        for i, prob in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f"{i}: "
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt
+
+            s += "%gx%g " % im.shape[2:]  # print string
+            annotator = Annotator(im0, example=str(names), pil=True)
+
+            # Print results
+            top5i = prob.argsort(0, descending=True)[:5].tolist()  # top 5 indices
+            s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
+
+            # Write results
+            text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
+            if save_img or view_img:  # Add bbox to image
+                annotator.text([32, 32], text, txt_color=(255, 255, 255))
+            if save_txt:  # Write to file
+                with open(f"{txt_path}.txt", "a") as f:
+                    f.write(text + "\n")
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == "Linux" and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                cv2.waitKey(1)  # 1 millisecond
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == "image":
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
+
+    # Print results
+    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
+    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    """Parses command line arguments for YOLOv5 inference settings including model, source, device, and image size."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)")
+    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
+    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--view-img", action="store_true", help="show results")
+    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
+    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
+    parser.add_argument("--augment", action="store_true", help="augmented inference")
+    parser.add_argument("--visualize", action="store_true", help="visualize features")
+    parser.add_argument("--update", action="store_true", help="update all models")
+    parser.add_argument("--project", default=ROOT / "runs/predict-cls", help="save results to project/name")
+    parser.add_argument("--name", default="exp", help="save results to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
+    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes YOLOv5 model inference with options for ONNX DNN and video frame-rate stride adjustments."""
+    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/classify/train.py b/yolov5/classify/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..5556e03edff55239c9dac4a629835d9d209277a1
--- /dev/null
+++ b/yolov5/classify/train.py
@@ -0,0 +1,378 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Train a YOLOv5 classifier model on a classification dataset.
+
+Usage - Single-GPU training:
+    $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
+
+Usage - Multi-GPU DDP training:
+    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+
+Datasets:           --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
+YOLOv5-cls models:  --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
+Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
+"""
+
+import argparse
+import os
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.hub as hub
+import torch.optim.lr_scheduler as lr_scheduler
+import torchvision
+from torch.cuda import amp
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from classify import val as validate
+from models.experimental import attempt_load
+from models.yolo import ClassificationModel, DetectionModel
+from utils.dataloaders import create_classification_dataloader
+from utils.general import (
+    DATASETS_DIR,
+    LOGGER,
+    TQDM_BAR_FORMAT,
+    WorkingDirectory,
+    check_git_info,
+    check_git_status,
+    check_requirements,
+    colorstr,
+    download,
+    increment_path,
+    init_seeds,
+    print_args,
+    yaml_save,
+)
+from utils.loggers import GenericLogger
+from utils.plots import imshow_cls
+from utils.torch_utils import (
+    ModelEMA,
+    de_parallel,
+    model_info,
+    reshape_classifier_output,
+    select_device,
+    smart_DDP,
+    smart_optimizer,
+    smartCrossEntropyLoss,
+    torch_distributed_zero_first,
+)
+
+LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv("RANK", -1))
+WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
+GIT_INFO = check_git_info()
+
+
+def train(opt, device):
+    """Trains a YOLOv5 model, managing datasets, model optimization, logging, and saving checkpoints."""
+    init_seeds(opt.seed + 1 + RANK, deterministic=True)
+    save_dir, data, bs, epochs, nw, imgsz, pretrained = (
+        opt.save_dir,
+        Path(opt.data),
+        opt.batch_size,
+        opt.epochs,
+        min(os.cpu_count() - 1, opt.workers),
+        opt.imgsz,
+        str(opt.pretrained).lower() == "true",
+    )
+    cuda = device.type != "cpu"
+
+    # Directories
+    wdir = save_dir / "weights"
+    wdir.mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = wdir / "last.pt", wdir / "best.pt"
+
+    # Save run settings
+    yaml_save(save_dir / "opt.yaml", vars(opt))
+
+    # Logger
+    logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
+
+    # Download Dataset
+    with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
+        data_dir = data if data.is_dir() else (DATASETS_DIR / data)
+        if not data_dir.is_dir():
+            LOGGER.info(f"\nDataset not found ⚠ī¸, missing path {data_dir}, attempting download...")
+            t = time.time()
+            if str(data) == "imagenet":
+                subprocess.run(["bash", str(ROOT / "data/scripts/get_imagenet.sh")], shell=True, check=True)
+            else:
+                url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip"
+                download(url, dir=data_dir.parent)
+            s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
+            LOGGER.info(s)
+
+    # Dataloaders
+    nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()])  # number of classes
+    trainloader = create_classification_dataloader(
+        path=data_dir / "train",
+        imgsz=imgsz,
+        batch_size=bs // WORLD_SIZE,
+        augment=True,
+        cache=opt.cache,
+        rank=LOCAL_RANK,
+        workers=nw,
+    )
+
+    test_dir = data_dir / "test" if (data_dir / "test").exists() else data_dir / "val"  # data/test or data/val
+    if RANK in {-1, 0}:
+        testloader = create_classification_dataloader(
+            path=test_dir,
+            imgsz=imgsz,
+            batch_size=bs // WORLD_SIZE * 2,
+            augment=False,
+            cache=opt.cache,
+            rank=-1,
+            workers=nw,
+        )
+
+    # Model
+    with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
+        if Path(opt.model).is_file() or opt.model.endswith(".pt"):
+            model = attempt_load(opt.model, device="cpu", fuse=False)
+        elif opt.model in torchvision.models.__dict__:  # TorchVision models i.e. resnet50, efficientnet_b0
+            model = torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if pretrained else None)
+        else:
+            m = hub.list("ultralytics/yolov5")  # + hub.list('pytorch/vision')  # models
+            raise ModuleNotFoundError(f"--model {opt.model} not found. Available models are: \n" + "\n".join(m))
+        if isinstance(model, DetectionModel):
+            LOGGER.warning("WARNING ⚠ī¸ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
+            model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10)  # convert to classification model
+        reshape_classifier_output(model, nc)  # update class count
+    for m in model.modules():
+        if not pretrained and hasattr(m, "reset_parameters"):
+            m.reset_parameters()
+        if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
+            m.p = opt.dropout  # set dropout
+    for p in model.parameters():
+        p.requires_grad = True  # for training
+    model = model.to(device)
+
+    # Info
+    if RANK in {-1, 0}:
+        model.names = trainloader.dataset.classes  # attach class names
+        model.transforms = testloader.dataset.torch_transforms  # attach inference transforms
+        model_info(model)
+        if opt.verbose:
+            LOGGER.info(model)
+        images, labels = next(iter(trainloader))
+        file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / "train_images.jpg")
+        logger.log_images(file, name="Train Examples")
+        logger.log_graph(model, imgsz)  # log model
+
+    # Optimizer
+    optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
+
+    # Scheduler
+    lrf = 0.01  # final lr (fraction of lr0)
+    # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf  # cosine
+    lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+    # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
+    #                                    final_div_factor=1 / 25 / lrf)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = smart_DDP(model)
+
+    # Train
+    t0 = time.time()
+    criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing)  # loss function
+    best_fitness = 0.0
+    scaler = amp.GradScaler(enabled=cuda)
+    val = test_dir.stem  # 'val' or 'test'
+    LOGGER.info(
+        f'Image sizes {imgsz} train, {imgsz} test\n'
+        f'Using {nw * WORLD_SIZE} dataloader workers\n'
+        f"Logging results to {colorstr('bold', save_dir)}\n"
+        f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
+        f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
+    )
+    for epoch in range(epochs):  # loop over the dataset multiple times
+        tloss, vloss, fitness = 0.0, 0.0, 0.0  # train loss, val loss, fitness
+        model.train()
+        if RANK != -1:
+            trainloader.sampler.set_epoch(epoch)
+        pbar = enumerate(trainloader)
+        if RANK in {-1, 0}:
+            pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
+        for i, (images, labels) in pbar:  # progress bar
+            images, labels = images.to(device, non_blocking=True), labels.to(device)
+
+            # Forward
+            with amp.autocast(enabled=cuda):  # stability issues when enabled
+                loss = criterion(model(images), labels)
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize
+            scaler.unscale_(optimizer)  # unscale gradients
+            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
+            scaler.step(optimizer)
+            scaler.update()
+            optimizer.zero_grad()
+            if ema:
+                ema.update(model)
+
+            if RANK in {-1, 0}:
+                # Print
+                tloss = (tloss * i + loss.item()) / (i + 1)  # update mean losses
+                mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0)  # (GB)
+                pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36
+
+                # Test
+                if i == len(pbar) - 1:  # last batch
+                    top1, top5, vloss = validate.run(
+                        model=ema.ema, dataloader=testloader, criterion=criterion, pbar=pbar
+                    )  # test accuracy, loss
+                    fitness = top1  # define fitness as top1 accuracy
+
+        # Scheduler
+        scheduler.step()
+
+        # Log metrics
+        if RANK in {-1, 0}:
+            # Best fitness
+            if fitness > best_fitness:
+                best_fitness = fitness
+
+            # Log
+            metrics = {
+                "train/loss": tloss,
+                f"{val}/loss": vloss,
+                "metrics/accuracy_top1": top1,
+                "metrics/accuracy_top5": top5,
+                "lr/0": optimizer.param_groups[0]["lr"],
+            }  # learning rate
+            logger.log_metrics(metrics, epoch)
+
+            # Save model
+            final_epoch = epoch + 1 == epochs
+            if (not opt.nosave) or final_epoch:
+                ckpt = {
+                    "epoch": epoch,
+                    "best_fitness": best_fitness,
+                    "model": deepcopy(ema.ema).half(),  # deepcopy(de_parallel(model)).half(),
+                    "ema": None,  # deepcopy(ema.ema).half(),
+                    "updates": ema.updates,
+                    "optimizer": None,  # optimizer.state_dict(),
+                    "opt": vars(opt),
+                    "git": GIT_INFO,  # {remote, branch, commit} if a git repo
+                    "date": datetime.now().isoformat(),
+                }
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fitness:
+                    torch.save(ckpt, best)
+                del ckpt
+
+    # Train complete
+    if RANK in {-1, 0} and final_epoch:
+        LOGGER.info(
+            f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
+            f"\nResults saved to {colorstr('bold', save_dir)}"
+            f'\nPredict:         python classify/predict.py --weights {best} --source im.jpg'
+            f'\nValidate:        python classify/val.py --weights {best} --data {data_dir}'
+            f'\nExport:          python export.py --weights {best} --include onnx'
+            f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
+            f'\nVisualize:       https://netron.app\n'
+        )
+
+        # Plot examples
+        images, labels = (x[:25] for x in next(iter(testloader)))  # first 25 images and labels
+        pred = torch.max(ema.ema(images.to(device)), 1)[1]
+        file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / "test_images.jpg")
+
+        # Log results
+        meta = {"epochs": epochs, "top1_acc": best_fitness, "date": datetime.now().isoformat()}
+        logger.log_images(file, name="Test Examples (true-predicted)", epoch=epoch)
+        logger.log_model(best, epochs, metadata=meta)
+
+
+def parse_opt(known=False):
+    """Parses command line arguments for YOLOv5 training including model path, dataset, epochs, and more, returning
+    parsed arguments.
+    """
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--model", type=str, default="yolov5s-cls.pt", help="initial weights path")
+    parser.add_argument("--data", type=str, default="imagenette160", help="cifar10, cifar100, mnist, imagenet, ...")
+    parser.add_argument("--epochs", type=int, default=10, help="total training epochs")
+    parser.add_argument("--batch-size", type=int, default=64, help="total batch size for all GPUs")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="train, val image size (pixels)")
+    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
+    parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--project", default=ROOT / "runs/train-cls", help="save to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--pretrained", nargs="?", const=True, default=True, help="start from i.e. --pretrained False")
+    parser.add_argument("--optimizer", choices=["SGD", "Adam", "AdamW", "RMSProp"], default="Adam", help="optimizer")
+    parser.add_argument("--lr0", type=float, default=0.001, help="initial learning rate")
+    parser.add_argument("--decay", type=float, default=5e-5, help="weight decay")
+    parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
+    parser.add_argument("--cutoff", type=int, default=None, help="Model layer cutoff index for Classify() head")
+    parser.add_argument("--dropout", type=float, default=None, help="Dropout (fraction)")
+    parser.add_argument("--verbose", action="store_true", help="Verbose mode")
+    parser.add_argument("--seed", type=int, default=0, help="Global training seed")
+    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt):
+    """Executes YOLOv5 training with given options, handling device setup and DDP mode; includes pre-training checks."""
+    if RANK in {-1, 0}:
+        print_args(vars(opt))
+        check_git_status()
+        check_requirements(ROOT / "requirements.txt")
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        assert opt.batch_size != -1, "AutoBatch is coming soon for classification, please pass a valid --batch-size"
+        assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
+        assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device("cuda", LOCAL_RANK)
+        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+    # Parameters
+    opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
+
+    # Train
+    train(opt, device)
+
+
+def run(**kwargs):
+    """
+    Executes YOLOv5 model training or inference with specified parameters, returning updated options.
+
+    Example: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
+    """
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/classify/tutorial.ipynb b/yolov5/classify/tutorial.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f85715ca844ea09e0b12df117c69034635d2060f
--- /dev/null
+++ b/yolov5/classify/tutorial.ipynb
@@ -0,0 +1,1481 @@
+{
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<div align=\"center\">\n",
+        "\n",
+        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
+        "\n",
+        "\n",
+        "<br>\n",
+        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
+        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
+        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "<br>\n",
+        "\n",
+        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
+        "\n",
+        "</div>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "wbvMlHd_QwMG",
+        "outputId": "0806e375-610d-4ec0-c867-763dbb518279"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
+          ]
+        }
+      ],
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt  # install\n",
+        "\n",
+        "import torch\n",
+        "import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Predict\n",
+        "\n",
+        "`classify/predict.py` runs YOLOv5 Classification inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict-cls`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python classify/predict.py --source 0  # webcam\n",
+        "                              img.jpg  # image \n",
+        "                              vid.mp4  # video\n",
+        "                              screen  # screenshot\n",
+        "                              path/  # directory\n",
+        "                              'path/*.jpg'  # glob\n",
+        "                              'https://youtu.be/LNwODJXcvt4'  # YouTube\n",
+        "                              'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "zR9ZbuQCH7FX",
+        "outputId": "50504ef7-aa3e-4281-a4e3-d0c7df3c0ffe"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mclassify/predict: \u001b[0mweights=['yolov5s-cls.pt'], source=data/images, data=data/coco128.yaml, imgsz=[224, 224], device=, view_img=False, save_txt=False, nosave=False, augment=False, visualize=False, update=False, project=runs/predict-cls, name=exp, exist_ok=False, half=False, dnn=False, vid_stride=1\n",
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt to yolov5s-cls.pt...\n",
+            "100% 10.5M/10.5M [00:00<00:00, 12.3MB/s]\n",
+            "\n",
+            "Fusing layers... \n",
+            "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 224x224 minibus 0.39, police van 0.24, amphibious vehicle 0.05, recreational vehicle 0.04, trolleybus 0.03, 3.9ms\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 224x224 suit 0.38, bow tie 0.19, bridegroom 0.18, rugby ball 0.04, stage 0.02, 4.6ms\n",
+            "Speed: 0.3ms pre-process, 4.3ms inference, 1.5ms NMS per image at shape (1, 3, 224, 224)\n",
+            "Results saved to \u001b[1mruns/predict-cls/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "!python classify/predict.py --weights yolov5s-cls.pt --img 224 --source data/images\n",
+        "# display.Image(filename='runs/predict-cls/exp/zidane.jpg', width=600)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/202808393-50deb439-ae1b-4246-a685-7560c9b37211.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on the [Imagenet](https://image-net.org/) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "WQPtK1QYVaD_",
+        "outputId": "20fc0630-141e-4a90-ea06-342cbd7ce496"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "--2022-11-22 19:53:40--  https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar\n",
+            "Resolving image-net.org (image-net.org)... 171.64.68.16\n",
+            "Connecting to image-net.org (image-net.org)|171.64.68.16|:443... connected.\n",
+            "HTTP request sent, awaiting response... 200 OK\n",
+            "Length: 6744924160 (6.3G) [application/x-tar]\n",
+            "Saving to: ‘ILSVRC2012_img_val.tar’\n",
+            "\n",
+            "ILSVRC2012_img_val. 100%[===================>]   6.28G  16.1MB/s    in 10m 52s \n",
+            "\n",
+            "2022-11-22 20:04:32 (9.87 MB/s) - ‘ILSVRC2012_img_val.tar’ saved [6744924160/6744924160]\n",
+            "\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Download Imagenet val (6.3G, 50000 images)\n",
+        "!bash data/scripts/get_imagenet.sh --val"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "X58w8JLpMnjH",
+        "outputId": "41843132-98e2-4c25-d474-4cd7b246fb8e"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mclassify/val: \u001b[0mdata=../datasets/imagenet, weights=['yolov5s-cls.pt'], batch_size=128, imgsz=224, device=, workers=8, verbose=True, project=runs/val-cls, name=exp, exist_ok=False, half=True, dnn=False\n",
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
+            "validating: 100% 391/391 [04:57<00:00,  1.31it/s]\n",
+            "                   Class      Images    top1_acc    top5_acc\n",
+            "                     all       50000       0.715       0.902\n",
+            "                   tench          50        0.94        0.98\n",
+            "                goldfish          50        0.88        0.92\n",
+            "       great white shark          50        0.78        0.96\n",
+            "             tiger shark          50        0.68        0.96\n",
+            "        hammerhead shark          50        0.82        0.92\n",
+            "            electric ray          50        0.76         0.9\n",
+            "                stingray          50         0.7         0.9\n",
+            "                    cock          50        0.78        0.92\n",
+            "                     hen          50        0.84        0.96\n",
+            "                 ostrich          50        0.98           1\n",
+            "               brambling          50         0.9        0.96\n",
+            "               goldfinch          50        0.92        0.98\n",
+            "             house finch          50        0.88        0.96\n",
+            "                   junco          50        0.94        0.98\n",
+            "          indigo bunting          50        0.86        0.88\n",
+            "          American robin          50         0.9        0.96\n",
+            "                  bulbul          50        0.84        0.96\n",
+            "                     jay          50         0.9        0.96\n",
+            "                  magpie          50        0.84        0.96\n",
+            "               chickadee          50         0.9           1\n",
+            "         American dipper          50        0.82        0.92\n",
+            "                    kite          50        0.76        0.94\n",
+            "              bald eagle          50        0.92           1\n",
+            "                 vulture          50        0.96           1\n",
+            "          great grey owl          50        0.94        0.98\n",
+            "         fire salamander          50        0.96        0.98\n",
+            "             smooth newt          50        0.58        0.94\n",
+            "                    newt          50        0.74         0.9\n",
+            "      spotted salamander          50        0.86        0.94\n",
+            "                 axolotl          50        0.86        0.96\n",
+            "       American bullfrog          50        0.78        0.92\n",
+            "               tree frog          50        0.84        0.96\n",
+            "             tailed frog          50        0.48         0.8\n",
+            "   loggerhead sea turtle          50        0.68        0.94\n",
+            "  leatherback sea turtle          50         0.5         0.8\n",
+            "              mud turtle          50        0.64        0.84\n",
+            "                terrapin          50        0.52        0.98\n",
+            "              box turtle          50        0.84        0.98\n",
+            "            banded gecko          50         0.7        0.88\n",
+            "            green iguana          50        0.76        0.94\n",
+            "          Carolina anole          50        0.58        0.96\n",
+            "desert grassland whiptail lizard          50        0.82        0.94\n",
+            "                   agama          50        0.74        0.92\n",
+            "   frilled-necked lizard          50        0.84        0.86\n",
+            "        alligator lizard          50        0.58        0.78\n",
+            "            Gila monster          50        0.72         0.8\n",
+            "   European green lizard          50        0.42         0.9\n",
+            "               chameleon          50        0.76        0.84\n",
+            "           Komodo dragon          50        0.86        0.96\n",
+            "          Nile crocodile          50         0.7        0.84\n",
+            "      American alligator          50        0.76        0.96\n",
+            "             triceratops          50         0.9        0.94\n",
+            "              worm snake          50        0.76        0.88\n",
+            "       ring-necked snake          50         0.8        0.92\n",
+            " eastern hog-nosed snake          50        0.58        0.88\n",
+            "      smooth green snake          50         0.6        0.94\n",
+            "               kingsnake          50        0.82         0.9\n",
+            "            garter snake          50        0.88        0.94\n",
+            "             water snake          50         0.7        0.94\n",
+            "              vine snake          50        0.66        0.76\n",
+            "             night snake          50        0.34        0.82\n",
+            "         boa constrictor          50         0.8        0.96\n",
+            "     African rock python          50        0.48        0.76\n",
+            "            Indian cobra          50        0.82        0.94\n",
+            "             green mamba          50        0.54        0.86\n",
+            "               sea snake          50        0.62         0.9\n",
+            "    Saharan horned viper          50        0.56        0.86\n",
+            "eastern diamondback rattlesnake          50         0.6        0.86\n",
+            "              sidewinder          50        0.28        0.86\n",
+            "               trilobite          50        0.98        0.98\n",
+            "              harvestman          50        0.86        0.94\n",
+            "                scorpion          50        0.86        0.94\n",
+            "    yellow garden spider          50        0.92        0.96\n",
+            "             barn spider          50        0.38        0.98\n",
+            "  European garden spider          50        0.62        0.98\n",
+            "    southern black widow          50        0.88        0.94\n",
+            "               tarantula          50        0.94           1\n",
+            "             wolf spider          50        0.82        0.92\n",
+            "                    tick          50        0.74        0.84\n",
+            "               centipede          50        0.68        0.82\n",
+            "            black grouse          50        0.88        0.98\n",
+            "               ptarmigan          50        0.78        0.94\n",
+            "           ruffed grouse          50        0.88           1\n",
+            "          prairie grouse          50        0.92           1\n",
+            "                 peacock          50        0.88         0.9\n",
+            "                   quail          50         0.9        0.94\n",
+            "               partridge          50        0.74        0.96\n",
+            "             grey parrot          50         0.9        0.96\n",
+            "                   macaw          50        0.88        0.98\n",
+            "sulphur-crested cockatoo          50        0.86        0.92\n",
+            "                lorikeet          50        0.96           1\n",
+            "                  coucal          50        0.82        0.88\n",
+            "               bee eater          50        0.96        0.98\n",
+            "                hornbill          50         0.9        0.96\n",
+            "             hummingbird          50        0.88        0.96\n",
+            "                 jacamar          50        0.92        0.94\n",
+            "                  toucan          50        0.84        0.94\n",
+            "                    duck          50        0.76        0.94\n",
+            "  red-breasted merganser          50        0.86        0.96\n",
+            "                   goose          50        0.74        0.96\n",
+            "              black swan          50        0.94        0.98\n",
+            "                  tusker          50        0.54        0.92\n",
+            "                 echidna          50        0.98           1\n",
+            "                platypus          50        0.72        0.84\n",
+            "                 wallaby          50        0.78        0.88\n",
+            "                   koala          50        0.84        0.92\n",
+            "                  wombat          50        0.78        0.84\n",
+            "               jellyfish          50        0.88        0.96\n",
+            "             sea anemone          50        0.72         0.9\n",
+            "             brain coral          50        0.88        0.96\n",
+            "                flatworm          50         0.8        0.98\n",
+            "                nematode          50        0.86         0.9\n",
+            "                   conch          50        0.74        0.88\n",
+            "                   snail          50        0.78        0.88\n",
+            "                    slug          50        0.74        0.82\n",
+            "                sea slug          50        0.88        0.98\n",
+            "                  chiton          50        0.88        0.98\n",
+            "      chambered nautilus          50        0.88        0.92\n",
+            "          Dungeness crab          50        0.78        0.94\n",
+            "               rock crab          50        0.68        0.86\n",
+            "            fiddler crab          50        0.64        0.86\n",
+            "           red king crab          50        0.76        0.96\n",
+            "        American lobster          50        0.78        0.96\n",
+            "           spiny lobster          50        0.74        0.88\n",
+            "                crayfish          50        0.56        0.86\n",
+            "             hermit crab          50        0.78        0.96\n",
+            "                  isopod          50        0.66        0.78\n",
+            "             white stork          50        0.88        0.96\n",
+            "             black stork          50        0.84        0.98\n",
+            "               spoonbill          50        0.96           1\n",
+            "                flamingo          50        0.94           1\n",
+            "       little blue heron          50        0.92        0.98\n",
+            "             great egret          50         0.9        0.96\n",
+            "                 bittern          50        0.86        0.94\n",
+            "            crane (bird)          50        0.62         0.9\n",
+            "                 limpkin          50        0.98           1\n",
+            "        common gallinule          50        0.92        0.96\n",
+            "           American coot          50         0.9        0.98\n",
+            "                 bustard          50        0.92        0.96\n",
+            "         ruddy turnstone          50        0.94           1\n",
+            "                  dunlin          50        0.86        0.94\n",
+            "         common redshank          50         0.9        0.96\n",
+            "               dowitcher          50        0.84        0.96\n",
+            "           oystercatcher          50        0.86        0.94\n",
+            "                 pelican          50        0.92        0.96\n",
+            "            king penguin          50        0.88        0.96\n",
+            "               albatross          50         0.9           1\n",
+            "              grey whale          50        0.84        0.92\n",
+            "            killer whale          50        0.92           1\n",
+            "                  dugong          50        0.84        0.96\n",
+            "                sea lion          50        0.82        0.92\n",
+            "               Chihuahua          50        0.66        0.84\n",
+            "           Japanese Chin          50        0.72        0.98\n",
+            "                 Maltese          50        0.76        0.94\n",
+            "               Pekingese          50        0.84        0.94\n",
+            "                Shih Tzu          50        0.74        0.96\n",
+            "    King Charles Spaniel          50        0.88        0.98\n",
+            "                Papillon          50        0.86        0.94\n",
+            "             toy terrier          50        0.48        0.94\n",
+            "     Rhodesian Ridgeback          50        0.76        0.98\n",
+            "            Afghan Hound          50        0.84           1\n",
+            "            Basset Hound          50         0.8        0.92\n",
+            "                  Beagle          50        0.82        0.96\n",
+            "              Bloodhound          50        0.48        0.72\n",
+            "      Bluetick Coonhound          50        0.86        0.94\n",
+            " Black and Tan Coonhound          50        0.54         0.8\n",
+            "Treeing Walker Coonhound          50        0.66        0.98\n",
+            "        English foxhound          50        0.32        0.84\n",
+            "       Redbone Coonhound          50        0.62        0.94\n",
+            "                  borzoi          50        0.92           1\n",
+            "         Irish Wolfhound          50        0.48        0.88\n",
+            "       Italian Greyhound          50        0.76        0.98\n",
+            "                 Whippet          50        0.74        0.92\n",
+            "            Ibizan Hound          50         0.6        0.86\n",
+            "      Norwegian Elkhound          50        0.88        0.98\n",
+            "              Otterhound          50        0.62         0.9\n",
+            "                  Saluki          50        0.72        0.92\n",
+            "      Scottish Deerhound          50        0.86        0.98\n",
+            "              Weimaraner          50        0.88        0.94\n",
+            "Staffordshire Bull Terrier          50        0.66        0.98\n",
+            "American Staffordshire Terrier          50        0.64        0.92\n",
+            "      Bedlington Terrier          50         0.9        0.92\n",
+            "          Border Terrier          50        0.86        0.92\n",
+            "      Kerry Blue Terrier          50        0.78        0.98\n",
+            "           Irish Terrier          50         0.7        0.96\n",
+            "         Norfolk Terrier          50        0.68         0.9\n",
+            "         Norwich Terrier          50        0.72           1\n",
+            "       Yorkshire Terrier          50        0.66         0.9\n",
+            "        Wire Fox Terrier          50        0.64        0.98\n",
+            "        Lakeland Terrier          50        0.74        0.92\n",
+            "        Sealyham Terrier          50        0.76         0.9\n",
+            "        Airedale Terrier          50        0.82        0.92\n",
+            "           Cairn Terrier          50        0.76         0.9\n",
+            "      Australian Terrier          50        0.48        0.84\n",
+            "  Dandie Dinmont Terrier          50        0.82        0.92\n",
+            "          Boston Terrier          50        0.92           1\n",
+            "     Miniature Schnauzer          50        0.68         0.9\n",
+            "         Giant Schnauzer          50        0.72        0.98\n",
+            "      Standard Schnauzer          50        0.74           1\n",
+            "        Scottish Terrier          50        0.76        0.96\n",
+            "         Tibetan Terrier          50        0.48           1\n",
+            "Australian Silky Terrier          50        0.66        0.96\n",
+            "Soft-coated Wheaten Terrier          50        0.74        0.96\n",
+            "West Highland White Terrier          50        0.88        0.96\n",
+            "              Lhasa Apso          50        0.68        0.96\n",
+            "   Flat-Coated Retriever          50        0.72        0.94\n",
+            "  Curly-coated Retriever          50        0.82        0.94\n",
+            "        Golden Retriever          50        0.86        0.94\n",
+            "      Labrador Retriever          50        0.82        0.94\n",
+            "Chesapeake Bay Retriever          50        0.76        0.96\n",
+            "German Shorthaired Pointer          50         0.8        0.96\n",
+            "                  Vizsla          50        0.68        0.96\n",
+            "          English Setter          50         0.7           1\n",
+            "            Irish Setter          50         0.8         0.9\n",
+            "           Gordon Setter          50        0.84        0.92\n",
+            "                Brittany          50        0.84        0.96\n",
+            "         Clumber Spaniel          50        0.92        0.96\n",
+            "English Springer Spaniel          50        0.88           1\n",
+            "  Welsh Springer Spaniel          50        0.92           1\n",
+            "         Cocker Spaniels          50         0.7        0.94\n",
+            "          Sussex Spaniel          50        0.72        0.92\n",
+            "     Irish Water Spaniel          50        0.88        0.98\n",
+            "                  Kuvasz          50        0.66         0.9\n",
+            "              Schipperke          50         0.9        0.98\n",
+            "             Groenendael          50         0.8        0.94\n",
+            "                Malinois          50        0.86        0.98\n",
+            "                  Briard          50        0.52         0.8\n",
+            "       Australian Kelpie          50         0.6        0.88\n",
+            "                Komondor          50        0.88        0.94\n",
+            "    Old English Sheepdog          50        0.94        0.98\n",
+            "       Shetland Sheepdog          50        0.74         0.9\n",
+            "                  collie          50         0.6        0.96\n",
+            "           Border Collie          50        0.74        0.96\n",
+            "    Bouvier des Flandres          50        0.78        0.94\n",
+            "              Rottweiler          50        0.88        0.96\n",
+            "     German Shepherd Dog          50         0.8        0.98\n",
+            "               Dobermann          50        0.68        0.96\n",
+            "      Miniature Pinscher          50        0.76        0.88\n",
+            "Greater Swiss Mountain Dog          50        0.68        0.94\n",
+            "    Bernese Mountain Dog          50        0.96           1\n",
+            "  Appenzeller Sennenhund          50        0.22           1\n",
+            "  Entlebucher Sennenhund          50        0.64        0.98\n",
+            "                   Boxer          50         0.7        0.92\n",
+            "             Bullmastiff          50        0.78        0.98\n",
+            "         Tibetan Mastiff          50        0.88        0.96\n",
+            "          French Bulldog          50        0.84        0.94\n",
+            "              Great Dane          50        0.54         0.9\n",
+            "             St. Bernard          50        0.92           1\n",
+            "                   husky          50        0.46        0.98\n",
+            "        Alaskan Malamute          50        0.76        0.96\n",
+            "          Siberian Husky          50        0.46        0.98\n",
+            "               Dalmatian          50        0.94        0.98\n",
+            "           Affenpinscher          50        0.78         0.9\n",
+            "                 Basenji          50        0.92        0.94\n",
+            "                     pug          50        0.94        0.98\n",
+            "              Leonberger          50           1           1\n",
+            "            Newfoundland          50        0.78        0.96\n",
+            "   Pyrenean Mountain Dog          50        0.78        0.96\n",
+            "                 Samoyed          50        0.96           1\n",
+            "              Pomeranian          50        0.98           1\n",
+            "               Chow Chow          50         0.9        0.96\n",
+            "                Keeshond          50        0.88        0.94\n",
+            "      Griffon Bruxellois          50        0.84        0.98\n",
+            "    Pembroke Welsh Corgi          50        0.82        0.94\n",
+            "    Cardigan Welsh Corgi          50        0.66        0.98\n",
+            "              Toy Poodle          50        0.52        0.88\n",
+            "        Miniature Poodle          50        0.52        0.92\n",
+            "         Standard Poodle          50         0.8           1\n",
+            "    Mexican hairless dog          50        0.88        0.98\n",
+            "               grey wolf          50        0.82        0.92\n",
+            "     Alaskan tundra wolf          50        0.78        0.98\n",
+            "                red wolf          50        0.48         0.9\n",
+            "                  coyote          50        0.64        0.86\n",
+            "                   dingo          50        0.76        0.88\n",
+            "                   dhole          50         0.9        0.98\n",
+            "        African wild dog          50        0.98           1\n",
+            "                   hyena          50        0.88        0.96\n",
+            "                 red fox          50        0.54        0.92\n",
+            "                 kit fox          50        0.72        0.98\n",
+            "              Arctic fox          50        0.94           1\n",
+            "                grey fox          50         0.7        0.94\n",
+            "               tabby cat          50        0.54        0.92\n",
+            "               tiger cat          50        0.22        0.94\n",
+            "             Persian cat          50         0.9        0.98\n",
+            "             Siamese cat          50        0.96           1\n",
+            "            Egyptian Mau          50        0.54         0.8\n",
+            "                  cougar          50         0.9           1\n",
+            "                    lynx          50        0.72        0.88\n",
+            "                 leopard          50        0.78        0.98\n",
+            "            snow leopard          50         0.9        0.98\n",
+            "                  jaguar          50         0.7        0.94\n",
+            "                    lion          50         0.9        0.98\n",
+            "                   tiger          50        0.92        0.98\n",
+            "                 cheetah          50        0.94        0.98\n",
+            "              brown bear          50        0.94        0.98\n",
+            "     American black bear          50         0.8           1\n",
+            "              polar bear          50        0.84        0.96\n",
+            "              sloth bear          50        0.72        0.92\n",
+            "                mongoose          50         0.7        0.92\n",
+            "                 meerkat          50        0.82        0.92\n",
+            "            tiger beetle          50        0.92        0.94\n",
+            "                 ladybug          50        0.86        0.94\n",
+            "           ground beetle          50        0.64        0.94\n",
+            "         longhorn beetle          50        0.62        0.88\n",
+            "             leaf beetle          50        0.64        0.98\n",
+            "             dung beetle          50        0.86        0.98\n",
+            "       rhinoceros beetle          50        0.86        0.94\n",
+            "                  weevil          50         0.9           1\n",
+            "                     fly          50        0.78        0.94\n",
+            "                     bee          50        0.68        0.94\n",
+            "                     ant          50        0.68        0.78\n",
+            "             grasshopper          50         0.5        0.92\n",
+            "                 cricket          50        0.64        0.92\n",
+            "            stick insect          50        0.64        0.92\n",
+            "               cockroach          50        0.72         0.8\n",
+            "                  mantis          50        0.64        0.86\n",
+            "                  cicada          50         0.9        0.96\n",
+            "              leafhopper          50        0.88        0.94\n",
+            "                lacewing          50        0.78        0.92\n",
+            "               dragonfly          50        0.82        0.98\n",
+            "               damselfly          50        0.82           1\n",
+            "             red admiral          50        0.94        0.96\n",
+            "                 ringlet          50        0.86        0.98\n",
+            "       monarch butterfly          50         0.9        0.92\n",
+            "             small white          50         0.9           1\n",
+            "       sulphur butterfly          50        0.92           1\n",
+            "gossamer-winged butterfly          50        0.88           1\n",
+            "                starfish          50        0.88        0.92\n",
+            "              sea urchin          50        0.84        0.94\n",
+            "            sea cucumber          50        0.66        0.84\n",
+            "       cottontail rabbit          50        0.72        0.94\n",
+            "                    hare          50        0.84        0.96\n",
+            "           Angora rabbit          50        0.94        0.98\n",
+            "                 hamster          50        0.96           1\n",
+            "               porcupine          50        0.88        0.98\n",
+            "            fox squirrel          50        0.76        0.94\n",
+            "                  marmot          50        0.92        0.96\n",
+            "                  beaver          50        0.78        0.94\n",
+            "              guinea pig          50        0.78        0.94\n",
+            "           common sorrel          50        0.96        0.98\n",
+            "                   zebra          50        0.94        0.96\n",
+            "                     pig          50         0.5        0.76\n",
+            "               wild boar          50        0.84        0.96\n",
+            "                 warthog          50        0.84        0.96\n",
+            "            hippopotamus          50        0.88        0.96\n",
+            "                      ox          50        0.48        0.94\n",
+            "           water buffalo          50        0.78        0.94\n",
+            "                   bison          50        0.88        0.96\n",
+            "                     ram          50        0.58        0.92\n",
+            "           bighorn sheep          50        0.66           1\n",
+            "             Alpine ibex          50        0.92        0.98\n",
+            "              hartebeest          50        0.94           1\n",
+            "                  impala          50        0.82        0.96\n",
+            "                 gazelle          50         0.7        0.96\n",
+            "               dromedary          50         0.9           1\n",
+            "                   llama          50        0.82        0.94\n",
+            "                  weasel          50        0.44        0.92\n",
+            "                    mink          50        0.78        0.96\n",
+            "        European polecat          50        0.46         0.9\n",
+            "     black-footed ferret          50        0.68        0.96\n",
+            "                   otter          50        0.66        0.88\n",
+            "                   skunk          50        0.96        0.96\n",
+            "                  badger          50        0.86        0.92\n",
+            "               armadillo          50        0.88         0.9\n",
+            "        three-toed sloth          50        0.96           1\n",
+            "               orangutan          50        0.78        0.92\n",
+            "                 gorilla          50        0.82        0.94\n",
+            "              chimpanzee          50        0.84        0.94\n",
+            "                  gibbon          50        0.76        0.86\n",
+            "                 siamang          50        0.68        0.94\n",
+            "                  guenon          50         0.8        0.94\n",
+            "            patas monkey          50        0.62        0.82\n",
+            "                  baboon          50         0.9        0.98\n",
+            "                 macaque          50         0.8        0.86\n",
+            "                  langur          50         0.6        0.82\n",
+            " black-and-white colobus          50        0.86         0.9\n",
+            "        proboscis monkey          50           1           1\n",
+            "                marmoset          50        0.74        0.98\n",
+            "   white-headed capuchin          50        0.72         0.9\n",
+            "           howler monkey          50        0.86        0.94\n",
+            "                    titi          50         0.5         0.9\n",
+            "Geoffroy's spider monkey          50        0.42         0.8\n",
+            "  common squirrel monkey          50        0.76        0.92\n",
+            "       ring-tailed lemur          50        0.72        0.94\n",
+            "                   indri          50         0.9        0.96\n",
+            "          Asian elephant          50        0.58        0.92\n",
+            "   African bush elephant          50         0.7        0.98\n",
+            "               red panda          50        0.94        0.94\n",
+            "             giant panda          50        0.94        0.98\n",
+            "                   snoek          50        0.74         0.9\n",
+            "                     eel          50         0.6        0.84\n",
+            "             coho salmon          50        0.84        0.96\n",
+            "             rock beauty          50        0.88        0.98\n",
+            "               clownfish          50        0.78        0.98\n",
+            "                sturgeon          50        0.68        0.94\n",
+            "                 garfish          50        0.62         0.8\n",
+            "                lionfish          50        0.96        0.96\n",
+            "              pufferfish          50        0.88        0.96\n",
+            "                  abacus          50        0.74        0.88\n",
+            "                   abaya          50        0.84        0.92\n",
+            "           academic gown          50        0.42        0.86\n",
+            "               accordion          50         0.8         0.9\n",
+            "         acoustic guitar          50         0.5        0.76\n",
+            "        aircraft carrier          50         0.8        0.96\n",
+            "                airliner          50        0.92           1\n",
+            "                 airship          50        0.76        0.82\n",
+            "                   altar          50        0.64        0.98\n",
+            "               ambulance          50        0.88        0.98\n",
+            "      amphibious vehicle          50        0.64        0.94\n",
+            "            analog clock          50        0.52        0.92\n",
+            "                  apiary          50        0.82        0.96\n",
+            "                   apron          50         0.7        0.84\n",
+            "         waste container          50         0.4         0.8\n",
+            "           assault rifle          50        0.42        0.84\n",
+            "                backpack          50        0.34        0.64\n",
+            "                  bakery          50         0.4        0.68\n",
+            "            balance beam          50         0.8        0.98\n",
+            "                 balloon          50        0.86        0.96\n",
+            "           ballpoint pen          50        0.52        0.96\n",
+            "                Band-Aid          50         0.7         0.9\n",
+            "                   banjo          50        0.84           1\n",
+            "                baluster          50        0.68        0.94\n",
+            "                 barbell          50        0.56         0.9\n",
+            "            barber chair          50         0.7        0.92\n",
+            "              barbershop          50        0.54        0.86\n",
+            "                    barn          50        0.96        0.96\n",
+            "               barometer          50        0.84        0.98\n",
+            "                  barrel          50        0.56        0.88\n",
+            "             wheelbarrow          50        0.66        0.88\n",
+            "                baseball          50        0.74        0.98\n",
+            "              basketball          50        0.88        0.98\n",
+            "                bassinet          50        0.66        0.92\n",
+            "                 bassoon          50        0.74        0.98\n",
+            "            swimming cap          50        0.62        0.88\n",
+            "              bath towel          50        0.54        0.78\n",
+            "                 bathtub          50         0.4        0.88\n",
+            "           station wagon          50        0.66        0.84\n",
+            "              lighthouse          50        0.78        0.94\n",
+            "                  beaker          50        0.52        0.68\n",
+            "            military cap          50        0.84        0.96\n",
+            "             beer bottle          50        0.66        0.88\n",
+            "              beer glass          50         0.6        0.84\n",
+            "                bell-cot          50        0.56        0.96\n",
+            "                     bib          50        0.58        0.82\n",
+            "          tandem bicycle          50        0.86        0.96\n",
+            "                  bikini          50        0.56        0.88\n",
+            "             ring binder          50        0.64        0.84\n",
+            "              binoculars          50        0.54        0.78\n",
+            "               birdhouse          50        0.86        0.94\n",
+            "               boathouse          50        0.74        0.92\n",
+            "               bobsleigh          50        0.92        0.96\n",
+            "                bolo tie          50         0.8        0.94\n",
+            "             poke bonnet          50        0.64        0.86\n",
+            "                bookcase          50        0.66        0.92\n",
+            "               bookstore          50        0.62        0.88\n",
+            "              bottle cap          50        0.58         0.7\n",
+            "                     bow          50        0.72        0.86\n",
+            "                 bow tie          50         0.7         0.9\n",
+            "                   brass          50        0.92        0.96\n",
+            "                     bra          50         0.5         0.7\n",
+            "              breakwater          50        0.62        0.86\n",
+            "             breastplate          50         0.4         0.9\n",
+            "                   broom          50         0.6        0.86\n",
+            "                  bucket          50        0.66         0.8\n",
+            "                  buckle          50         0.5        0.68\n",
+            "        bulletproof vest          50         0.5        0.78\n",
+            "        high-speed train          50        0.94        0.96\n",
+            "            butcher shop          50        0.74        0.94\n",
+            "                 taxicab          50        0.64        0.86\n",
+            "                cauldron          50        0.44        0.66\n",
+            "                  candle          50        0.48        0.74\n",
+            "                  cannon          50        0.88        0.94\n",
+            "                   canoe          50        0.94           1\n",
+            "              can opener          50        0.66        0.86\n",
+            "                cardigan          50        0.68         0.8\n",
+            "              car mirror          50        0.94        0.96\n",
+            "                carousel          50        0.94        0.98\n",
+            "                tool kit          50        0.56        0.78\n",
+            "                  carton          50        0.42         0.7\n",
+            "               car wheel          50        0.38        0.74\n",
+            "automated teller machine          50        0.76        0.94\n",
+            "                cassette          50        0.52         0.8\n",
+            "         cassette player          50        0.28         0.9\n",
+            "                  castle          50        0.78        0.88\n",
+            "               catamaran          50        0.78           1\n",
+            "               CD player          50        0.52        0.82\n",
+            "                   cello          50        0.82           1\n",
+            "            mobile phone          50        0.68        0.86\n",
+            "                   chain          50        0.38        0.66\n",
+            "        chain-link fence          50         0.7        0.84\n",
+            "              chain mail          50        0.64         0.9\n",
+            "                chainsaw          50        0.84        0.92\n",
+            "                   chest          50        0.68        0.92\n",
+            "              chiffonier          50        0.26        0.64\n",
+            "                   chime          50        0.62        0.84\n",
+            "           china cabinet          50        0.82        0.96\n",
+            "      Christmas stocking          50        0.92        0.94\n",
+            "                  church          50        0.62         0.9\n",
+            "           movie theater          50        0.58        0.88\n",
+            "                 cleaver          50        0.32        0.62\n",
+            "          cliff dwelling          50        0.88           1\n",
+            "                   cloak          50        0.32        0.64\n",
+            "                   clogs          50        0.58        0.88\n",
+            "         cocktail shaker          50        0.62         0.7\n",
+            "              coffee mug          50        0.44        0.72\n",
+            "             coffeemaker          50        0.64        0.92\n",
+            "                    coil          50        0.66        0.84\n",
+            "        combination lock          50        0.64        0.84\n",
+            "       computer keyboard          50         0.7        0.82\n",
+            "     confectionery store          50        0.54        0.86\n",
+            "          container ship          50        0.82        0.98\n",
+            "             convertible          50        0.78        0.98\n",
+            "               corkscrew          50        0.82        0.92\n",
+            "                  cornet          50        0.46        0.88\n",
+            "             cowboy boot          50        0.64         0.8\n",
+            "              cowboy hat          50        0.64        0.82\n",
+            "                  cradle          50        0.38         0.8\n",
+            "         crane (machine)          50        0.78        0.94\n",
+            "            crash helmet          50        0.92        0.96\n",
+            "                   crate          50        0.52        0.82\n",
+            "              infant bed          50        0.74           1\n",
+            "               Crock Pot          50        0.78         0.9\n",
+            "            croquet ball          50         0.9        0.96\n",
+            "                  crutch          50        0.46         0.7\n",
+            "                 cuirass          50        0.54        0.86\n",
+            "                     dam          50        0.74        0.92\n",
+            "                    desk          50         0.6        0.86\n",
+            "        desktop computer          50        0.54        0.94\n",
+            "   rotary dial telephone          50        0.88        0.94\n",
+            "                  diaper          50        0.68        0.84\n",
+            "           digital clock          50        0.54        0.76\n",
+            "           digital watch          50        0.58        0.86\n",
+            "            dining table          50        0.76         0.9\n",
+            "               dishcloth          50        0.94           1\n",
+            "              dishwasher          50        0.44        0.78\n",
+            "              disc brake          50        0.98           1\n",
+            "                    dock          50        0.54        0.94\n",
+            "                dog sled          50        0.84           1\n",
+            "                    dome          50        0.72        0.92\n",
+            "                 doormat          50        0.56        0.82\n",
+            "            drilling rig          50        0.84        0.96\n",
+            "                    drum          50        0.38        0.68\n",
+            "               drumstick          50        0.56        0.72\n",
+            "                dumbbell          50        0.62         0.9\n",
+            "              Dutch oven          50         0.7        0.84\n",
+            "            electric fan          50        0.82        0.86\n",
+            "         electric guitar          50        0.62        0.84\n",
+            "     electric locomotive          50        0.92        0.98\n",
+            "    entertainment center          50         0.9        0.98\n",
+            "                envelope          50        0.44        0.86\n",
+            "        espresso machine          50        0.72        0.94\n",
+            "             face powder          50         0.7        0.92\n",
+            "             feather boa          50         0.7        0.84\n",
+            "          filing cabinet          50        0.88        0.98\n",
+            "                fireboat          50        0.94        0.98\n",
+            "             fire engine          50        0.84         0.9\n",
+            "       fire screen sheet          50        0.62        0.76\n",
+            "                flagpole          50        0.74        0.88\n",
+            "                   flute          50        0.36        0.72\n",
+            "           folding chair          50        0.62        0.84\n",
+            "         football helmet          50        0.86        0.94\n",
+            "                forklift          50         0.8        0.92\n",
+            "                fountain          50        0.84        0.94\n",
+            "            fountain pen          50        0.76        0.92\n",
+            "         four-poster bed          50        0.78        0.94\n",
+            "             freight car          50        0.96           1\n",
+            "             French horn          50        0.76        0.92\n",
+            "              frying pan          50        0.36        0.78\n",
+            "                fur coat          50        0.84        0.96\n",
+            "           garbage truck          50         0.9        0.98\n",
+            "                gas mask          50        0.84        0.92\n",
+            "                gas pump          50         0.9        0.98\n",
+            "                  goblet          50        0.68        0.82\n",
+            "                 go-kart          50         0.9           1\n",
+            "               golf ball          50        0.84         0.9\n",
+            "               golf cart          50        0.78        0.86\n",
+            "                 gondola          50        0.98        0.98\n",
+            "                    gong          50        0.74        0.92\n",
+            "                    gown          50        0.62        0.96\n",
+            "             grand piano          50         0.7        0.96\n",
+            "              greenhouse          50         0.8        0.98\n",
+            "                  grille          50        0.72         0.9\n",
+            "           grocery store          50        0.66        0.94\n",
+            "              guillotine          50        0.86        0.92\n",
+            "                barrette          50        0.52        0.66\n",
+            "              hair spray          50         0.5        0.74\n",
+            "              half-track          50        0.78         0.9\n",
+            "                  hammer          50        0.56        0.76\n",
+            "                  hamper          50        0.64        0.84\n",
+            "              hair dryer          50        0.56        0.74\n",
+            "      hand-held computer          50        0.42        0.86\n",
+            "            handkerchief          50        0.78        0.94\n",
+            "         hard disk drive          50        0.76        0.84\n",
+            "               harmonica          50         0.7        0.88\n",
+            "                    harp          50        0.88        0.96\n",
+            "               harvester          50        0.78           1\n",
+            "                 hatchet          50        0.54        0.74\n",
+            "                 holster          50        0.66        0.84\n",
+            "            home theater          50        0.64        0.94\n",
+            "               honeycomb          50        0.56        0.88\n",
+            "                    hook          50         0.3         0.6\n",
+            "              hoop skirt          50        0.64        0.86\n",
+            "          horizontal bar          50        0.68        0.98\n",
+            "     horse-drawn vehicle          50        0.88        0.94\n",
+            "               hourglass          50        0.88        0.96\n",
+            "                    iPod          50        0.76        0.94\n",
+            "            clothes iron          50        0.82        0.88\n",
+            "         jack-o'-lantern          50        0.98        0.98\n",
+            "                   jeans          50        0.68        0.84\n",
+            "                    jeep          50        0.72         0.9\n",
+            "                 T-shirt          50        0.72        0.96\n",
+            "           jigsaw puzzle          50        0.84        0.94\n",
+            "         pulled rickshaw          50        0.86        0.94\n",
+            "                joystick          50         0.8         0.9\n",
+            "                  kimono          50        0.84        0.96\n",
+            "                knee pad          50        0.62        0.88\n",
+            "                    knot          50        0.66         0.8\n",
+            "                lab coat          50         0.8        0.96\n",
+            "                   ladle          50        0.36        0.64\n",
+            "               lampshade          50        0.48        0.84\n",
+            "         laptop computer          50        0.26        0.88\n",
+            "              lawn mower          50        0.78        0.96\n",
+            "                lens cap          50        0.46        0.72\n",
+            "             paper knife          50        0.26         0.5\n",
+            "                 library          50        0.54         0.9\n",
+            "                lifeboat          50        0.92        0.98\n",
+            "                 lighter          50        0.56        0.78\n",
+            "               limousine          50        0.76        0.92\n",
+            "             ocean liner          50        0.88        0.94\n",
+            "                lipstick          50        0.74         0.9\n",
+            "            slip-on shoe          50        0.74        0.92\n",
+            "                  lotion          50         0.5        0.86\n",
+            "                 speaker          50        0.52        0.68\n",
+            "                   loupe          50        0.32        0.52\n",
+            "                 sawmill          50        0.72         0.9\n",
+            "        magnetic compass          50        0.52        0.82\n",
+            "                mail bag          50        0.68        0.92\n",
+            "                 mailbox          50        0.82        0.92\n",
+            "                  tights          50        0.22        0.94\n",
+            "               tank suit          50        0.24         0.9\n",
+            "           manhole cover          50        0.96        0.98\n",
+            "                  maraca          50        0.74         0.9\n",
+            "                 marimba          50        0.84        0.94\n",
+            "                    mask          50        0.44        0.82\n",
+            "                   match          50        0.66         0.9\n",
+            "                 maypole          50        0.96           1\n",
+            "                    maze          50         0.8        0.96\n",
+            "           measuring cup          50        0.54        0.76\n",
+            "          medicine chest          50         0.6        0.84\n",
+            "                megalith          50         0.8        0.92\n",
+            "              microphone          50        0.52         0.7\n",
+            "          microwave oven          50        0.48        0.72\n",
+            "        military uniform          50        0.62        0.84\n",
+            "                milk can          50        0.68        0.82\n",
+            "                 minibus          50         0.7           1\n",
+            "               miniskirt          50        0.46        0.76\n",
+            "                 minivan          50        0.38         0.8\n",
+            "                 missile          50         0.4        0.84\n",
+            "                  mitten          50        0.76        0.88\n",
+            "             mixing bowl          50         0.8        0.92\n",
+            "             mobile home          50        0.54        0.78\n",
+            "                 Model T          50        0.92        0.96\n",
+            "                   modem          50        0.58        0.86\n",
+            "               monastery          50        0.44         0.9\n",
+            "                 monitor          50         0.4        0.86\n",
+            "                   moped          50        0.56        0.94\n",
+            "                  mortar          50        0.68        0.94\n",
+            "     square academic cap          50         0.5        0.84\n",
+            "                  mosque          50         0.9           1\n",
+            "            mosquito net          50         0.9        0.98\n",
+            "                 scooter          50         0.9        0.98\n",
+            "           mountain bike          50        0.78        0.96\n",
+            "                    tent          50        0.88        0.96\n",
+            "          computer mouse          50        0.42        0.82\n",
+            "               mousetrap          50        0.76        0.88\n",
+            "              moving van          50         0.4        0.72\n",
+            "                  muzzle          50         0.5        0.72\n",
+            "                    nail          50        0.68        0.74\n",
+            "              neck brace          50        0.56        0.68\n",
+            "                necklace          50        0.86           1\n",
+            "                  nipple          50         0.7        0.88\n",
+            "       notebook computer          50        0.34        0.84\n",
+            "                 obelisk          50         0.8        0.92\n",
+            "                    oboe          50         0.6        0.84\n",
+            "                 ocarina          50         0.8        0.86\n",
+            "                odometer          50        0.96           1\n",
+            "              oil filter          50        0.58        0.82\n",
+            "                   organ          50        0.82         0.9\n",
+            "            oscilloscope          50         0.9        0.96\n",
+            "               overskirt          50         0.2         0.7\n",
+            "            bullock cart          50         0.7        0.94\n",
+            "             oxygen mask          50        0.46        0.84\n",
+            "                  packet          50         0.5        0.78\n",
+            "                  paddle          50        0.56        0.94\n",
+            "            paddle wheel          50        0.86        0.96\n",
+            "                 padlock          50        0.74        0.78\n",
+            "              paintbrush          50        0.62         0.8\n",
+            "                 pajamas          50        0.56        0.92\n",
+            "                  palace          50        0.64        0.96\n",
+            "               pan flute          50        0.84        0.86\n",
+            "             paper towel          50        0.66        0.84\n",
+            "               parachute          50        0.92        0.94\n",
+            "           parallel bars          50        0.62        0.96\n",
+            "              park bench          50        0.74         0.9\n",
+            "           parking meter          50        0.84        0.92\n",
+            "           passenger car          50         0.5        0.82\n",
+            "                   patio          50        0.58        0.84\n",
+            "                payphone          50        0.74        0.92\n",
+            "                pedestal          50        0.52         0.9\n",
+            "             pencil case          50        0.64        0.92\n",
+            "        pencil sharpener          50        0.52        0.78\n",
+            "                 perfume          50         0.7         0.9\n",
+            "              Petri dish          50         0.6         0.8\n",
+            "             photocopier          50        0.88        0.98\n",
+            "                plectrum          50         0.7        0.84\n",
+            "             Pickelhaube          50        0.72        0.86\n",
+            "            picket fence          50        0.84        0.94\n",
+            "            pickup truck          50        0.64        0.92\n",
+            "                    pier          50        0.52        0.82\n",
+            "              piggy bank          50        0.82        0.94\n",
+            "             pill bottle          50        0.76        0.86\n",
+            "                  pillow          50        0.76         0.9\n",
+            "          ping-pong ball          50        0.84        0.88\n",
+            "                pinwheel          50        0.76        0.88\n",
+            "             pirate ship          50        0.76        0.94\n",
+            "                 pitcher          50        0.46        0.84\n",
+            "              hand plane          50        0.84        0.94\n",
+            "             planetarium          50        0.88        0.98\n",
+            "             plastic bag          50        0.36        0.62\n",
+            "              plate rack          50        0.52        0.78\n",
+            "                    plow          50        0.78        0.88\n",
+            "                 plunger          50        0.42         0.7\n",
+            "         Polaroid camera          50        0.84        0.92\n",
+            "                    pole          50        0.38        0.74\n",
+            "              police van          50        0.76        0.94\n",
+            "                  poncho          50        0.58        0.86\n",
+            "          billiard table          50         0.8        0.88\n",
+            "             soda bottle          50        0.56        0.94\n",
+            "                     pot          50        0.78        0.92\n",
+            "          potter's wheel          50         0.9        0.94\n",
+            "             power drill          50        0.42        0.72\n",
+            "              prayer rug          50         0.7        0.86\n",
+            "                 printer          50        0.54        0.86\n",
+            "                  prison          50         0.7         0.9\n",
+            "              projectile          50        0.28         0.9\n",
+            "               projector          50        0.62        0.84\n",
+            "             hockey puck          50        0.92        0.96\n",
+            "            punching bag          50         0.6        0.68\n",
+            "                   purse          50        0.42        0.78\n",
+            "                   quill          50        0.68        0.84\n",
+            "                   quilt          50        0.64         0.9\n",
+            "                race car          50        0.72        0.92\n",
+            "                  racket          50        0.72         0.9\n",
+            "                radiator          50        0.66        0.76\n",
+            "                   radio          50        0.64        0.92\n",
+            "         radio telescope          50         0.9        0.96\n",
+            "             rain barrel          50         0.8        0.98\n",
+            "    recreational vehicle          50        0.84        0.94\n",
+            "                    reel          50        0.72        0.82\n",
+            "           reflex camera          50        0.72        0.92\n",
+            "            refrigerator          50         0.7         0.9\n",
+            "          remote control          50         0.7        0.88\n",
+            "              restaurant          50         0.5        0.66\n",
+            "                revolver          50        0.82           1\n",
+            "                   rifle          50        0.38         0.7\n",
+            "           rocking chair          50        0.62        0.84\n",
+            "              rotisserie          50        0.88        0.92\n",
+            "                  eraser          50        0.54        0.76\n",
+            "              rugby ball          50        0.86        0.94\n",
+            "                   ruler          50        0.68        0.86\n",
+            "            running shoe          50        0.78        0.94\n",
+            "                    safe          50        0.82        0.92\n",
+            "              safety pin          50         0.4        0.62\n",
+            "             salt shaker          50        0.66         0.9\n",
+            "                  sandal          50        0.66        0.86\n",
+            "                  sarong          50        0.64        0.86\n",
+            "               saxophone          50        0.66        0.88\n",
+            "                scabbard          50        0.76        0.92\n",
+            "          weighing scale          50        0.58        0.78\n",
+            "              school bus          50        0.92           1\n",
+            "                schooner          50        0.84           1\n",
+            "              scoreboard          50         0.9        0.96\n",
+            "              CRT screen          50        0.14         0.7\n",
+            "                   screw          50         0.9        0.98\n",
+            "             screwdriver          50         0.3        0.58\n",
+            "               seat belt          50        0.88        0.94\n",
+            "          sewing machine          50        0.76         0.9\n",
+            "                  shield          50        0.56        0.82\n",
+            "              shoe store          50        0.78        0.96\n",
+            "                   shoji          50         0.8        0.92\n",
+            "         shopping basket          50        0.52        0.88\n",
+            "           shopping cart          50        0.76        0.92\n",
+            "                  shovel          50        0.62        0.84\n",
+            "              shower cap          50         0.7        0.84\n",
+            "          shower curtain          50        0.64        0.82\n",
+            "                     ski          50        0.74        0.92\n",
+            "                ski mask          50        0.72        0.88\n",
+            "            sleeping bag          50        0.68         0.8\n",
+            "              slide rule          50        0.72        0.88\n",
+            "            sliding door          50        0.44        0.78\n",
+            "            slot machine          50        0.94        0.98\n",
+            "                 snorkel          50        0.86        0.98\n",
+            "              snowmobile          50        0.88           1\n",
+            "                snowplow          50        0.84        0.98\n",
+            "          soap dispenser          50        0.56        0.86\n",
+            "             soccer ball          50        0.86        0.96\n",
+            "                    sock          50        0.62        0.76\n",
+            " solar thermal collector          50        0.72        0.96\n",
+            "                sombrero          50         0.6        0.84\n",
+            "               soup bowl          50        0.56        0.94\n",
+            "               space bar          50        0.34        0.88\n",
+            "            space heater          50        0.52        0.74\n",
+            "           space shuttle          50        0.82        0.96\n",
+            "                 spatula          50         0.3         0.6\n",
+            "               motorboat          50        0.86           1\n",
+            "              spider web          50         0.7         0.9\n",
+            "                 spindle          50        0.86        0.98\n",
+            "              sports car          50         0.6        0.94\n",
+            "               spotlight          50        0.26         0.6\n",
+            "                   stage          50        0.68        0.86\n",
+            "        steam locomotive          50        0.94           1\n",
+            "     through arch bridge          50        0.84        0.96\n",
+            "              steel drum          50        0.82         0.9\n",
+            "             stethoscope          50         0.6        0.82\n",
+            "                   scarf          50         0.5        0.92\n",
+            "              stone wall          50        0.76         0.9\n",
+            "               stopwatch          50        0.58         0.9\n",
+            "                   stove          50        0.46        0.74\n",
+            "                strainer          50        0.64        0.84\n",
+            "                    tram          50        0.88        0.96\n",
+            "               stretcher          50         0.6         0.8\n",
+            "                   couch          50         0.8        0.96\n",
+            "                   stupa          50        0.88        0.88\n",
+            "               submarine          50        0.72        0.92\n",
+            "                    suit          50         0.4        0.78\n",
+            "                 sundial          50        0.58        0.74\n",
+            "                sunglass          50        0.14        0.58\n",
+            "              sunglasses          50        0.28        0.58\n",
+            "               sunscreen          50        0.32         0.7\n",
+            "       suspension bridge          50         0.6        0.94\n",
+            "                     mop          50        0.74        0.92\n",
+            "              sweatshirt          50        0.28        0.66\n",
+            "                swimsuit          50        0.52        0.82\n",
+            "                   swing          50        0.76        0.84\n",
+            "                  switch          50        0.56        0.76\n",
+            "                 syringe          50        0.62        0.82\n",
+            "              table lamp          50         0.6        0.88\n",
+            "                    tank          50         0.8        0.96\n",
+            "             tape player          50        0.46        0.76\n",
+            "                  teapot          50        0.84           1\n",
+            "              teddy bear          50        0.82        0.94\n",
+            "              television          50         0.6         0.9\n",
+            "             tennis ball          50         0.7        0.94\n",
+            "           thatched roof          50        0.88         0.9\n",
+            "           front curtain          50         0.8        0.92\n",
+            "                 thimble          50         0.6         0.8\n",
+            "       threshing machine          50        0.56        0.88\n",
+            "                  throne          50        0.72        0.82\n",
+            "               tile roof          50        0.72        0.94\n",
+            "                 toaster          50        0.66        0.84\n",
+            "            tobacco shop          50        0.42         0.7\n",
+            "             toilet seat          50        0.62        0.88\n",
+            "                   torch          50        0.64        0.84\n",
+            "              totem pole          50        0.92        0.98\n",
+            "               tow truck          50        0.62        0.88\n",
+            "               toy store          50         0.6        0.94\n",
+            "                 tractor          50        0.76        0.98\n",
+            "      semi-trailer truck          50        0.78        0.92\n",
+            "                    tray          50        0.46        0.64\n",
+            "             trench coat          50        0.54        0.72\n",
+            "                tricycle          50        0.72        0.94\n",
+            "                trimaran          50         0.7        0.98\n",
+            "                  tripod          50        0.58        0.86\n",
+            "          triumphal arch          50        0.92        0.98\n",
+            "              trolleybus          50         0.9           1\n",
+            "                trombone          50        0.54        0.88\n",
+            "                     tub          50        0.24        0.82\n",
+            "               turnstile          50        0.84        0.94\n",
+            "     typewriter keyboard          50        0.68        0.98\n",
+            "                umbrella          50        0.52         0.7\n",
+            "                unicycle          50        0.74        0.96\n",
+            "           upright piano          50        0.76         0.9\n",
+            "          vacuum cleaner          50        0.62         0.9\n",
+            "                    vase          50         0.5        0.78\n",
+            "                   vault          50        0.76        0.92\n",
+            "                  velvet          50         0.2        0.42\n",
+            "         vending machine          50         0.9           1\n",
+            "                vestment          50        0.54        0.82\n",
+            "                 viaduct          50        0.78        0.86\n",
+            "                  violin          50        0.68        0.78\n",
+            "              volleyball          50        0.86           1\n",
+            "             waffle iron          50        0.72        0.88\n",
+            "              wall clock          50        0.54        0.88\n",
+            "                  wallet          50        0.52         0.9\n",
+            "                wardrobe          50        0.68        0.88\n",
+            "       military aircraft          50         0.9        0.98\n",
+            "                    sink          50        0.72        0.96\n",
+            "         washing machine          50        0.78        0.94\n",
+            "            water bottle          50        0.54        0.74\n",
+            "               water jug          50        0.22        0.74\n",
+            "             water tower          50         0.9        0.96\n",
+            "             whiskey jug          50        0.64        0.74\n",
+            "                 whistle          50        0.72        0.84\n",
+            "                     wig          50        0.84         0.9\n",
+            "           window screen          50        0.68         0.8\n",
+            "            window shade          50        0.52        0.76\n",
+            "             Windsor tie          50        0.22        0.66\n",
+            "             wine bottle          50        0.42        0.82\n",
+            "                    wing          50        0.54        0.96\n",
+            "                     wok          50        0.46        0.82\n",
+            "            wooden spoon          50        0.58         0.8\n",
+            "                    wool          50        0.32        0.82\n",
+            "        split-rail fence          50        0.74         0.9\n",
+            "               shipwreck          50        0.84        0.96\n",
+            "                    yawl          50        0.78        0.96\n",
+            "                    yurt          50        0.84           1\n",
+            "                 website          50        0.98           1\n",
+            "              comic book          50        0.62         0.9\n",
+            "               crossword          50        0.84        0.88\n",
+            "            traffic sign          50        0.78         0.9\n",
+            "           traffic light          50         0.8        0.94\n",
+            "             dust jacket          50        0.72        0.94\n",
+            "                    menu          50        0.82        0.96\n",
+            "                   plate          50        0.44        0.88\n",
+            "               guacamole          50         0.8        0.92\n",
+            "                consomme          50        0.54        0.88\n",
+            "                 hot pot          50        0.86        0.98\n",
+            "                  trifle          50        0.92        0.98\n",
+            "               ice cream          50        0.68        0.94\n",
+            "                 ice pop          50        0.62        0.84\n",
+            "                baguette          50        0.62        0.88\n",
+            "                   bagel          50        0.64        0.92\n",
+            "                 pretzel          50        0.72        0.88\n",
+            "            cheeseburger          50         0.9           1\n",
+            "                 hot dog          50        0.74        0.94\n",
+            "           mashed potato          50        0.74         0.9\n",
+            "                 cabbage          50        0.84        0.96\n",
+            "                broccoli          50         0.9        0.96\n",
+            "             cauliflower          50        0.82           1\n",
+            "                zucchini          50        0.74         0.9\n",
+            "        spaghetti squash          50         0.8        0.96\n",
+            "            acorn squash          50        0.82        0.96\n",
+            "        butternut squash          50         0.7        0.94\n",
+            "                cucumber          50         0.6        0.96\n",
+            "               artichoke          50        0.84        0.94\n",
+            "             bell pepper          50        0.84        0.98\n",
+            "                 cardoon          50        0.88        0.94\n",
+            "                mushroom          50        0.38        0.92\n",
+            "            Granny Smith          50         0.9        0.96\n",
+            "              strawberry          50         0.6        0.88\n",
+            "                  orange          50         0.7        0.92\n",
+            "                   lemon          50        0.78        0.98\n",
+            "                     fig          50        0.82        0.96\n",
+            "               pineapple          50        0.86        0.96\n",
+            "                  banana          50        0.84        0.96\n",
+            "               jackfruit          50         0.9        0.98\n",
+            "           custard apple          50        0.86        0.96\n",
+            "             pomegranate          50        0.82        0.98\n",
+            "                     hay          50         0.8        0.92\n",
+            "               carbonara          50        0.88        0.94\n",
+            "         chocolate syrup          50        0.46        0.84\n",
+            "                   dough          50         0.4         0.6\n",
+            "                meatloaf          50        0.58        0.84\n",
+            "                   pizza          50        0.84        0.96\n",
+            "                 pot pie          50        0.68         0.9\n",
+            "                 burrito          50         0.8        0.98\n",
+            "                red wine          50        0.54        0.82\n",
+            "                espresso          50        0.64        0.88\n",
+            "                     cup          50        0.38         0.7\n",
+            "                  eggnog          50        0.38         0.7\n",
+            "                     alp          50        0.54        0.88\n",
+            "                  bubble          50         0.8        0.96\n",
+            "                   cliff          50        0.64           1\n",
+            "              coral reef          50        0.72        0.96\n",
+            "                  geyser          50        0.94           1\n",
+            "               lakeshore          50        0.54        0.88\n",
+            "              promontory          50        0.58        0.94\n",
+            "                   shoal          50         0.6        0.96\n",
+            "                seashore          50        0.44        0.78\n",
+            "                  valley          50        0.72        0.94\n",
+            "                 volcano          50        0.78        0.96\n",
+            "         baseball player          50        0.72        0.94\n",
+            "              bridegroom          50        0.72        0.88\n",
+            "             scuba diver          50         0.8           1\n",
+            "                rapeseed          50        0.94        0.98\n",
+            "                   daisy          50        0.96        0.98\n",
+            "   yellow lady's slipper          50           1           1\n",
+            "                    corn          50         0.4        0.88\n",
+            "                   acorn          50        0.92        0.98\n",
+            "                rose hip          50        0.92        0.98\n",
+            "     horse chestnut seed          50        0.94        0.98\n",
+            "            coral fungus          50        0.96        0.96\n",
+            "                  agaric          50        0.82        0.94\n",
+            "               gyromitra          50        0.98           1\n",
+            "      stinkhorn mushroom          50         0.8        0.94\n",
+            "              earth star          50        0.98           1\n",
+            "        hen-of-the-woods          50         0.8        0.96\n",
+            "                  bolete          50        0.74        0.94\n",
+            "                     ear          50        0.48        0.94\n",
+            "            toilet paper          50        0.36        0.68\n",
+            "Speed: 0.1ms pre-process, 0.3ms inference, 0.0ms post-process per image at shape (1, 3, 224, 224)\n",
+            "Results saved to \u001b[1mruns/val-cls/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Validate YOLOv5s on Imagenet val\n",
+        "!python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 --half"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s Classification model on the [Imagenette](https://image-net.org/) dataset with `--data imagenet`, starting from pretrained `--pretrained yolov5s-cls.pt`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **Training Results** are saved to `runs/train-cls/` with incrementing run directories, i.e. `runs/train-cls/exp2`, `runs/train-cls/exp3` etc.\n",
+        "<br><br>\n",
+        "\n",
+        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
+        "\n",
+        "## Train on Custom Data with Roboflow 🌟 NEW\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
+        "\n",
+        "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-classification-custom-data/](https://blog.roboflow.com/train-yolov5-classification-custom-data/?ref=ultralytics)\n",
+        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KZiKUAjtARHAfZCXbJRv14-pOnIsBLPV?usp=sharing)\n",
+        "<br>\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://user-images.githubusercontent.com/26833433/202802162-92e60571-ab58-4409-948d-b31fddcd3c6f.png\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "i3oKtE4g-aNn"
+      },
+      "outputs": [],
+      "source": [
+        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
+        "logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
+        "\n",
+        "if logger == 'Comet':\n",
+        "  %pip install -q comet_ml\n",
+        "  import comet_ml; comet_ml.init()\n",
+        "elif logger == 'ClearML':\n",
+        "  %pip install -q clearml\n",
+        "  import clearml; clearml.browser_login()\n",
+        "elif logger == 'TensorBoard':\n",
+        "  %load_ext tensorboard\n",
+        "  %tensorboard --logdir runs/train"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "1NcFxRcFdJ_O",
+        "outputId": "77c8d487-16db-4073-b3ea-06cabf2e7766"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mclassify/train: \u001b[0mmodel=yolov5s-cls.pt, data=imagenette160, epochs=5, batch_size=64, imgsz=224, nosave=False, cache=ram, device=, workers=8, project=runs/train-cls, name=exp, exist_ok=False, pretrained=True, optimizer=Adam, lr0=0.001, decay=5e-05, label_smoothing=0.1, cutoff=None, dropout=None, verbose=False, seed=0, local_rank=-1\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-cls', view at http://localhost:6006/\n",
+            "\n",
+            "Dataset not found ⚠ī¸, missing path /content/datasets/imagenette160, attempting download...\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenette160.zip to /content/datasets/imagenette160.zip...\n",
+            "100% 103M/103M [00:00<00:00, 347MB/s] \n",
+            "Unzipping /content/datasets/imagenette160.zip...\n",
+            "Dataset download success ✅ (3.3s), saved to \u001b[1m/content/datasets/imagenette160\u001b[0m\n",
+            "\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mRandomResizedCrop(p=1.0, height=224, width=224, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=1), HorizontalFlip(p=0.5), ColorJitter(p=0.5, brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=[0, 0]), Normalize(p=1.0, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0), ToTensorV2(always_apply=True, p=1.0, transpose_mask=False)\n",
+            "Model summary: 149 layers, 4185290 parameters, 4185290 gradients, 10.5 GFLOPs\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m Adam(lr=0.001) with parameter groups 32 weight(decay=0.0), 33 weight(decay=5e-05), 33 bias\n",
+            "Image sizes 224 train, 224 test\n",
+            "Using 1 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train-cls/exp\u001b[0m\n",
+            "Starting yolov5s-cls.pt training on imagenette160 dataset with 10 classes for 5 epochs...\n",
+            "\n",
+            "     Epoch   GPU_mem  train_loss    val_loss    top1_acc    top5_acc\n",
+            "       1/5     1.47G        1.05       0.974       0.828       0.975: 100% 148/148 [00:38<00:00,  3.82it/s]\n",
+            "       2/5     1.73G       0.895       0.766       0.911       0.994: 100% 148/148 [00:36<00:00,  4.03it/s]\n",
+            "       3/5     1.73G        0.82       0.704       0.934       0.996: 100% 148/148 [00:35<00:00,  4.20it/s]\n",
+            "       4/5     1.73G       0.766       0.664       0.951       0.998: 100% 148/148 [00:36<00:00,  4.05it/s]\n",
+            "       5/5     1.73G       0.724       0.634       0.959       0.997: 100% 148/148 [00:37<00:00,  3.94it/s]\n",
+            "\n",
+            "Training complete (0.052 hours)\n",
+            "Results saved to \u001b[1mruns/train-cls/exp\u001b[0m\n",
+            "Predict:         python classify/predict.py --weights runs/train-cls/exp/weights/best.pt --source im.jpg\n",
+            "Validate:        python classify/val.py --weights runs/train-cls/exp/weights/best.pt --data /content/datasets/imagenette160\n",
+            "Export:          python export.py --weights runs/train-cls/exp/weights/best.pt --include onnx\n",
+            "PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'runs/train-cls/exp/weights/best.pt')\n",
+            "Visualize:       https://netron.app\n",
+            "\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Train YOLOv5s Classification on Imagenette160 for 3 epochs\n",
+        "!python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 --cache"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "nWOsI5wJR1o3"
+      },
+      "source": [
+        "## Comet Logging and Visualization 🌟 NEW\n",
+        "\n",
+        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
+        "\n",
+        "Getting started is easy:\n",
+        "```shell\n",
+        "pip install comet_ml  # 1. install\n",
+        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
+        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
+        "```\n",
+        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
+        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
+        "\n",
+        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
+        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Lay2WsTjNJzP"
+      },
+      "source": [
+        "## ClearML Logging and Automation 🌟 NEW\n",
+        "\n",
+        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
+        "\n",
+        "- `pip install clearml`\n",
+        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
+        "\n",
+        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
+        "\n",
+        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
+        "\n",
+        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
+        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
+        "\n",
+        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
+        "\n",
+        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Additional content below."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "outputs": [],
+      "source": [
+        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
+        "import torch\n",
+        "\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True, trust_repo=True)  # or yolov5n - yolov5x6 or custom\n",
+        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
+        "results = model(im)  # inference\n",
+        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
+      ]
+    }
+  ],
+  "metadata": {
+    "accelerator": "GPU",
+    "colab": {
+      "name": "YOLOv5 Classification Tutorial",
+      "provenance": []
+    },
+    "kernelspec": {
+      "display_name": "Python 3 (ipykernel)",
+      "language": "python",
+      "name": "python3"
+    },
+    "language_info": {
+      "codemirror_mode": {
+        "name": "ipython",
+        "version": 3
+      },
+      "file_extension": ".py",
+      "mimetype": "text/x-python",
+      "name": "python",
+      "nbconvert_exporter": "python",
+      "pygments_lexer": "ipython3",
+      "version": "3.7.12"
+    }
+  },
+  "nbformat": 4,
+  "nbformat_minor": 0
+}
diff --git a/yolov5/classify/val.py b/yolov5/classify/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..427618791d65cee12bb0cf689492ff0fe2b6060b
--- /dev/null
+++ b/yolov5/classify/val.py
@@ -0,0 +1,177 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Validate a trained YOLOv5 classification model on a classification dataset.
+
+Usage:
+    $ bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
+    $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate ImageNet
+
+Usage - formats:
+    $ python classify/val.py --weights yolov5s-cls.pt                 # PyTorch
+                                       yolov5s-cls.torchscript        # TorchScript
+                                       yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                       yolov5s-cls_openvino_model     # OpenVINO
+                                       yolov5s-cls.engine             # TensorRT
+                                       yolov5s-cls.mlmodel            # CoreML (macOS-only)
+                                       yolov5s-cls_saved_model        # TensorFlow SavedModel
+                                       yolov5s-cls.pb                 # TensorFlow GraphDef
+                                       yolov5s-cls.tflite             # TensorFlow Lite
+                                       yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
+                                       yolov5s-cls_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import sys
+from pathlib import Path
+
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import create_classification_dataloader
+from utils.general import (
+    LOGGER,
+    TQDM_BAR_FORMAT,
+    Profile,
+    check_img_size,
+    check_requirements,
+    colorstr,
+    increment_path,
+    print_args,
+)
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    data=ROOT / "../datasets/mnist",  # dataset dir
+    weights=ROOT / "yolov5s-cls.pt",  # model.pt path(s)
+    batch_size=128,  # batch size
+    imgsz=224,  # inference size (pixels)
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    workers=8,  # max dataloader workers (per RANK in DDP mode)
+    verbose=False,  # verbose output
+    project=ROOT / "runs/val-cls",  # save to project/name
+    name="exp",  # save to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    model=None,
+    dataloader=None,
+    criterion=None,
+    pbar=None,
+):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != "cpu"  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        save_dir.mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
+
+        # Dataloader
+        data = Path(data)
+        test_dir = data / "test" if (data / "test").exists() else data / "val"  # data/test or data/val
+        dataloader = create_classification_dataloader(
+            path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers
+        )
+
+    model.eval()
+    pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device))
+    n = len(dataloader)  # number of batches
+    action = "validating" if dataloader.dataset.root.stem == "val" else "testing"
+    desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}"
+    bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
+    with torch.cuda.amp.autocast(enabled=device.type != "cpu"):
+        for images, labels in bar:
+            with dt[0]:
+                images, labels = images.to(device, non_blocking=True), labels.to(device)
+
+            with dt[1]:
+                y = model(images)
+
+            with dt[2]:
+                pred.append(y.argsort(1, descending=True)[:, :5])
+                targets.append(labels)
+                if criterion:
+                    loss += criterion(y, labels)
+
+    loss /= n
+    pred, targets = torch.cat(pred), torch.cat(targets)
+    correct = (targets[:, None] == pred).float()
+    acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
+    top1, top5 = acc.mean(0).tolist()
+
+    if pbar:
+        pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}"
+    if verbose:  # all classes
+        LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
+        LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
+        for i, c in model.names.items():
+            acc_i = acc[targets == i]
+            top1i, top5i = acc_i.mean(0).tolist()
+            LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}")
+
+        # Print results
+        t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt)  # speeds per image
+        shape = (1, 3, imgsz, imgsz)
+        LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t)
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+
+    return top1, top5, loss
+
+
+def parse_opt():
+    """Parses and returns command line arguments for YOLOv5 model evaluation and inference settings."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path")
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)")
+    parser.add_argument("--batch-size", type=int, default=128, help="batch size")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output")
+    parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
+    opt = parser.parse_args()
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes the YOLOv5 model prediction workflow, handling argument parsing and requirement checks."""
+    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/data/Argoverse.yaml b/yolov5/data/Argoverse.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..17b286cb7320b62c8053a256ce7e4bef49128220
--- /dev/null
+++ b/yolov5/data/Argoverse.yaml
@@ -0,0 +1,72 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
+# Example usage: python train.py --data Argoverse.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Argoverse  ← downloads here (31.3 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Argoverse # dataset root dir
+train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
+val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
+test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: bus
+  5: truck
+  6: traffic_light
+  7: stop_sign
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def argoverse2yolo(set):
+      labels = {}
+      a = json.load(open(set, "rb"))
+      for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
+          img_id = annot['image_id']
+          img_name = a['images'][img_id]['name']
+          img_label_name = f'{img_name[:-3]}txt'
+
+          cls = annot['category_id']  # instance class id
+          x_center, y_center, width, height = annot['bbox']
+          x_center = (x_center + width / 2) / 1920.0  # offset and scale
+          y_center = (y_center + height / 2) / 1200.0  # offset and scale
+          width /= 1920.0  # scale
+          height /= 1200.0  # scale
+
+          img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
+          if not img_dir.exists():
+              img_dir.mkdir(parents=True, exist_ok=True)
+
+          k = str(img_dir / img_label_name)
+          if k not in labels:
+              labels[k] = []
+          labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
+
+      for k in labels:
+          with open(k, "w") as f:
+              f.writelines(labels[k])
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
+  download(urls, dir=dir, delete=False)
+
+  # Convert
+  annotations_dir = 'Argoverse-HD/annotations/'
+  (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images')  # rename 'tracking' to 'images'
+  for d in "train.json", "val.json":
+      argoverse2yolo(dir / annotations_dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/yolov5/data/GlobalWheat2020.yaml b/yolov5/data/GlobalWheat2020.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..36d79302fc8740eb02e398db42a2e02db6278c37
--- /dev/null
+++ b/yolov5/data/GlobalWheat2020.yaml
@@ -0,0 +1,52 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
+# Example usage: python train.py --data GlobalWheat2020.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── GlobalWheat2020  ← downloads here (7.0 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/GlobalWheat2020 # dataset root dir
+train: # train images (relative to 'path') 3422 images
+  - images/arvalis_1
+  - images/arvalis_2
+  - images/arvalis_3
+  - images/ethz_1
+  - images/rres_1
+  - images/inrae_1
+  - images/usask_1
+val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
+  - images/ethz_1
+test: # test images (optional) 1276 images
+  - images/utokyo_1
+  - images/utokyo_2
+  - images/nau_1
+  - images/uq_1
+
+# Classes
+names:
+  0: wheat_head
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from utils.general import download, Path
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
+  download(urls, dir=dir)
+
+  # Make Directories
+  for p in 'annotations', 'images', 'labels':
+      (dir / p).mkdir(parents=True, exist_ok=True)
+
+  # Move
+  for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
+           'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
+      (dir / p).rename(dir / 'images' / p)  # move to /images
+      f = (dir / p).with_suffix('.json')  # json file
+      if f.exists():
+          f.rename((dir / 'annotations' / p).with_suffix('.json'))  # move to /annotations
diff --git a/yolov5/data/ImageNet.yaml b/yolov5/data/ImageNet.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fee72c796a1d3d5e5a0babf8be5414e9487f335f
--- /dev/null
+++ b/yolov5/data/ImageNet.yaml
@@ -0,0 +1,1020 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
+# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
+# Example usage: python classify/train.py --data imagenet
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here (144 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/imagenet # dataset root dir
+train: train # train images (relative to 'path') 1281167 images
+val: val # val images (relative to 'path') 50000 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: tench
+  1: goldfish
+  2: great white shark
+  3: tiger shark
+  4: hammerhead shark
+  5: electric ray
+  6: stingray
+  7: cock
+  8: hen
+  9: ostrich
+  10: brambling
+  11: goldfinch
+  12: house finch
+  13: junco
+  14: indigo bunting
+  15: American robin
+  16: bulbul
+  17: jay
+  18: magpie
+  19: chickadee
+  20: American dipper
+  21: kite
+  22: bald eagle
+  23: vulture
+  24: great grey owl
+  25: fire salamander
+  26: smooth newt
+  27: newt
+  28: spotted salamander
+  29: axolotl
+  30: American bullfrog
+  31: tree frog
+  32: tailed frog
+  33: loggerhead sea turtle
+  34: leatherback sea turtle
+  35: mud turtle
+  36: terrapin
+  37: box turtle
+  38: banded gecko
+  39: green iguana
+  40: Carolina anole
+  41: desert grassland whiptail lizard
+  42: agama
+  43: frilled-necked lizard
+  44: alligator lizard
+  45: Gila monster
+  46: European green lizard
+  47: chameleon
+  48: Komodo dragon
+  49: Nile crocodile
+  50: American alligator
+  51: triceratops
+  52: worm snake
+  53: ring-necked snake
+  54: eastern hog-nosed snake
+  55: smooth green snake
+  56: kingsnake
+  57: garter snake
+  58: water snake
+  59: vine snake
+  60: night snake
+  61: boa constrictor
+  62: African rock python
+  63: Indian cobra
+  64: green mamba
+  65: sea snake
+  66: Saharan horned viper
+  67: eastern diamondback rattlesnake
+  68: sidewinder
+  69: trilobite
+  70: harvestman
+  71: scorpion
+  72: yellow garden spider
+  73: barn spider
+  74: European garden spider
+  75: southern black widow
+  76: tarantula
+  77: wolf spider
+  78: tick
+  79: centipede
+  80: black grouse
+  81: ptarmigan
+  82: ruffed grouse
+  83: prairie grouse
+  84: peacock
+  85: quail
+  86: partridge
+  87: grey parrot
+  88: macaw
+  89: sulphur-crested cockatoo
+  90: lorikeet
+  91: coucal
+  92: bee eater
+  93: hornbill
+  94: hummingbird
+  95: jacamar
+  96: toucan
+  97: duck
+  98: red-breasted merganser
+  99: goose
+  100: black swan
+  101: tusker
+  102: echidna
+  103: platypus
+  104: wallaby
+  105: koala
+  106: wombat
+  107: jellyfish
+  108: sea anemone
+  109: brain coral
+  110: flatworm
+  111: nematode
+  112: conch
+  113: snail
+  114: slug
+  115: sea slug
+  116: chiton
+  117: chambered nautilus
+  118: Dungeness crab
+  119: rock crab
+  120: fiddler crab
+  121: red king crab
+  122: American lobster
+  123: spiny lobster
+  124: crayfish
+  125: hermit crab
+  126: isopod
+  127: white stork
+  128: black stork
+  129: spoonbill
+  130: flamingo
+  131: little blue heron
+  132: great egret
+  133: bittern
+  134: crane (bird)
+  135: limpkin
+  136: common gallinule
+  137: American coot
+  138: bustard
+  139: ruddy turnstone
+  140: dunlin
+  141: common redshank
+  142: dowitcher
+  143: oystercatcher
+  144: pelican
+  145: king penguin
+  146: albatross
+  147: grey whale
+  148: killer whale
+  149: dugong
+  150: sea lion
+  151: Chihuahua
+  152: Japanese Chin
+  153: Maltese
+  154: Pekingese
+  155: Shih Tzu
+  156: King Charles Spaniel
+  157: Papillon
+  158: toy terrier
+  159: Rhodesian Ridgeback
+  160: Afghan Hound
+  161: Basset Hound
+  162: Beagle
+  163: Bloodhound
+  164: Bluetick Coonhound
+  165: Black and Tan Coonhound
+  166: Treeing Walker Coonhound
+  167: English foxhound
+  168: Redbone Coonhound
+  169: borzoi
+  170: Irish Wolfhound
+  171: Italian Greyhound
+  172: Whippet
+  173: Ibizan Hound
+  174: Norwegian Elkhound
+  175: Otterhound
+  176: Saluki
+  177: Scottish Deerhound
+  178: Weimaraner
+  179: Staffordshire Bull Terrier
+  180: American Staffordshire Terrier
+  181: Bedlington Terrier
+  182: Border Terrier
+  183: Kerry Blue Terrier
+  184: Irish Terrier
+  185: Norfolk Terrier
+  186: Norwich Terrier
+  187: Yorkshire Terrier
+  188: Wire Fox Terrier
+  189: Lakeland Terrier
+  190: Sealyham Terrier
+  191: Airedale Terrier
+  192: Cairn Terrier
+  193: Australian Terrier
+  194: Dandie Dinmont Terrier
+  195: Boston Terrier
+  196: Miniature Schnauzer
+  197: Giant Schnauzer
+  198: Standard Schnauzer
+  199: Scottish Terrier
+  200: Tibetan Terrier
+  201: Australian Silky Terrier
+  202: Soft-coated Wheaten Terrier
+  203: West Highland White Terrier
+  204: Lhasa Apso
+  205: Flat-Coated Retriever
+  206: Curly-coated Retriever
+  207: Golden Retriever
+  208: Labrador Retriever
+  209: Chesapeake Bay Retriever
+  210: German Shorthaired Pointer
+  211: Vizsla
+  212: English Setter
+  213: Irish Setter
+  214: Gordon Setter
+  215: Brittany
+  216: Clumber Spaniel
+  217: English Springer Spaniel
+  218: Welsh Springer Spaniel
+  219: Cocker Spaniels
+  220: Sussex Spaniel
+  221: Irish Water Spaniel
+  222: Kuvasz
+  223: Schipperke
+  224: Groenendael
+  225: Malinois
+  226: Briard
+  227: Australian Kelpie
+  228: Komondor
+  229: Old English Sheepdog
+  230: Shetland Sheepdog
+  231: collie
+  232: Border Collie
+  233: Bouvier des Flandres
+  234: Rottweiler
+  235: German Shepherd Dog
+  236: Dobermann
+  237: Miniature Pinscher
+  238: Greater Swiss Mountain Dog
+  239: Bernese Mountain Dog
+  240: Appenzeller Sennenhund
+  241: Entlebucher Sennenhund
+  242: Boxer
+  243: Bullmastiff
+  244: Tibetan Mastiff
+  245: French Bulldog
+  246: Great Dane
+  247: St. Bernard
+  248: husky
+  249: Alaskan Malamute
+  250: Siberian Husky
+  251: Dalmatian
+  252: Affenpinscher
+  253: Basenji
+  254: pug
+  255: Leonberger
+  256: Newfoundland
+  257: Pyrenean Mountain Dog
+  258: Samoyed
+  259: Pomeranian
+  260: Chow Chow
+  261: Keeshond
+  262: Griffon Bruxellois
+  263: Pembroke Welsh Corgi
+  264: Cardigan Welsh Corgi
+  265: Toy Poodle
+  266: Miniature Poodle
+  267: Standard Poodle
+  268: Mexican hairless dog
+  269: grey wolf
+  270: Alaskan tundra wolf
+  271: red wolf
+  272: coyote
+  273: dingo
+  274: dhole
+  275: African wild dog
+  276: hyena
+  277: red fox
+  278: kit fox
+  279: Arctic fox
+  280: grey fox
+  281: tabby cat
+  282: tiger cat
+  283: Persian cat
+  284: Siamese cat
+  285: Egyptian Mau
+  286: cougar
+  287: lynx
+  288: leopard
+  289: snow leopard
+  290: jaguar
+  291: lion
+  292: tiger
+  293: cheetah
+  294: brown bear
+  295: American black bear
+  296: polar bear
+  297: sloth bear
+  298: mongoose
+  299: meerkat
+  300: tiger beetle
+  301: ladybug
+  302: ground beetle
+  303: longhorn beetle
+  304: leaf beetle
+  305: dung beetle
+  306: rhinoceros beetle
+  307: weevil
+  308: fly
+  309: bee
+  310: ant
+  311: grasshopper
+  312: cricket
+  313: stick insect
+  314: cockroach
+  315: mantis
+  316: cicada
+  317: leafhopper
+  318: lacewing
+  319: dragonfly
+  320: damselfly
+  321: red admiral
+  322: ringlet
+  323: monarch butterfly
+  324: small white
+  325: sulphur butterfly
+  326: gossamer-winged butterfly
+  327: starfish
+  328: sea urchin
+  329: sea cucumber
+  330: cottontail rabbit
+  331: hare
+  332: Angora rabbit
+  333: hamster
+  334: porcupine
+  335: fox squirrel
+  336: marmot
+  337: beaver
+  338: guinea pig
+  339: common sorrel
+  340: zebra
+  341: pig
+  342: wild boar
+  343: warthog
+  344: hippopotamus
+  345: ox
+  346: water buffalo
+  347: bison
+  348: ram
+  349: bighorn sheep
+  350: Alpine ibex
+  351: hartebeest
+  352: impala
+  353: gazelle
+  354: dromedary
+  355: llama
+  356: weasel
+  357: mink
+  358: European polecat
+  359: black-footed ferret
+  360: otter
+  361: skunk
+  362: badger
+  363: armadillo
+  364: three-toed sloth
+  365: orangutan
+  366: gorilla
+  367: chimpanzee
+  368: gibbon
+  369: siamang
+  370: guenon
+  371: patas monkey
+  372: baboon
+  373: macaque
+  374: langur
+  375: black-and-white colobus
+  376: proboscis monkey
+  377: marmoset
+  378: white-headed capuchin
+  379: howler monkey
+  380: titi
+  381: Geoffroy's spider monkey
+  382: common squirrel monkey
+  383: ring-tailed lemur
+  384: indri
+  385: Asian elephant
+  386: African bush elephant
+  387: red panda
+  388: giant panda
+  389: snoek
+  390: eel
+  391: coho salmon
+  392: rock beauty
+  393: clownfish
+  394: sturgeon
+  395: garfish
+  396: lionfish
+  397: pufferfish
+  398: abacus
+  399: abaya
+  400: academic gown
+  401: accordion
+  402: acoustic guitar
+  403: aircraft carrier
+  404: airliner
+  405: airship
+  406: altar
+  407: ambulance
+  408: amphibious vehicle
+  409: analog clock
+  410: apiary
+  411: apron
+  412: waste container
+  413: assault rifle
+  414: backpack
+  415: bakery
+  416: balance beam
+  417: balloon
+  418: ballpoint pen
+  419: Band-Aid
+  420: banjo
+  421: baluster
+  422: barbell
+  423: barber chair
+  424: barbershop
+  425: barn
+  426: barometer
+  427: barrel
+  428: wheelbarrow
+  429: baseball
+  430: basketball
+  431: bassinet
+  432: bassoon
+  433: swimming cap
+  434: bath towel
+  435: bathtub
+  436: station wagon
+  437: lighthouse
+  438: beaker
+  439: military cap
+  440: beer bottle
+  441: beer glass
+  442: bell-cot
+  443: bib
+  444: tandem bicycle
+  445: bikini
+  446: ring binder
+  447: binoculars
+  448: birdhouse
+  449: boathouse
+  450: bobsleigh
+  451: bolo tie
+  452: poke bonnet
+  453: bookcase
+  454: bookstore
+  455: bottle cap
+  456: bow
+  457: bow tie
+  458: brass
+  459: bra
+  460: breakwater
+  461: breastplate
+  462: broom
+  463: bucket
+  464: buckle
+  465: bulletproof vest
+  466: high-speed train
+  467: butcher shop
+  468: taxicab
+  469: cauldron
+  470: candle
+  471: cannon
+  472: canoe
+  473: can opener
+  474: cardigan
+  475: car mirror
+  476: carousel
+  477: tool kit
+  478: carton
+  479: car wheel
+  480: automated teller machine
+  481: cassette
+  482: cassette player
+  483: castle
+  484: catamaran
+  485: CD player
+  486: cello
+  487: mobile phone
+  488: chain
+  489: chain-link fence
+  490: chain mail
+  491: chainsaw
+  492: chest
+  493: chiffonier
+  494: chime
+  495: china cabinet
+  496: Christmas stocking
+  497: church
+  498: movie theater
+  499: cleaver
+  500: cliff dwelling
+  501: cloak
+  502: clogs
+  503: cocktail shaker
+  504: coffee mug
+  505: coffeemaker
+  506: coil
+  507: combination lock
+  508: computer keyboard
+  509: confectionery store
+  510: container ship
+  511: convertible
+  512: corkscrew
+  513: cornet
+  514: cowboy boot
+  515: cowboy hat
+  516: cradle
+  517: crane (machine)
+  518: crash helmet
+  519: crate
+  520: infant bed
+  521: Crock Pot
+  522: croquet ball
+  523: crutch
+  524: cuirass
+  525: dam
+  526: desk
+  527: desktop computer
+  528: rotary dial telephone
+  529: diaper
+  530: digital clock
+  531: digital watch
+  532: dining table
+  533: dishcloth
+  534: dishwasher
+  535: disc brake
+  536: dock
+  537: dog sled
+  538: dome
+  539: doormat
+  540: drilling rig
+  541: drum
+  542: drumstick
+  543: dumbbell
+  544: Dutch oven
+  545: electric fan
+  546: electric guitar
+  547: electric locomotive
+  548: entertainment center
+  549: envelope
+  550: espresso machine
+  551: face powder
+  552: feather boa
+  553: filing cabinet
+  554: fireboat
+  555: fire engine
+  556: fire screen sheet
+  557: flagpole
+  558: flute
+  559: folding chair
+  560: football helmet
+  561: forklift
+  562: fountain
+  563: fountain pen
+  564: four-poster bed
+  565: freight car
+  566: French horn
+  567: frying pan
+  568: fur coat
+  569: garbage truck
+  570: gas mask
+  571: gas pump
+  572: goblet
+  573: go-kart
+  574: golf ball
+  575: golf cart
+  576: gondola
+  577: gong
+  578: gown
+  579: grand piano
+  580: greenhouse
+  581: grille
+  582: grocery store
+  583: guillotine
+  584: barrette
+  585: hair spray
+  586: half-track
+  587: hammer
+  588: hamper
+  589: hair dryer
+  590: hand-held computer
+  591: handkerchief
+  592: hard disk drive
+  593: harmonica
+  594: harp
+  595: harvester
+  596: hatchet
+  597: holster
+  598: home theater
+  599: honeycomb
+  600: hook
+  601: hoop skirt
+  602: horizontal bar
+  603: horse-drawn vehicle
+  604: hourglass
+  605: iPod
+  606: clothes iron
+  607: jack-o'-lantern
+  608: jeans
+  609: jeep
+  610: T-shirt
+  611: jigsaw puzzle
+  612: pulled rickshaw
+  613: joystick
+  614: kimono
+  615: knee pad
+  616: knot
+  617: lab coat
+  618: ladle
+  619: lampshade
+  620: laptop computer
+  621: lawn mower
+  622: lens cap
+  623: paper knife
+  624: library
+  625: lifeboat
+  626: lighter
+  627: limousine
+  628: ocean liner
+  629: lipstick
+  630: slip-on shoe
+  631: lotion
+  632: speaker
+  633: loupe
+  634: sawmill
+  635: magnetic compass
+  636: mail bag
+  637: mailbox
+  638: tights
+  639: tank suit
+  640: manhole cover
+  641: maraca
+  642: marimba
+  643: mask
+  644: match
+  645: maypole
+  646: maze
+  647: measuring cup
+  648: medicine chest
+  649: megalith
+  650: microphone
+  651: microwave oven
+  652: military uniform
+  653: milk can
+  654: minibus
+  655: miniskirt
+  656: minivan
+  657: missile
+  658: mitten
+  659: mixing bowl
+  660: mobile home
+  661: Model T
+  662: modem
+  663: monastery
+  664: monitor
+  665: moped
+  666: mortar
+  667: square academic cap
+  668: mosque
+  669: mosquito net
+  670: scooter
+  671: mountain bike
+  672: tent
+  673: computer mouse
+  674: mousetrap
+  675: moving van
+  676: muzzle
+  677: nail
+  678: neck brace
+  679: necklace
+  680: nipple
+  681: notebook computer
+  682: obelisk
+  683: oboe
+  684: ocarina
+  685: odometer
+  686: oil filter
+  687: organ
+  688: oscilloscope
+  689: overskirt
+  690: bullock cart
+  691: oxygen mask
+  692: packet
+  693: paddle
+  694: paddle wheel
+  695: padlock
+  696: paintbrush
+  697: pajamas
+  698: palace
+  699: pan flute
+  700: paper towel
+  701: parachute
+  702: parallel bars
+  703: park bench
+  704: parking meter
+  705: passenger car
+  706: patio
+  707: payphone
+  708: pedestal
+  709: pencil case
+  710: pencil sharpener
+  711: perfume
+  712: Petri dish
+  713: photocopier
+  714: plectrum
+  715: Pickelhaube
+  716: picket fence
+  717: pickup truck
+  718: pier
+  719: piggy bank
+  720: pill bottle
+  721: pillow
+  722: ping-pong ball
+  723: pinwheel
+  724: pirate ship
+  725: pitcher
+  726: hand plane
+  727: planetarium
+  728: plastic bag
+  729: plate rack
+  730: plow
+  731: plunger
+  732: Polaroid camera
+  733: pole
+  734: police van
+  735: poncho
+  736: billiard table
+  737: soda bottle
+  738: pot
+  739: potter's wheel
+  740: power drill
+  741: prayer rug
+  742: printer
+  743: prison
+  744: projectile
+  745: projector
+  746: hockey puck
+  747: punching bag
+  748: purse
+  749: quill
+  750: quilt
+  751: race car
+  752: racket
+  753: radiator
+  754: radio
+  755: radio telescope
+  756: rain barrel
+  757: recreational vehicle
+  758: reel
+  759: reflex camera
+  760: refrigerator
+  761: remote control
+  762: restaurant
+  763: revolver
+  764: rifle
+  765: rocking chair
+  766: rotisserie
+  767: eraser
+  768: rugby ball
+  769: ruler
+  770: running shoe
+  771: safe
+  772: safety pin
+  773: salt shaker
+  774: sandal
+  775: sarong
+  776: saxophone
+  777: scabbard
+  778: weighing scale
+  779: school bus
+  780: schooner
+  781: scoreboard
+  782: CRT screen
+  783: screw
+  784: screwdriver
+  785: seat belt
+  786: sewing machine
+  787: shield
+  788: shoe store
+  789: shoji
+  790: shopping basket
+  791: shopping cart
+  792: shovel
+  793: shower cap
+  794: shower curtain
+  795: ski
+  796: ski mask
+  797: sleeping bag
+  798: slide rule
+  799: sliding door
+  800: slot machine
+  801: snorkel
+  802: snowmobile
+  803: snowplow
+  804: soap dispenser
+  805: soccer ball
+  806: sock
+  807: solar thermal collector
+  808: sombrero
+  809: soup bowl
+  810: space bar
+  811: space heater
+  812: space shuttle
+  813: spatula
+  814: motorboat
+  815: spider web
+  816: spindle
+  817: sports car
+  818: spotlight
+  819: stage
+  820: steam locomotive
+  821: through arch bridge
+  822: steel drum
+  823: stethoscope
+  824: scarf
+  825: stone wall
+  826: stopwatch
+  827: stove
+  828: strainer
+  829: tram
+  830: stretcher
+  831: couch
+  832: stupa
+  833: submarine
+  834: suit
+  835: sundial
+  836: sunglass
+  837: sunglasses
+  838: sunscreen
+  839: suspension bridge
+  840: mop
+  841: sweatshirt
+  842: swimsuit
+  843: swing
+  844: switch
+  845: syringe
+  846: table lamp
+  847: tank
+  848: tape player
+  849: teapot
+  850: teddy bear
+  851: television
+  852: tennis ball
+  853: thatched roof
+  854: front curtain
+  855: thimble
+  856: threshing machine
+  857: throne
+  858: tile roof
+  859: toaster
+  860: tobacco shop
+  861: toilet seat
+  862: torch
+  863: totem pole
+  864: tow truck
+  865: toy store
+  866: tractor
+  867: semi-trailer truck
+  868: tray
+  869: trench coat
+  870: tricycle
+  871: trimaran
+  872: tripod
+  873: triumphal arch
+  874: trolleybus
+  875: trombone
+  876: tub
+  877: turnstile
+  878: typewriter keyboard
+  879: umbrella
+  880: unicycle
+  881: upright piano
+  882: vacuum cleaner
+  883: vase
+  884: vault
+  885: velvet
+  886: vending machine
+  887: vestment
+  888: viaduct
+  889: violin
+  890: volleyball
+  891: waffle iron
+  892: wall clock
+  893: wallet
+  894: wardrobe
+  895: military aircraft
+  896: sink
+  897: washing machine
+  898: water bottle
+  899: water jug
+  900: water tower
+  901: whiskey jug
+  902: whistle
+  903: wig
+  904: window screen
+  905: window shade
+  906: Windsor tie
+  907: wine bottle
+  908: wing
+  909: wok
+  910: wooden spoon
+  911: wool
+  912: split-rail fence
+  913: shipwreck
+  914: yawl
+  915: yurt
+  916: website
+  917: comic book
+  918: crossword
+  919: traffic sign
+  920: traffic light
+  921: dust jacket
+  922: menu
+  923: plate
+  924: guacamole
+  925: consomme
+  926: hot pot
+  927: trifle
+  928: ice cream
+  929: ice pop
+  930: baguette
+  931: bagel
+  932: pretzel
+  933: cheeseburger
+  934: hot dog
+  935: mashed potato
+  936: cabbage
+  937: broccoli
+  938: cauliflower
+  939: zucchini
+  940: spaghetti squash
+  941: acorn squash
+  942: butternut squash
+  943: cucumber
+  944: artichoke
+  945: bell pepper
+  946: cardoon
+  947: mushroom
+  948: Granny Smith
+  949: strawberry
+  950: orange
+  951: lemon
+  952: fig
+  953: pineapple
+  954: banana
+  955: jackfruit
+  956: custard apple
+  957: pomegranate
+  958: hay
+  959: carbonara
+  960: chocolate syrup
+  961: dough
+  962: meatloaf
+  963: pizza
+  964: pot pie
+  965: burrito
+  966: red wine
+  967: espresso
+  968: cup
+  969: eggnog
+  970: alp
+  971: bubble
+  972: cliff
+  973: coral reef
+  974: geyser
+  975: lakeshore
+  976: promontory
+  977: shoal
+  978: seashore
+  979: valley
+  980: volcano
+  981: baseball player
+  982: bridegroom
+  983: scuba diver
+  984: rapeseed
+  985: daisy
+  986: yellow lady's slipper
+  987: corn
+  988: acorn
+  989: rose hip
+  990: horse chestnut seed
+  991: coral fungus
+  992: agaric
+  993: gyromitra
+  994: stinkhorn mushroom
+  995: earth star
+  996: hen-of-the-woods
+  997: bolete
+  998: ear
+  999: toilet paper
+
+# Download script/URL (optional)
+download: data/scripts/get_imagenet.sh
diff --git a/yolov5/data/ImageNet10.yaml b/yolov5/data/ImageNet10.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a3f19342d6e8b42c3bd3e162d30ebf367e824153
--- /dev/null
+++ b/yolov5/data/ImageNet10.yaml
@@ -0,0 +1,30 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
+# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
+# Example usage: python classify/train.py --data imagenet
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet10  ← downloads here
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/imagenet10 # dataset root dir
+train: train # train images (relative to 'path') 1281167 images
+val: val # val images (relative to 'path') 50000 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: tench
+  1: goldfish
+  2: great white shark
+  3: tiger shark
+  4: hammerhead shark
+  5: electric ray
+  6: stingray
+  7: cock
+  8: hen
+  9: ostrich
+
+# Download script/URL (optional)
+download: data/scripts/get_imagenet10.sh
diff --git a/yolov5/data/ImageNet100.yaml b/yolov5/data/ImageNet100.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..68c86ed76853a4d4f5f0b13d3807df826997edfd
--- /dev/null
+++ b/yolov5/data/ImageNet100.yaml
@@ -0,0 +1,119 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
+# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
+# Example usage: python classify/train.py --data imagenet
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet100  ← downloads here
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/imagenet100 # dataset root dir
+train: train # train images (relative to 'path') 1281167 images
+val: val # val images (relative to 'path') 50000 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: tench
+  1: goldfish
+  2: great white shark
+  3: tiger shark
+  4: hammerhead shark
+  5: electric ray
+  6: stingray
+  7: cock
+  8: hen
+  9: ostrich
+  10: brambling
+  11: goldfinch
+  12: house finch
+  13: junco
+  14: indigo bunting
+  15: American robin
+  16: bulbul
+  17: jay
+  18: magpie
+  19: chickadee
+  20: American dipper
+  21: kite
+  22: bald eagle
+  23: vulture
+  24: great grey owl
+  25: fire salamander
+  26: smooth newt
+  27: newt
+  28: spotted salamander
+  29: axolotl
+  30: American bullfrog
+  31: tree frog
+  32: tailed frog
+  33: loggerhead sea turtle
+  34: leatherback sea turtle
+  35: mud turtle
+  36: terrapin
+  37: box turtle
+  38: banded gecko
+  39: green iguana
+  40: Carolina anole
+  41: desert grassland whiptail lizard
+  42: agama
+  43: frilled-necked lizard
+  44: alligator lizard
+  45: Gila monster
+  46: European green lizard
+  47: chameleon
+  48: Komodo dragon
+  49: Nile crocodile
+  50: American alligator
+  51: triceratops
+  52: worm snake
+  53: ring-necked snake
+  54: eastern hog-nosed snake
+  55: smooth green snake
+  56: kingsnake
+  57: garter snake
+  58: water snake
+  59: vine snake
+  60: night snake
+  61: boa constrictor
+  62: African rock python
+  63: Indian cobra
+  64: green mamba
+  65: sea snake
+  66: Saharan horned viper
+  67: eastern diamondback rattlesnake
+  68: sidewinder
+  69: trilobite
+  70: harvestman
+  71: scorpion
+  72: yellow garden spider
+  73: barn spider
+  74: European garden spider
+  75: southern black widow
+  76: tarantula
+  77: wolf spider
+  78: tick
+  79: centipede
+  80: black grouse
+  81: ptarmigan
+  82: ruffed grouse
+  83: prairie grouse
+  84: peacock
+  85: quail
+  86: partridge
+  87: grey parrot
+  88: macaw
+  89: sulphur-crested cockatoo
+  90: lorikeet
+  91: coucal
+  92: bee eater
+  93: hornbill
+  94: hummingbird
+  95: jacamar
+  96: toucan
+  97: duck
+  98: red-breasted merganser
+  99: goose
+# Download script/URL (optional)
+download: data/scripts/get_imagenet100.sh
diff --git a/yolov5/data/ImageNet1000.yaml b/yolov5/data/ImageNet1000.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c5224786a9e759f986939d3294d845a15c2081ef
--- /dev/null
+++ b/yolov5/data/ImageNet1000.yaml
@@ -0,0 +1,1020 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
+# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
+# Example usage: python classify/train.py --data imagenet
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet100  ← downloads here
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/imagenet1000 # dataset root dir
+train: train # train images (relative to 'path') 1281167 images
+val: val # val images (relative to 'path') 50000 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: tench
+  1: goldfish
+  2: great white shark
+  3: tiger shark
+  4: hammerhead shark
+  5: electric ray
+  6: stingray
+  7: cock
+  8: hen
+  9: ostrich
+  10: brambling
+  11: goldfinch
+  12: house finch
+  13: junco
+  14: indigo bunting
+  15: American robin
+  16: bulbul
+  17: jay
+  18: magpie
+  19: chickadee
+  20: American dipper
+  21: kite
+  22: bald eagle
+  23: vulture
+  24: great grey owl
+  25: fire salamander
+  26: smooth newt
+  27: newt
+  28: spotted salamander
+  29: axolotl
+  30: American bullfrog
+  31: tree frog
+  32: tailed frog
+  33: loggerhead sea turtle
+  34: leatherback sea turtle
+  35: mud turtle
+  36: terrapin
+  37: box turtle
+  38: banded gecko
+  39: green iguana
+  40: Carolina anole
+  41: desert grassland whiptail lizard
+  42: agama
+  43: frilled-necked lizard
+  44: alligator lizard
+  45: Gila monster
+  46: European green lizard
+  47: chameleon
+  48: Komodo dragon
+  49: Nile crocodile
+  50: American alligator
+  51: triceratops
+  52: worm snake
+  53: ring-necked snake
+  54: eastern hog-nosed snake
+  55: smooth green snake
+  56: kingsnake
+  57: garter snake
+  58: water snake
+  59: vine snake
+  60: night snake
+  61: boa constrictor
+  62: African rock python
+  63: Indian cobra
+  64: green mamba
+  65: sea snake
+  66: Saharan horned viper
+  67: eastern diamondback rattlesnake
+  68: sidewinder
+  69: trilobite
+  70: harvestman
+  71: scorpion
+  72: yellow garden spider
+  73: barn spider
+  74: European garden spider
+  75: southern black widow
+  76: tarantula
+  77: wolf spider
+  78: tick
+  79: centipede
+  80: black grouse
+  81: ptarmigan
+  82: ruffed grouse
+  83: prairie grouse
+  84: peacock
+  85: quail
+  86: partridge
+  87: grey parrot
+  88: macaw
+  89: sulphur-crested cockatoo
+  90: lorikeet
+  91: coucal
+  92: bee eater
+  93: hornbill
+  94: hummingbird
+  95: jacamar
+  96: toucan
+  97: duck
+  98: red-breasted merganser
+  99: goose
+  100: black swan
+  101: tusker
+  102: echidna
+  103: platypus
+  104: wallaby
+  105: koala
+  106: wombat
+  107: jellyfish
+  108: sea anemone
+  109: brain coral
+  110: flatworm
+  111: nematode
+  112: conch
+  113: snail
+  114: slug
+  115: sea slug
+  116: chiton
+  117: chambered nautilus
+  118: Dungeness crab
+  119: rock crab
+  120: fiddler crab
+  121: red king crab
+  122: American lobster
+  123: spiny lobster
+  124: crayfish
+  125: hermit crab
+  126: isopod
+  127: white stork
+  128: black stork
+  129: spoonbill
+  130: flamingo
+  131: little blue heron
+  132: great egret
+  133: bittern
+  134: crane (bird)
+  135: limpkin
+  136: common gallinule
+  137: American coot
+  138: bustard
+  139: ruddy turnstone
+  140: dunlin
+  141: common redshank
+  142: dowitcher
+  143: oystercatcher
+  144: pelican
+  145: king penguin
+  146: albatross
+  147: grey whale
+  148: killer whale
+  149: dugong
+  150: sea lion
+  151: Chihuahua
+  152: Japanese Chin
+  153: Maltese
+  154: Pekingese
+  155: Shih Tzu
+  156: King Charles Spaniel
+  157: Papillon
+  158: toy terrier
+  159: Rhodesian Ridgeback
+  160: Afghan Hound
+  161: Basset Hound
+  162: Beagle
+  163: Bloodhound
+  164: Bluetick Coonhound
+  165: Black and Tan Coonhound
+  166: Treeing Walker Coonhound
+  167: English foxhound
+  168: Redbone Coonhound
+  169: borzoi
+  170: Irish Wolfhound
+  171: Italian Greyhound
+  172: Whippet
+  173: Ibizan Hound
+  174: Norwegian Elkhound
+  175: Otterhound
+  176: Saluki
+  177: Scottish Deerhound
+  178: Weimaraner
+  179: Staffordshire Bull Terrier
+  180: American Staffordshire Terrier
+  181: Bedlington Terrier
+  182: Border Terrier
+  183: Kerry Blue Terrier
+  184: Irish Terrier
+  185: Norfolk Terrier
+  186: Norwich Terrier
+  187: Yorkshire Terrier
+  188: Wire Fox Terrier
+  189: Lakeland Terrier
+  190: Sealyham Terrier
+  191: Airedale Terrier
+  192: Cairn Terrier
+  193: Australian Terrier
+  194: Dandie Dinmont Terrier
+  195: Boston Terrier
+  196: Miniature Schnauzer
+  197: Giant Schnauzer
+  198: Standard Schnauzer
+  199: Scottish Terrier
+  200: Tibetan Terrier
+  201: Australian Silky Terrier
+  202: Soft-coated Wheaten Terrier
+  203: West Highland White Terrier
+  204: Lhasa Apso
+  205: Flat-Coated Retriever
+  206: Curly-coated Retriever
+  207: Golden Retriever
+  208: Labrador Retriever
+  209: Chesapeake Bay Retriever
+  210: German Shorthaired Pointer
+  211: Vizsla
+  212: English Setter
+  213: Irish Setter
+  214: Gordon Setter
+  215: Brittany
+  216: Clumber Spaniel
+  217: English Springer Spaniel
+  218: Welsh Springer Spaniel
+  219: Cocker Spaniels
+  220: Sussex Spaniel
+  221: Irish Water Spaniel
+  222: Kuvasz
+  223: Schipperke
+  224: Groenendael
+  225: Malinois
+  226: Briard
+  227: Australian Kelpie
+  228: Komondor
+  229: Old English Sheepdog
+  230: Shetland Sheepdog
+  231: collie
+  232: Border Collie
+  233: Bouvier des Flandres
+  234: Rottweiler
+  235: German Shepherd Dog
+  236: Dobermann
+  237: Miniature Pinscher
+  238: Greater Swiss Mountain Dog
+  239: Bernese Mountain Dog
+  240: Appenzeller Sennenhund
+  241: Entlebucher Sennenhund
+  242: Boxer
+  243: Bullmastiff
+  244: Tibetan Mastiff
+  245: French Bulldog
+  246: Great Dane
+  247: St. Bernard
+  248: husky
+  249: Alaskan Malamute
+  250: Siberian Husky
+  251: Dalmatian
+  252: Affenpinscher
+  253: Basenji
+  254: pug
+  255: Leonberger
+  256: Newfoundland
+  257: Pyrenean Mountain Dog
+  258: Samoyed
+  259: Pomeranian
+  260: Chow Chow
+  261: Keeshond
+  262: Griffon Bruxellois
+  263: Pembroke Welsh Corgi
+  264: Cardigan Welsh Corgi
+  265: Toy Poodle
+  266: Miniature Poodle
+  267: Standard Poodle
+  268: Mexican hairless dog
+  269: grey wolf
+  270: Alaskan tundra wolf
+  271: red wolf
+  272: coyote
+  273: dingo
+  274: dhole
+  275: African wild dog
+  276: hyena
+  277: red fox
+  278: kit fox
+  279: Arctic fox
+  280: grey fox
+  281: tabby cat
+  282: tiger cat
+  283: Persian cat
+  284: Siamese cat
+  285: Egyptian Mau
+  286: cougar
+  287: lynx
+  288: leopard
+  289: snow leopard
+  290: jaguar
+  291: lion
+  292: tiger
+  293: cheetah
+  294: brown bear
+  295: American black bear
+  296: polar bear
+  297: sloth bear
+  298: mongoose
+  299: meerkat
+  300: tiger beetle
+  301: ladybug
+  302: ground beetle
+  303: longhorn beetle
+  304: leaf beetle
+  305: dung beetle
+  306: rhinoceros beetle
+  307: weevil
+  308: fly
+  309: bee
+  310: ant
+  311: grasshopper
+  312: cricket
+  313: stick insect
+  314: cockroach
+  315: mantis
+  316: cicada
+  317: leafhopper
+  318: lacewing
+  319: dragonfly
+  320: damselfly
+  321: red admiral
+  322: ringlet
+  323: monarch butterfly
+  324: small white
+  325: sulphur butterfly
+  326: gossamer-winged butterfly
+  327: starfish
+  328: sea urchin
+  329: sea cucumber
+  330: cottontail rabbit
+  331: hare
+  332: Angora rabbit
+  333: hamster
+  334: porcupine
+  335: fox squirrel
+  336: marmot
+  337: beaver
+  338: guinea pig
+  339: common sorrel
+  340: zebra
+  341: pig
+  342: wild boar
+  343: warthog
+  344: hippopotamus
+  345: ox
+  346: water buffalo
+  347: bison
+  348: ram
+  349: bighorn sheep
+  350: Alpine ibex
+  351: hartebeest
+  352: impala
+  353: gazelle
+  354: dromedary
+  355: llama
+  356: weasel
+  357: mink
+  358: European polecat
+  359: black-footed ferret
+  360: otter
+  361: skunk
+  362: badger
+  363: armadillo
+  364: three-toed sloth
+  365: orangutan
+  366: gorilla
+  367: chimpanzee
+  368: gibbon
+  369: siamang
+  370: guenon
+  371: patas monkey
+  372: baboon
+  373: macaque
+  374: langur
+  375: black-and-white colobus
+  376: proboscis monkey
+  377: marmoset
+  378: white-headed capuchin
+  379: howler monkey
+  380: titi
+  381: Geoffroy's spider monkey
+  382: common squirrel monkey
+  383: ring-tailed lemur
+  384: indri
+  385: Asian elephant
+  386: African bush elephant
+  387: red panda
+  388: giant panda
+  389: snoek
+  390: eel
+  391: coho salmon
+  392: rock beauty
+  393: clownfish
+  394: sturgeon
+  395: garfish
+  396: lionfish
+  397: pufferfish
+  398: abacus
+  399: abaya
+  400: academic gown
+  401: accordion
+  402: acoustic guitar
+  403: aircraft carrier
+  404: airliner
+  405: airship
+  406: altar
+  407: ambulance
+  408: amphibious vehicle
+  409: analog clock
+  410: apiary
+  411: apron
+  412: waste container
+  413: assault rifle
+  414: backpack
+  415: bakery
+  416: balance beam
+  417: balloon
+  418: ballpoint pen
+  419: Band-Aid
+  420: banjo
+  421: baluster
+  422: barbell
+  423: barber chair
+  424: barbershop
+  425: barn
+  426: barometer
+  427: barrel
+  428: wheelbarrow
+  429: baseball
+  430: basketball
+  431: bassinet
+  432: bassoon
+  433: swimming cap
+  434: bath towel
+  435: bathtub
+  436: station wagon
+  437: lighthouse
+  438: beaker
+  439: military cap
+  440: beer bottle
+  441: beer glass
+  442: bell-cot
+  443: bib
+  444: tandem bicycle
+  445: bikini
+  446: ring binder
+  447: binoculars
+  448: birdhouse
+  449: boathouse
+  450: bobsleigh
+  451: bolo tie
+  452: poke bonnet
+  453: bookcase
+  454: bookstore
+  455: bottle cap
+  456: bow
+  457: bow tie
+  458: brass
+  459: bra
+  460: breakwater
+  461: breastplate
+  462: broom
+  463: bucket
+  464: buckle
+  465: bulletproof vest
+  466: high-speed train
+  467: butcher shop
+  468: taxicab
+  469: cauldron
+  470: candle
+  471: cannon
+  472: canoe
+  473: can opener
+  474: cardigan
+  475: car mirror
+  476: carousel
+  477: tool kit
+  478: carton
+  479: car wheel
+  480: automated teller machine
+  481: cassette
+  482: cassette player
+  483: castle
+  484: catamaran
+  485: CD player
+  486: cello
+  487: mobile phone
+  488: chain
+  489: chain-link fence
+  490: chain mail
+  491: chainsaw
+  492: chest
+  493: chiffonier
+  494: chime
+  495: china cabinet
+  496: Christmas stocking
+  497: church
+  498: movie theater
+  499: cleaver
+  500: cliff dwelling
+  501: cloak
+  502: clogs
+  503: cocktail shaker
+  504: coffee mug
+  505: coffeemaker
+  506: coil
+  507: combination lock
+  508: computer keyboard
+  509: confectionery store
+  510: container ship
+  511: convertible
+  512: corkscrew
+  513: cornet
+  514: cowboy boot
+  515: cowboy hat
+  516: cradle
+  517: crane (machine)
+  518: crash helmet
+  519: crate
+  520: infant bed
+  521: Crock Pot
+  522: croquet ball
+  523: crutch
+  524: cuirass
+  525: dam
+  526: desk
+  527: desktop computer
+  528: rotary dial telephone
+  529: diaper
+  530: digital clock
+  531: digital watch
+  532: dining table
+  533: dishcloth
+  534: dishwasher
+  535: disc brake
+  536: dock
+  537: dog sled
+  538: dome
+  539: doormat
+  540: drilling rig
+  541: drum
+  542: drumstick
+  543: dumbbell
+  544: Dutch oven
+  545: electric fan
+  546: electric guitar
+  547: electric locomotive
+  548: entertainment center
+  549: envelope
+  550: espresso machine
+  551: face powder
+  552: feather boa
+  553: filing cabinet
+  554: fireboat
+  555: fire engine
+  556: fire screen sheet
+  557: flagpole
+  558: flute
+  559: folding chair
+  560: football helmet
+  561: forklift
+  562: fountain
+  563: fountain pen
+  564: four-poster bed
+  565: freight car
+  566: French horn
+  567: frying pan
+  568: fur coat
+  569: garbage truck
+  570: gas mask
+  571: gas pump
+  572: goblet
+  573: go-kart
+  574: golf ball
+  575: golf cart
+  576: gondola
+  577: gong
+  578: gown
+  579: grand piano
+  580: greenhouse
+  581: grille
+  582: grocery store
+  583: guillotine
+  584: barrette
+  585: hair spray
+  586: half-track
+  587: hammer
+  588: hamper
+  589: hair dryer
+  590: hand-held computer
+  591: handkerchief
+  592: hard disk drive
+  593: harmonica
+  594: harp
+  595: harvester
+  596: hatchet
+  597: holster
+  598: home theater
+  599: honeycomb
+  600: hook
+  601: hoop skirt
+  602: horizontal bar
+  603: horse-drawn vehicle
+  604: hourglass
+  605: iPod
+  606: clothes iron
+  607: jack-o'-lantern
+  608: jeans
+  609: jeep
+  610: T-shirt
+  611: jigsaw puzzle
+  612: pulled rickshaw
+  613: joystick
+  614: kimono
+  615: knee pad
+  616: knot
+  617: lab coat
+  618: ladle
+  619: lampshade
+  620: laptop computer
+  621: lawn mower
+  622: lens cap
+  623: paper knife
+  624: library
+  625: lifeboat
+  626: lighter
+  627: limousine
+  628: ocean liner
+  629: lipstick
+  630: slip-on shoe
+  631: lotion
+  632: speaker
+  633: loupe
+  634: sawmill
+  635: magnetic compass
+  636: mail bag
+  637: mailbox
+  638: tights
+  639: tank suit
+  640: manhole cover
+  641: maraca
+  642: marimba
+  643: mask
+  644: match
+  645: maypole
+  646: maze
+  647: measuring cup
+  648: medicine chest
+  649: megalith
+  650: microphone
+  651: microwave oven
+  652: military uniform
+  653: milk can
+  654: minibus
+  655: miniskirt
+  656: minivan
+  657: missile
+  658: mitten
+  659: mixing bowl
+  660: mobile home
+  661: Model T
+  662: modem
+  663: monastery
+  664: monitor
+  665: moped
+  666: mortar
+  667: square academic cap
+  668: mosque
+  669: mosquito net
+  670: scooter
+  671: mountain bike
+  672: tent
+  673: computer mouse
+  674: mousetrap
+  675: moving van
+  676: muzzle
+  677: nail
+  678: neck brace
+  679: necklace
+  680: nipple
+  681: notebook computer
+  682: obelisk
+  683: oboe
+  684: ocarina
+  685: odometer
+  686: oil filter
+  687: organ
+  688: oscilloscope
+  689: overskirt
+  690: bullock cart
+  691: oxygen mask
+  692: packet
+  693: paddle
+  694: paddle wheel
+  695: padlock
+  696: paintbrush
+  697: pajamas
+  698: palace
+  699: pan flute
+  700: paper towel
+  701: parachute
+  702: parallel bars
+  703: park bench
+  704: parking meter
+  705: passenger car
+  706: patio
+  707: payphone
+  708: pedestal
+  709: pencil case
+  710: pencil sharpener
+  711: perfume
+  712: Petri dish
+  713: photocopier
+  714: plectrum
+  715: Pickelhaube
+  716: picket fence
+  717: pickup truck
+  718: pier
+  719: piggy bank
+  720: pill bottle
+  721: pillow
+  722: ping-pong ball
+  723: pinwheel
+  724: pirate ship
+  725: pitcher
+  726: hand plane
+  727: planetarium
+  728: plastic bag
+  729: plate rack
+  730: plow
+  731: plunger
+  732: Polaroid camera
+  733: pole
+  734: police van
+  735: poncho
+  736: billiard table
+  737: soda bottle
+  738: pot
+  739: potter's wheel
+  740: power drill
+  741: prayer rug
+  742: printer
+  743: prison
+  744: projectile
+  745: projector
+  746: hockey puck
+  747: punching bag
+  748: purse
+  749: quill
+  750: quilt
+  751: race car
+  752: racket
+  753: radiator
+  754: radio
+  755: radio telescope
+  756: rain barrel
+  757: recreational vehicle
+  758: reel
+  759: reflex camera
+  760: refrigerator
+  761: remote control
+  762: restaurant
+  763: revolver
+  764: rifle
+  765: rocking chair
+  766: rotisserie
+  767: eraser
+  768: rugby ball
+  769: ruler
+  770: running shoe
+  771: safe
+  772: safety pin
+  773: salt shaker
+  774: sandal
+  775: sarong
+  776: saxophone
+  777: scabbard
+  778: weighing scale
+  779: school bus
+  780: schooner
+  781: scoreboard
+  782: CRT screen
+  783: screw
+  784: screwdriver
+  785: seat belt
+  786: sewing machine
+  787: shield
+  788: shoe store
+  789: shoji
+  790: shopping basket
+  791: shopping cart
+  792: shovel
+  793: shower cap
+  794: shower curtain
+  795: ski
+  796: ski mask
+  797: sleeping bag
+  798: slide rule
+  799: sliding door
+  800: slot machine
+  801: snorkel
+  802: snowmobile
+  803: snowplow
+  804: soap dispenser
+  805: soccer ball
+  806: sock
+  807: solar thermal collector
+  808: sombrero
+  809: soup bowl
+  810: space bar
+  811: space heater
+  812: space shuttle
+  813: spatula
+  814: motorboat
+  815: spider web
+  816: spindle
+  817: sports car
+  818: spotlight
+  819: stage
+  820: steam locomotive
+  821: through arch bridge
+  822: steel drum
+  823: stethoscope
+  824: scarf
+  825: stone wall
+  826: stopwatch
+  827: stove
+  828: strainer
+  829: tram
+  830: stretcher
+  831: couch
+  832: stupa
+  833: submarine
+  834: suit
+  835: sundial
+  836: sunglass
+  837: sunglasses
+  838: sunscreen
+  839: suspension bridge
+  840: mop
+  841: sweatshirt
+  842: swimsuit
+  843: swing
+  844: switch
+  845: syringe
+  846: table lamp
+  847: tank
+  848: tape player
+  849: teapot
+  850: teddy bear
+  851: television
+  852: tennis ball
+  853: thatched roof
+  854: front curtain
+  855: thimble
+  856: threshing machine
+  857: throne
+  858: tile roof
+  859: toaster
+  860: tobacco shop
+  861: toilet seat
+  862: torch
+  863: totem pole
+  864: tow truck
+  865: toy store
+  866: tractor
+  867: semi-trailer truck
+  868: tray
+  869: trench coat
+  870: tricycle
+  871: trimaran
+  872: tripod
+  873: triumphal arch
+  874: trolleybus
+  875: trombone
+  876: tub
+  877: turnstile
+  878: typewriter keyboard
+  879: umbrella
+  880: unicycle
+  881: upright piano
+  882: vacuum cleaner
+  883: vase
+  884: vault
+  885: velvet
+  886: vending machine
+  887: vestment
+  888: viaduct
+  889: violin
+  890: volleyball
+  891: waffle iron
+  892: wall clock
+  893: wallet
+  894: wardrobe
+  895: military aircraft
+  896: sink
+  897: washing machine
+  898: water bottle
+  899: water jug
+  900: water tower
+  901: whiskey jug
+  902: whistle
+  903: wig
+  904: window screen
+  905: window shade
+  906: Windsor tie
+  907: wine bottle
+  908: wing
+  909: wok
+  910: wooden spoon
+  911: wool
+  912: split-rail fence
+  913: shipwreck
+  914: yawl
+  915: yurt
+  916: website
+  917: comic book
+  918: crossword
+  919: traffic sign
+  920: traffic light
+  921: dust jacket
+  922: menu
+  923: plate
+  924: guacamole
+  925: consomme
+  926: hot pot
+  927: trifle
+  928: ice cream
+  929: ice pop
+  930: baguette
+  931: bagel
+  932: pretzel
+  933: cheeseburger
+  934: hot dog
+  935: mashed potato
+  936: cabbage
+  937: broccoli
+  938: cauliflower
+  939: zucchini
+  940: spaghetti squash
+  941: acorn squash
+  942: butternut squash
+  943: cucumber
+  944: artichoke
+  945: bell pepper
+  946: cardoon
+  947: mushroom
+  948: Granny Smith
+  949: strawberry
+  950: orange
+  951: lemon
+  952: fig
+  953: pineapple
+  954: banana
+  955: jackfruit
+  956: custard apple
+  957: pomegranate
+  958: hay
+  959: carbonara
+  960: chocolate syrup
+  961: dough
+  962: meatloaf
+  963: pizza
+  964: pot pie
+  965: burrito
+  966: red wine
+  967: espresso
+  968: cup
+  969: eggnog
+  970: alp
+  971: bubble
+  972: cliff
+  973: coral reef
+  974: geyser
+  975: lakeshore
+  976: promontory
+  977: shoal
+  978: seashore
+  979: valley
+  980: volcano
+  981: baseball player
+  982: bridegroom
+  983: scuba diver
+  984: rapeseed
+  985: daisy
+  986: yellow lady's slipper
+  987: corn
+  988: acorn
+  989: rose hip
+  990: horse chestnut seed
+  991: coral fungus
+  992: agaric
+  993: gyromitra
+  994: stinkhorn mushroom
+  995: earth star
+  996: hen-of-the-woods
+  997: bolete
+  998: ear
+  999: toilet paper
+
+# Download script/URL (optional)
+download: data/scripts/get_imagenet1000.sh
diff --git a/yolov5/data/Objects365.yaml b/yolov5/data/Objects365.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2a4fef135f382a22a6db67afa1d496b88c8aa2f3
--- /dev/null
+++ b/yolov5/data/Objects365.yaml
@@ -0,0 +1,436 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Objects365 dataset https://www.objects365.org/ by Megvii
+# Example usage: python train.py --data Objects365.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Objects365  ← downloads here (712 GB = 367G data + 345G zips)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Objects365 # dataset root dir
+train: images/train # train images (relative to 'path') 1742289 images
+val: images/val # val images (relative to 'path') 80000 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: Person
+  1: Sneakers
+  2: Chair
+  3: Other Shoes
+  4: Hat
+  5: Car
+  6: Lamp
+  7: Glasses
+  8: Bottle
+  9: Desk
+  10: Cup
+  11: Street Lights
+  12: Cabinet/shelf
+  13: Handbag/Satchel
+  14: Bracelet
+  15: Plate
+  16: Picture/Frame
+  17: Helmet
+  18: Book
+  19: Gloves
+  20: Storage box
+  21: Boat
+  22: Leather Shoes
+  23: Flower
+  24: Bench
+  25: Potted Plant
+  26: Bowl/Basin
+  27: Flag
+  28: Pillow
+  29: Boots
+  30: Vase
+  31: Microphone
+  32: Necklace
+  33: Ring
+  34: SUV
+  35: Wine Glass
+  36: Belt
+  37: Monitor/TV
+  38: Backpack
+  39: Umbrella
+  40: Traffic Light
+  41: Speaker
+  42: Watch
+  43: Tie
+  44: Trash bin Can
+  45: Slippers
+  46: Bicycle
+  47: Stool
+  48: Barrel/bucket
+  49: Van
+  50: Couch
+  51: Sandals
+  52: Basket
+  53: Drum
+  54: Pen/Pencil
+  55: Bus
+  56: Wild Bird
+  57: High Heels
+  58: Motorcycle
+  59: Guitar
+  60: Carpet
+  61: Cell Phone
+  62: Bread
+  63: Camera
+  64: Canned
+  65: Truck
+  66: Traffic cone
+  67: Cymbal
+  68: Lifesaver
+  69: Towel
+  70: Stuffed Toy
+  71: Candle
+  72: Sailboat
+  73: Laptop
+  74: Awning
+  75: Bed
+  76: Faucet
+  77: Tent
+  78: Horse
+  79: Mirror
+  80: Power outlet
+  81: Sink
+  82: Apple
+  83: Air Conditioner
+  84: Knife
+  85: Hockey Stick
+  86: Paddle
+  87: Pickup Truck
+  88: Fork
+  89: Traffic Sign
+  90: Balloon
+  91: Tripod
+  92: Dog
+  93: Spoon
+  94: Clock
+  95: Pot
+  96: Cow
+  97: Cake
+  98: Dinning Table
+  99: Sheep
+  100: Hanger
+  101: Blackboard/Whiteboard
+  102: Napkin
+  103: Other Fish
+  104: Orange/Tangerine
+  105: Toiletry
+  106: Keyboard
+  107: Tomato
+  108: Lantern
+  109: Machinery Vehicle
+  110: Fan
+  111: Green Vegetables
+  112: Banana
+  113: Baseball Glove
+  114: Airplane
+  115: Mouse
+  116: Train
+  117: Pumpkin
+  118: Soccer
+  119: Skiboard
+  120: Luggage
+  121: Nightstand
+  122: Tea pot
+  123: Telephone
+  124: Trolley
+  125: Head Phone
+  126: Sports Car
+  127: Stop Sign
+  128: Dessert
+  129: Scooter
+  130: Stroller
+  131: Crane
+  132: Remote
+  133: Refrigerator
+  134: Oven
+  135: Lemon
+  136: Duck
+  137: Baseball Bat
+  138: Surveillance Camera
+  139: Cat
+  140: Jug
+  141: Broccoli
+  142: Piano
+  143: Pizza
+  144: Elephant
+  145: Skateboard
+  146: Surfboard
+  147: Gun
+  148: Skating and Skiing shoes
+  149: Gas stove
+  150: Donut
+  151: Bow Tie
+  152: Carrot
+  153: Toilet
+  154: Kite
+  155: Strawberry
+  156: Other Balls
+  157: Shovel
+  158: Pepper
+  159: Computer Box
+  160: Toilet Paper
+  161: Cleaning Products
+  162: Chopsticks
+  163: Microwave
+  164: Pigeon
+  165: Baseball
+  166: Cutting/chopping Board
+  167: Coffee Table
+  168: Side Table
+  169: Scissors
+  170: Marker
+  171: Pie
+  172: Ladder
+  173: Snowboard
+  174: Cookies
+  175: Radiator
+  176: Fire Hydrant
+  177: Basketball
+  178: Zebra
+  179: Grape
+  180: Giraffe
+  181: Potato
+  182: Sausage
+  183: Tricycle
+  184: Violin
+  185: Egg
+  186: Fire Extinguisher
+  187: Candy
+  188: Fire Truck
+  189: Billiards
+  190: Converter
+  191: Bathtub
+  192: Wheelchair
+  193: Golf Club
+  194: Briefcase
+  195: Cucumber
+  196: Cigar/Cigarette
+  197: Paint Brush
+  198: Pear
+  199: Heavy Truck
+  200: Hamburger
+  201: Extractor
+  202: Extension Cord
+  203: Tong
+  204: Tennis Racket
+  205: Folder
+  206: American Football
+  207: earphone
+  208: Mask
+  209: Kettle
+  210: Tennis
+  211: Ship
+  212: Swing
+  213: Coffee Machine
+  214: Slide
+  215: Carriage
+  216: Onion
+  217: Green beans
+  218: Projector
+  219: Frisbee
+  220: Washing Machine/Drying Machine
+  221: Chicken
+  222: Printer
+  223: Watermelon
+  224: Saxophone
+  225: Tissue
+  226: Toothbrush
+  227: Ice cream
+  228: Hot-air balloon
+  229: Cello
+  230: French Fries
+  231: Scale
+  232: Trophy
+  233: Cabbage
+  234: Hot dog
+  235: Blender
+  236: Peach
+  237: Rice
+  238: Wallet/Purse
+  239: Volleyball
+  240: Deer
+  241: Goose
+  242: Tape
+  243: Tablet
+  244: Cosmetics
+  245: Trumpet
+  246: Pineapple
+  247: Golf Ball
+  248: Ambulance
+  249: Parking meter
+  250: Mango
+  251: Key
+  252: Hurdle
+  253: Fishing Rod
+  254: Medal
+  255: Flute
+  256: Brush
+  257: Penguin
+  258: Megaphone
+  259: Corn
+  260: Lettuce
+  261: Garlic
+  262: Swan
+  263: Helicopter
+  264: Green Onion
+  265: Sandwich
+  266: Nuts
+  267: Speed Limit Sign
+  268: Induction Cooker
+  269: Broom
+  270: Trombone
+  271: Plum
+  272: Rickshaw
+  273: Goldfish
+  274: Kiwi fruit
+  275: Router/modem
+  276: Poker Card
+  277: Toaster
+  278: Shrimp
+  279: Sushi
+  280: Cheese
+  281: Notepaper
+  282: Cherry
+  283: Pliers
+  284: CD
+  285: Pasta
+  286: Hammer
+  287: Cue
+  288: Avocado
+  289: Hamimelon
+  290: Flask
+  291: Mushroom
+  292: Screwdriver
+  293: Soap
+  294: Recorder
+  295: Bear
+  296: Eggplant
+  297: Board Eraser
+  298: Coconut
+  299: Tape Measure/Ruler
+  300: Pig
+  301: Showerhead
+  302: Globe
+  303: Chips
+  304: Steak
+  305: Crosswalk Sign
+  306: Stapler
+  307: Camel
+  308: Formula 1
+  309: Pomegranate
+  310: Dishwasher
+  311: Crab
+  312: Hoverboard
+  313: Meat ball
+  314: Rice Cooker
+  315: Tuba
+  316: Calculator
+  317: Papaya
+  318: Antelope
+  319: Parrot
+  320: Seal
+  321: Butterfly
+  322: Dumbbell
+  323: Donkey
+  324: Lion
+  325: Urinal
+  326: Dolphin
+  327: Electric Drill
+  328: Hair Dryer
+  329: Egg tart
+  330: Jellyfish
+  331: Treadmill
+  332: Lighter
+  333: Grapefruit
+  334: Game board
+  335: Mop
+  336: Radish
+  337: Baozi
+  338: Target
+  339: French
+  340: Spring Rolls
+  341: Monkey
+  342: Rabbit
+  343: Pencil Case
+  344: Yak
+  345: Red Cabbage
+  346: Binoculars
+  347: Asparagus
+  348: Barbell
+  349: Scallop
+  350: Noddles
+  351: Comb
+  352: Dumpling
+  353: Oyster
+  354: Table Tennis paddle
+  355: Cosmetics Brush/Eyeliner Pencil
+  356: Chainsaw
+  357: Eraser
+  358: Lobster
+  359: Durian
+  360: Okra
+  361: Lipstick
+  362: Cosmetics Mirror
+  363: Curling
+  364: Table Tennis
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from tqdm import tqdm
+
+  from utils.general import Path, check_requirements, download, np, xyxy2xywhn
+
+  check_requirements('pycocotools>=2.0')
+  from pycocotools.coco import COCO
+
+  # Make Directories
+  dir = Path(yaml['path'])  # dataset root dir
+  for p in 'images', 'labels':
+      (dir / p).mkdir(parents=True, exist_ok=True)
+      for q in 'train', 'val':
+          (dir / p / q).mkdir(parents=True, exist_ok=True)
+
+  # Train, Val Splits
+  for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
+      print(f"Processing {split} in {patches} patches ...")
+      images, labels = dir / 'images' / split, dir / 'labels' / split
+
+      # Download
+      url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
+      if split == 'train':
+          download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False)  # annotations json
+          download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
+      elif split == 'val':
+          download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False)  # annotations json
+          download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
+          download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
+
+      # Move
+      for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
+          f.rename(images / f.name)  # move to /images/{split}
+
+      # Labels
+      coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
+      names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
+      for cid, cat in enumerate(names):
+          catIds = coco.getCatIds(catNms=[cat])
+          imgIds = coco.getImgIds(catIds=catIds)
+          for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
+              width, height = im["width"], im["height"]
+              path = Path(im["file_name"])  # image filename
+              try:
+                  with open(labels / path.with_suffix('.txt').name, 'a') as file:
+                      annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=False)
+                      for a in coco.loadAnns(annIds):
+                          x, y, w, h = a['bbox']  # bounding box in xywh (xy top-left corner)
+                          xyxy = np.array([x, y, x + w, y + h])[None]  # pixels(1,4)
+                          x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0]  # normalized and clipped
+                          file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
+              except Exception as e:
+                  print(e)
diff --git a/yolov5/data/SKU-110K.yaml b/yolov5/data/SKU-110K.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b072f671e482afa55dab8e9d93bc8b54d27181fa
--- /dev/null
+++ b/yolov5/data/SKU-110K.yaml
@@ -0,0 +1,51 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
+# Example usage: python train.py --data SKU-110K.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── SKU-110K  ← downloads here (13.6 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/SKU-110K # dataset root dir
+train: train.txt # train images (relative to 'path')  8219 images
+val: val.txt # val images (relative to 'path')  588 images
+test: test.txt # test images (optional)  2936 images
+
+# Classes
+names:
+  0: object
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import shutil
+  from tqdm import tqdm
+  from utils.general import np, pd, Path, download, xyxy2xywh
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  parent = Path(dir.parent)  # download dir
+  urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
+  download(urls, dir=parent, delete=False)
+
+  # Rename directories
+  if dir.exists():
+      shutil.rmtree(dir)
+  (parent / 'SKU110K_fixed').rename(dir)  # rename dir
+  (dir / 'labels').mkdir(parents=True, exist_ok=True)  # create labels dir
+
+  # Convert labels
+  names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'  # column names
+  for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
+      x = pd.read_csv(dir / 'annotations' / d, names=names).values  # annotations
+      images, unique_images = x[:, 0], np.unique(x[:, 0])
+      with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
+          f.writelines(f'./images/{s}\n' for s in unique_images)
+      for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
+          cls = 0  # single-class dataset
+          with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
+              for r in x[images == im]:
+                  w, h = r[6], r[7]  # image width, height
+                  xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]  # instance
+                  f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")  # write label
diff --git a/yolov5/data/VOC.yaml b/yolov5/data/VOC.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..27fa80bccaedc3a0c967d95afa7a5f10344208f2
--- /dev/null
+++ b/yolov5/data/VOC.yaml
@@ -0,0 +1,98 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
+# Example usage: python train.py --data VOC.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── VOC  ← downloads here (2.8 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/VOC
+train: # train images (relative to 'path')  16551 images
+  - images/train2012
+  - images/train2007
+  - images/val2012
+  - images/val2007
+val: # val images (relative to 'path')  4952 images
+  - images/test2007
+test: # test images (optional)
+  - images/test2007
+
+# Classes
+names:
+  0: aeroplane
+  1: bicycle
+  2: bird
+  3: boat
+  4: bottle
+  5: bus
+  6: car
+  7: cat
+  8: chair
+  9: cow
+  10: diningtable
+  11: dog
+  12: horse
+  13: motorbike
+  14: person
+  15: pottedplant
+  16: sheep
+  17: sofa
+  18: train
+  19: tvmonitor
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import xml.etree.ElementTree as ET
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def convert_label(path, lb_path, year, image_id):
+      def convert_box(size, box):
+          dw, dh = 1. / size[0], 1. / size[1]
+          x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
+          return x * dw, y * dh, w * dw, h * dh
+
+      in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
+      out_file = open(lb_path, 'w')
+      tree = ET.parse(in_file)
+      root = tree.getroot()
+      size = root.find('size')
+      w = int(size.find('width').text)
+      h = int(size.find('height').text)
+
+      names = list(yaml['names'].values())  # names list
+      for obj in root.iter('object'):
+          cls = obj.find('name').text
+          if cls in names and int(obj.find('difficult').text) != 1:
+              xmlbox = obj.find('bndbox')
+              bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
+              cls_id = names.index(cls)  # class id
+              out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
+  urls = [f'{url}VOCtrainval_06-Nov-2007.zip',  # 446MB, 5012 images
+          f'{url}VOCtest_06-Nov-2007.zip',  # 438MB, 4953 images
+          f'{url}VOCtrainval_11-May-2012.zip']  # 1.95GB, 17126 images
+  download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
+
+  # Convert
+  path = dir / 'images/VOCdevkit'
+  for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
+      imgs_path = dir / 'images' / f'{image_set}{year}'
+      lbs_path = dir / 'labels' / f'{image_set}{year}'
+      imgs_path.mkdir(exist_ok=True, parents=True)
+      lbs_path.mkdir(exist_ok=True, parents=True)
+
+      with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
+          image_ids = f.read().strip().split()
+      for id in tqdm(image_ids, desc=f'{image_set}{year}'):
+          f = path / f'VOC{year}/JPEGImages/{id}.jpg'  # old img path
+          lb_path = (lbs_path / f.name).with_suffix('.txt')  # new label path
+          f.rename(imgs_path / f.name)  # move image
+          convert_label(path, lb_path, year, id)  # convert labels to YOLO format
diff --git a/yolov5/data/VisDrone.yaml b/yolov5/data/VisDrone.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6b6e797226dfb42788ae7e7f7b83fe4786c35c23
--- /dev/null
+++ b/yolov5/data/VisDrone.yaml
@@ -0,0 +1,68 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
+# Example usage: python train.py --data VisDrone.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── VisDrone  ← downloads here (2.3 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/VisDrone # dataset root dir
+train: VisDrone2019-DET-train/images # train images (relative to 'path')  6471 images
+val: VisDrone2019-DET-val/images # val images (relative to 'path')  548 images
+test: VisDrone2019-DET-test-dev/images # test images (optional)  1610 images
+
+# Classes
+names:
+  0: pedestrian
+  1: people
+  2: bicycle
+  3: car
+  4: van
+  5: truck
+  6: tricycle
+  7: awning-tricycle
+  8: bus
+  9: motor
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from utils.general import download, os, Path
+
+  def visdrone2yolo(dir):
+      from PIL import Image
+      from tqdm import tqdm
+
+      def convert_box(size, box):
+          # Convert VisDrone box to YOLO xywh box
+          dw = 1. / size[0]
+          dh = 1. / size[1]
+          return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
+
+      (dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directory
+      pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
+      for f in pbar:
+          img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
+          lines = []
+          with open(f, 'r') as file:  # read annotation.txt
+              for row in [x.split(',') for x in file.read().strip().splitlines()]:
+                  if row[4] == '0':  # VisDrone 'ignored regions' class 0
+                      continue
+                  cls = int(row[5]) - 1
+                  box = convert_box(img_size, tuple(map(int, row[:4])))
+                  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
+                  with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
+                      fl.writelines(lines)  # write label.txt
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
+  download(urls, dir=dir, curl=True, threads=4)
+
+  # Convert
+  for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
+      visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/yolov5/data/coco.yaml b/yolov5/data/coco.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..102b3c2d1b832179c542822e8b701a1cb6e0f08e
--- /dev/null
+++ b/yolov5/data/coco.yaml
@@ -0,0 +1,114 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# COCO 2017 dataset http://cocodataset.org by Microsoft
+# Example usage: python train.py --data coco.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco  ← downloads here (20.1 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco # dataset root dir
+train: train2017.txt # train images (relative to 'path') 118287 images
+val: val2017.txt # val images (relative to 'path') 5000 images
+test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: airplane
+  5: bus
+  6: train
+  7: truck
+  8: boat
+  9: traffic light
+  10: fire hydrant
+  11: stop sign
+  12: parking meter
+  13: bench
+  14: bird
+  15: cat
+  16: dog
+  17: horse
+  18: sheep
+  19: cow
+  20: elephant
+  21: bear
+  22: zebra
+  23: giraffe
+  24: backpack
+  25: umbrella
+  26: handbag
+  27: tie
+  28: suitcase
+  29: frisbee
+  30: skis
+  31: snowboard
+  32: sports ball
+  33: kite
+  34: baseball bat
+  35: baseball glove
+  36: skateboard
+  37: surfboard
+  38: tennis racket
+  39: bottle
+  40: wine glass
+  41: cup
+  42: fork
+  43: knife
+  44: spoon
+  45: bowl
+  46: banana
+  47: apple
+  48: sandwich
+  49: orange
+  50: broccoli
+  51: carrot
+  52: hot dog
+  53: pizza
+  54: donut
+  55: cake
+  56: chair
+  57: couch
+  58: potted plant
+  59: bed
+  60: dining table
+  61: toilet
+  62: tv
+  63: laptop
+  64: mouse
+  65: remote
+  66: keyboard
+  67: cell phone
+  68: microwave
+  69: oven
+  70: toaster
+  71: sink
+  72: refrigerator
+  73: book
+  74: clock
+  75: vase
+  76: scissors
+  77: teddy bear
+  78: hair drier
+  79: toothbrush
+
+# Download script/URL (optional)
+download: |
+  from utils.general import download, Path
+
+
+  # Download labels
+  segments = False  # segment or box labels
+  dir = Path(yaml['path'])  # dataset root dir
+  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
+  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labels
+  download(urls, dir=dir.parent)
+
+  # Download data
+  urls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images
+          'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images
+          'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)
+  download(urls, dir=dir / 'images', threads=3)
diff --git a/yolov5/data/coco128-seg.yaml b/yolov5/data/coco128-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9a40c28a4d678351e1c152b62b278dcb5533266a
--- /dev/null
+++ b/yolov5/data/coco128-seg.yaml
@@ -0,0 +1,99 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
+# Example usage: python train.py --data coco128.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128-seg  ← downloads here (7 MB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco128-seg # dataset root dir
+train: images/train2017 # train images (relative to 'path') 128 images
+val: images/train2017 # val images (relative to 'path') 128 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: airplane
+  5: bus
+  6: train
+  7: truck
+  8: boat
+  9: traffic light
+  10: fire hydrant
+  11: stop sign
+  12: parking meter
+  13: bench
+  14: bird
+  15: cat
+  16: dog
+  17: horse
+  18: sheep
+  19: cow
+  20: elephant
+  21: bear
+  22: zebra
+  23: giraffe
+  24: backpack
+  25: umbrella
+  26: handbag
+  27: tie
+  28: suitcase
+  29: frisbee
+  30: skis
+  31: snowboard
+  32: sports ball
+  33: kite
+  34: baseball bat
+  35: baseball glove
+  36: skateboard
+  37: surfboard
+  38: tennis racket
+  39: bottle
+  40: wine glass
+  41: cup
+  42: fork
+  43: knife
+  44: spoon
+  45: bowl
+  46: banana
+  47: apple
+  48: sandwich
+  49: orange
+  50: broccoli
+  51: carrot
+  52: hot dog
+  53: pizza
+  54: donut
+  55: cake
+  56: chair
+  57: couch
+  58: potted plant
+  59: bed
+  60: dining table
+  61: toilet
+  62: tv
+  63: laptop
+  64: mouse
+  65: remote
+  66: keyboard
+  67: cell phone
+  68: microwave
+  69: oven
+  70: toaster
+  71: sink
+  72: refrigerator
+  73: book
+  74: clock
+  75: vase
+  76: scissors
+  77: teddy bear
+  78: hair drier
+  79: toothbrush
+
+# Download script/URL (optional)
+download: https://ultralytics.com/assets/coco128-seg.zip
diff --git a/yolov5/data/coco128.yaml b/yolov5/data/coco128.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7e3e6c03feeca652a471d6247be65923c4b1c1ed
--- /dev/null
+++ b/yolov5/data/coco128.yaml
@@ -0,0 +1,99 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
+# Example usage: python train.py --data coco128.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128  ← downloads here (7 MB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco128 # dataset root dir
+train: images/train2017 # train images (relative to 'path') 128 images
+val: images/train2017 # val images (relative to 'path') 128 images
+test: # test images (optional)
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: airplane
+  5: bus
+  6: train
+  7: truck
+  8: boat
+  9: traffic light
+  10: fire hydrant
+  11: stop sign
+  12: parking meter
+  13: bench
+  14: bird
+  15: cat
+  16: dog
+  17: horse
+  18: sheep
+  19: cow
+  20: elephant
+  21: bear
+  22: zebra
+  23: giraffe
+  24: backpack
+  25: umbrella
+  26: handbag
+  27: tie
+  28: suitcase
+  29: frisbee
+  30: skis
+  31: snowboard
+  32: sports ball
+  33: kite
+  34: baseball bat
+  35: baseball glove
+  36: skateboard
+  37: surfboard
+  38: tennis racket
+  39: bottle
+  40: wine glass
+  41: cup
+  42: fork
+  43: knife
+  44: spoon
+  45: bowl
+  46: banana
+  47: apple
+  48: sandwich
+  49: orange
+  50: broccoli
+  51: carrot
+  52: hot dog
+  53: pizza
+  54: donut
+  55: cake
+  56: chair
+  57: couch
+  58: potted plant
+  59: bed
+  60: dining table
+  61: toilet
+  62: tv
+  63: laptop
+  64: mouse
+  65: remote
+  66: keyboard
+  67: cell phone
+  68: microwave
+  69: oven
+  70: toaster
+  71: sink
+  72: refrigerator
+  73: book
+  74: clock
+  75: vase
+  76: scissors
+  77: teddy bear
+  78: hair drier
+  79: toothbrush
+
+# Download script/URL (optional)
+download: https://ultralytics.com/assets/coco128.zip
diff --git a/yolov5/data/hyps/hyp.Objects365.yaml b/yolov5/data/hyps/hyp.Objects365.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c4b6e8051d7bafd93155c8e03e1b264b468f68a7
--- /dev/null
+++ b/yolov5/data/hyps/hyp.Objects365.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Hyperparameters for Objects365 training
+# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
+# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.00258
+lrf: 0.17
+momentum: 0.779
+weight_decay: 0.00058
+warmup_epochs: 1.33
+warmup_momentum: 0.86
+warmup_bias_lr: 0.0711
+box: 0.0539
+cls: 0.299
+cls_pw: 0.825
+obj: 0.632
+obj_pw: 1.0
+iou_t: 0.2
+anchor_t: 3.44
+anchors: 3.2
+fl_gamma: 0.0
+hsv_h: 0.0188
+hsv_s: 0.704
+hsv_v: 0.36
+degrees: 0.0
+translate: 0.0902
+scale: 0.491
+shear: 0.0
+perspective: 0.0
+flipud: 0.0
+fliplr: 0.5
+mosaic: 1.0
+mixup: 0.0
+copy_paste: 0.0
diff --git a/yolov5/data/hyps/hyp.VOC.yaml b/yolov5/data/hyps/hyp.VOC.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ce20dbbddbdbdb7228ca3262fade10b64b798087
--- /dev/null
+++ b/yolov5/data/hyps/hyp.VOC.yaml
@@ -0,0 +1,40 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Hyperparameters for VOC training
+# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
+# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
+
+# YOLOv5 Hyperparameter Evolution Results
+# Best generation: 467
+# Last generation: 996
+#    metrics/precision,       metrics/recall,      metrics/mAP_0.5, metrics/mAP_0.5:0.95,         val/box_loss,         val/obj_loss,         val/cls_loss
+#              0.87729,              0.85125,              0.91286,              0.72664,            0.0076739,            0.0042529,            0.0013865
+
+lr0: 0.00334
+lrf: 0.15135
+momentum: 0.74832
+weight_decay: 0.00025
+warmup_epochs: 3.3835
+warmup_momentum: 0.59462
+warmup_bias_lr: 0.18657
+box: 0.02
+cls: 0.21638
+cls_pw: 0.5
+obj: 0.51728
+obj_pw: 0.67198
+iou_t: 0.2
+anchor_t: 3.3744
+fl_gamma: 0.0
+hsv_h: 0.01041
+hsv_s: 0.54703
+hsv_v: 0.27739
+degrees: 0.0
+translate: 0.04591
+scale: 0.75544
+shear: 0.0
+perspective: 0.0
+flipud: 0.0
+fliplr: 0.5
+mosaic: 0.85834
+mixup: 0.04266
+copy_paste: 0.0
+anchors: 3.412
diff --git a/yolov5/data/hyps/hyp.no-augmentation.yaml b/yolov5/data/hyps/hyp.no-augmentation.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..74e10145e34a7d0f2048db5e98df47df27832315
--- /dev/null
+++ b/yolov5/data/hyps/hyp.no-augmentation.yaml
@@ -0,0 +1,35 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Hyperparameters when using Albumentations frameworks
+# python train.py --hyp hyp.no-augmentation.yaml
+# See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
+
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.3 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+# this parameters are all zero since we want to use albumentation framework
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0 # image HSV-Hue augmentation (fraction)
+hsv_s: 0 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0 # image translation (+/- fraction)
+scale: 0 # image scale (+/- gain)
+shear: 0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.0 # image flip left-right (probability)
+mosaic: 0.0 # image mosaic (probability)
+mixup: 0.0 # image mixup (probability)
+copy_paste: 0.0 # segment copy-paste (probability)
diff --git a/yolov5/data/hyps/hyp.scratch-high.yaml b/yolov5/data/hyps/hyp.scratch-high.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d9110f93f67b391d0e2a5c93cb32ad038a46caa0
--- /dev/null
+++ b/yolov5/data/hyps/hyp.scratch-high.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Hyperparameters for high-augmentation COCO training from scratch
+# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.3 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.1 # image translation (+/- fraction)
+scale: 0.9 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.1 # image mixup (probability)
+copy_paste: 0.1 # segment copy-paste (probability)
diff --git a/yolov5/data/hyps/hyp.scratch-low.yaml b/yolov5/data/hyps/hyp.scratch-low.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..cb29929bb0da8517eaef353c0f80a5670d36bd69
--- /dev/null
+++ b/yolov5/data/hyps/hyp.scratch-low.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Hyperparameters for low-augmentation COCO training from scratch
+# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.5 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 1.0 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.1 # image translation (+/- fraction)
+scale: 0.5 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.0 # image mixup (probability)
+copy_paste: 0.0 # segment copy-paste (probability)
diff --git a/yolov5/data/hyps/hyp.scratch-med.yaml b/yolov5/data/hyps/hyp.scratch-med.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..183e47bd0c03900bd7f43ac05df08826371a07e9
--- /dev/null
+++ b/yolov5/data/hyps/hyp.scratch-med.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Hyperparameters for medium-augmentation COCO training from scratch
+# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937 # SGD momentum/Adam beta1
+weight_decay: 0.0005 # optimizer weight decay 5e-4
+warmup_epochs: 3.0 # warmup epochs (fractions ok)
+warmup_momentum: 0.8 # warmup initial momentum
+warmup_bias_lr: 0.1 # warmup initial bias lr
+box: 0.05 # box loss gain
+cls: 0.3 # cls loss gain
+cls_pw: 1.0 # cls BCELoss positive_weight
+obj: 0.7 # obj loss gain (scale with pixels)
+obj_pw: 1.0 # obj BCELoss positive_weight
+iou_t: 0.20 # IoU training threshold
+anchor_t: 4.0 # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4 # image HSV-Value augmentation (fraction)
+degrees: 0.0 # image rotation (+/- deg)
+translate: 0.1 # image translation (+/- fraction)
+scale: 0.9 # image scale (+/- gain)
+shear: 0.0 # image shear (+/- deg)
+perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0 # image flip up-down (probability)
+fliplr: 0.5 # image flip left-right (probability)
+mosaic: 1.0 # image mosaic (probability)
+mixup: 0.1 # image mixup (probability)
+copy_paste: 0.0 # segment copy-paste (probability)
diff --git a/yolov5/data/images/bus.jpg b/yolov5/data/images/bus.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b43e311165c785f000eb7493ff8fb662d06a3f83
Binary files /dev/null and b/yolov5/data/images/bus.jpg differ
diff --git a/yolov5/data/images/zidane.jpg b/yolov5/data/images/zidane.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92d72ea124760ce5dbf9425e3aa8f371e7481328
Binary files /dev/null and b/yolov5/data/images/zidane.jpg differ
diff --git a/yolov5/data/scripts/download_weights.sh b/yolov5/data/scripts/download_weights.sh
new file mode 100644
index 0000000000000000000000000000000000000000..e408959b32b245f5a6bb1291db16afd138c56a37
--- /dev/null
+++ b/yolov5/data/scripts/download_weights.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download latest models from https://github.com/ultralytics/yolov5/releases
+# Example usage: bash data/scripts/download_weights.sh
+# parent
+# └── yolov5
+#     ├── yolov5s.pt  ← downloads here
+#     ├── yolov5m.pt
+#     └── ...
+
+python - <<EOF
+from utils.downloads import attempt_download
+
+p5 = list('nsmlx')  # P5 models
+p6 = [f'{x}6' for x in p5]  # P6 models
+cls = [f'{x}-cls' for x in p5]  # classification models
+seg = [f'{x}-seg' for x in p5]  # classification models
+
+for x in p5 + p6 + cls + seg:
+    attempt_download(f'weights/yolov5{x}.pt')
+
+EOF
diff --git a/yolov5/data/scripts/get_coco.sh b/yolov5/data/scripts/get_coco.sh
new file mode 100644
index 0000000000000000000000000000000000000000..0bb276140b075a61cf57b7c1f19717477812ea9b
--- /dev/null
+++ b/yolov5/data/scripts/get_coco.sh
@@ -0,0 +1,56 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download COCO 2017 dataset http://cocodataset.org
+# Example usage: bash data/scripts/get_coco.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    --test) test=true ;;
+    --segments) segments=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+  test=false
+  segments=false
+fi
+
+# Download/unzip labels
+d='../datasets' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+if [ "$segments" == "true" ]; then
+  f='coco2017labels-segments.zip' # 168 MB
+else
+  f='coco2017labels.zip' # 46 MB
+fi
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+
+# Download/unzip images
+d='../datasets/coco/images' # unzip directory
+url=http://images.cocodataset.org/zips/
+if [ "$train" == "true" ]; then
+  f='train2017.zip' # 19G, 118k images
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+fi
+if [ "$val" == "true" ]; then
+  f='val2017.zip' # 1G, 5k images
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+fi
+if [ "$test" == "true" ]; then
+  f='test2017.zip' # 7G, 41k images (optional)
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+fi
+wait # finish background tasks
diff --git a/yolov5/data/scripts/get_coco128.sh b/yolov5/data/scripts/get_coco128.sh
new file mode 100644
index 0000000000000000000000000000000000000000..2bfd6a2b32ed2347484086a27c301715aadb8af3
--- /dev/null
+++ b/yolov5/data/scripts/get_coco128.sh
@@ -0,0 +1,17 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
+# Example usage: bash data/scripts/get_coco128.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128  ← downloads here
+
+# Download/unzip images and labels
+d='../datasets' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco128.zip' # or 'coco128-segments.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+
+wait # finish background tasks
diff --git a/yolov5/data/scripts/get_imagenet.sh b/yolov5/data/scripts/get_imagenet.sh
new file mode 100644
index 0000000000000000000000000000000000000000..1df0fc7b66cc2555383a14b0704db7fe848e1af5
--- /dev/null
+++ b/yolov5/data/scripts/get_imagenet.sh
@@ -0,0 +1,51 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download ILSVRC2012 ImageNet dataset https://image-net.org
+# Example usage: bash data/scripts/get_imagenet.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+fi
+
+# Make dir
+d='../datasets/imagenet' # unzip directory
+mkdir -p $d && cd $d
+
+# Download/unzip train
+if [ "$train" == "true" ]; then
+  wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
+  mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
+  tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
+  find . -name "*.tar" | while read NAME; do
+    mkdir -p "${NAME%.tar}"
+    tar -xf "${NAME}" -C "${NAME%.tar}"
+    rm -f "${NAME}"
+  done
+  cd ..
+fi
+
+# Download/unzip val
+if [ "$val" == "true" ]; then
+  wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
+  mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
+  wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
+fi
+
+# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
+# rm train/n04266014/n04266014_10835.JPEG
+
+# TFRecords (optional)
+# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
diff --git a/yolov5/data/scripts/get_imagenet10.sh b/yolov5/data/scripts/get_imagenet10.sh
new file mode 100644
index 0000000000000000000000000000000000000000..71e17c5d3fb7fa9c902e18096469a9cf41fa57b9
--- /dev/null
+++ b/yolov5/data/scripts/get_imagenet10.sh
@@ -0,0 +1,29 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download ILSVRC2012 ImageNet dataset https://image-net.org
+# Example usage: bash data/scripts/get_imagenet.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+fi
+
+# Make dir
+d='../datasets/imagenet10' # unzip directory
+mkdir -p $d && cd $d
+
+# Download/unzip train
+wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet10.zip
+unzip imagenet10.zip && rm imagenet10.zip
diff --git a/yolov5/data/scripts/get_imagenet100.sh b/yolov5/data/scripts/get_imagenet100.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c57106b485db19ecb5e952649fe3667565c28b5e
--- /dev/null
+++ b/yolov5/data/scripts/get_imagenet100.sh
@@ -0,0 +1,29 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download ILSVRC2012 ImageNet dataset https://image-net.org
+# Example usage: bash data/scripts/get_imagenet.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+fi
+
+# Make dir
+d='../datasets/imagenet100' # unzip directory
+mkdir -p $d && cd $d
+
+# Download/unzip train
+wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet100.zip
+unzip imagenet100.zip && rm imagenet100.zip
diff --git a/yolov5/data/scripts/get_imagenet1000.sh b/yolov5/data/scripts/get_imagenet1000.sh
new file mode 100644
index 0000000000000000000000000000000000000000..451dd0f6b585647ea12e16504170ff76e970d48b
--- /dev/null
+++ b/yolov5/data/scripts/get_imagenet1000.sh
@@ -0,0 +1,29 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Download ILSVRC2012 ImageNet dataset https://image-net.org
+# Example usage: bash data/scripts/get_imagenet.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+fi
+
+# Make dir
+d='../datasets/imagenet1000' # unzip directory
+mkdir -p $d && cd $d
+
+# Download/unzip train
+wget https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenet1000.zip
+unzip imagenet1000.zip && rm imagenet1000.zip
diff --git a/yolov5/data/xView.yaml b/yolov5/data/xView.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e215868efb6e15aeb426d5faa2e3832a284ef75a
--- /dev/null
+++ b/yolov5/data/xView.yaml
@@ -0,0 +1,151 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
+# --------  DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command!  --------
+# Example usage: python train.py --data xView.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── xView  ← downloads here (20.7 GB)
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/xView # dataset root dir
+train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
+val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
+
+# Classes
+names:
+  0: Fixed-wing Aircraft
+  1: Small Aircraft
+  2: Cargo Plane
+  3: Helicopter
+  4: Passenger Vehicle
+  5: Small Car
+  6: Bus
+  7: Pickup Truck
+  8: Utility Truck
+  9: Truck
+  10: Cargo Truck
+  11: Truck w/Box
+  12: Truck Tractor
+  13: Trailer
+  14: Truck w/Flatbed
+  15: Truck w/Liquid
+  16: Crane Truck
+  17: Railway Vehicle
+  18: Passenger Car
+  19: Cargo Car
+  20: Flat Car
+  21: Tank car
+  22: Locomotive
+  23: Maritime Vessel
+  24: Motorboat
+  25: Sailboat
+  26: Tugboat
+  27: Barge
+  28: Fishing Vessel
+  29: Ferry
+  30: Yacht
+  31: Container Ship
+  32: Oil Tanker
+  33: Engineering Vehicle
+  34: Tower crane
+  35: Container Crane
+  36: Reach Stacker
+  37: Straddle Carrier
+  38: Mobile Crane
+  39: Dump Truck
+  40: Haul Truck
+  41: Scraper/Tractor
+  42: Front loader/Bulldozer
+  43: Excavator
+  44: Cement Mixer
+  45: Ground Grader
+  46: Hut/Tent
+  47: Shed
+  48: Building
+  49: Aircraft Hangar
+  50: Damaged Building
+  51: Facility
+  52: Construction Site
+  53: Vehicle Lot
+  54: Helipad
+  55: Storage Tank
+  56: Shipping container lot
+  57: Shipping Container
+  58: Pylon
+  59: Tower
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+  import os
+  from pathlib import Path
+
+  import numpy as np
+  from PIL import Image
+  from tqdm import tqdm
+
+  from utils.dataloaders import autosplit
+  from utils.general import download, xyxy2xywhn
+
+
+  def convert_labels(fname=Path('xView/xView_train.geojson')):
+      # Convert xView geoJSON labels to YOLO format
+      path = fname.parent
+      with open(fname) as f:
+          print(f'Loading {fname}...')
+          data = json.load(f)
+
+      # Make dirs
+      labels = Path(path / 'labels' / 'train')
+      os.system(f'rm -rf {labels}')
+      labels.mkdir(parents=True, exist_ok=True)
+
+      # xView classes 11-94 to 0-59
+      xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
+                           12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
+                           29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
+                           47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
+
+      shapes = {}
+      for feature in tqdm(data['features'], desc=f'Converting {fname}'):
+          p = feature['properties']
+          if p['bounds_imcoords']:
+              id = p['image_id']
+              file = path / 'train_images' / id
+              if file.exists():  # 1395.tif missing
+                  try:
+                      box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
+                      assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
+                      cls = p['type_id']
+                      cls = xview_class2index[int(cls)]  # xView class to 0-60
+                      assert 59 >= cls >= 0, f'incorrect class index {cls}'
+
+                      # Write YOLO label
+                      if id not in shapes:
+                          shapes[id] = Image.open(file).size
+                      box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
+                      with open((labels / id).with_suffix('.txt'), 'a') as f:
+                          f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n")  # write label.txt
+                  except Exception as e:
+                      print(f'WARNING: skipping one label for {file}: {e}')
+
+
+  # Download manually from https://challenge.xviewdataset.org
+  dir = Path(yaml['path'])  # dataset root dir
+  # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip',  # train labels
+  #         'https://d307kc0mrhucc3.cloudfront.net/train_images.zip',  # 15G, 847 train images
+  #         'https://d307kc0mrhucc3.cloudfront.net/val_images.zip']  # 5G, 282 val images (no labels)
+  # download(urls, dir=dir, delete=False)
+
+  # Convert labels
+  convert_labels(dir / 'xView_train.geojson')
+
+  # Move images
+  images = Path(dir / 'images')
+  images.mkdir(parents=True, exist_ok=True)
+  Path(dir / 'train_images').rename(dir / 'images' / 'train')
+  Path(dir / 'val_images').rename(dir / 'images' / 'val')
+
+  # Split
+  autosplit(dir / 'images' / 'train')
diff --git a/yolov5/detect.py b/yolov5/detect.py
new file mode 100644
index 0000000000000000000000000000000000000000..c58aa80a68fc0c320e8d78aac449c40bf5d97260
--- /dev/null
+++ b/yolov5/detect.py
@@ -0,0 +1,312 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
+
+Usage - sources:
+    $ python detect.py --weights yolov5s.pt --source 0                               # webcam
+                                                     img.jpg                         # image
+                                                     vid.mp4                         # video
+                                                     screen                          # screenshot
+                                                     path/                           # directory
+                                                     list.txt                        # list of images
+                                                     list.streams                    # list of streams
+                                                     'path/*.jpg'                    # glob
+                                                     'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python detect.py --weights yolov5s.pt                 # PyTorch
+                                 yolov5s.torchscript        # TorchScript
+                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                 yolov5s_openvino_model     # OpenVINO
+                                 yolov5s.engine             # TensorRT
+                                 yolov5s.mlmodel            # CoreML (macOS-only)
+                                 yolov5s_saved_model        # TensorFlow SavedModel
+                                 yolov5s.pb                 # TensorFlow GraphDef
+                                 yolov5s.tflite             # TensorFlow Lite
+                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                                 yolov5s_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import csv
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from ultralytics.utils.plotting import Annotator, colors, save_one_box
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (
+    LOGGER,
+    Profile,
+    check_file,
+    check_img_size,
+    check_imshow,
+    check_requirements,
+    colorstr,
+    cv2,
+    increment_path,
+    non_max_suppression,
+    print_args,
+    scale_boxes,
+    strip_optimizer,
+    xyxy2xywh,
+)
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    weights=ROOT / "yolov5s.pt",  # model path or triton URL
+    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
+    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
+    imgsz=(640, 640),  # inference size (height, width)
+    conf_thres=0.25,  # confidence threshold
+    iou_thres=0.45,  # NMS IOU threshold
+    max_det=1000,  # maximum detections per image
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    view_img=False,  # show results
+    save_txt=False,  # save results to *.txt
+    save_csv=False,  # save results in CSV format
+    save_conf=False,  # save confidences in --save-txt labels
+    save_crop=False,  # save cropped prediction boxes
+    nosave=False,  # do not save images/videos
+    classes=None,  # filter by class: --class 0, or --class 0 2 3
+    agnostic_nms=False,  # class-agnostic NMS
+    augment=False,  # augmented inference
+    visualize=False,  # visualize features
+    update=False,  # update all models
+    project=ROOT / "runs/detect",  # save results to project/name
+    name="exp",  # save results to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    line_thickness=3,  # bounding box thickness (pixels)
+    hide_labels=False,  # hide labels
+    hide_conf=False,  # hide confidences
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    vid_stride=1,  # video frame-rate stride
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith(".txt")  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
+    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
+    screenshot = source.lower().startswith("screen")
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.from_numpy(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+            if model.xml and im.shape[0] > 1:
+                ims = torch.chunk(im, im.shape[0], 0)
+
+        # Inference
+        with dt[1]:
+            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+            if model.xml and im.shape[0] > 1:
+                pred = None
+                for image in ims:
+                    if pred is None:
+                        pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
+                    else:
+                        pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
+                pred = [pred, None]
+            else:
+                pred = model(im, augment=augment, visualize=visualize)
+        # NMS
+        with dt[2]:
+            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
+
+        # Second-stage classifier (optional)
+        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+        # Define the path for the CSV file
+        csv_path = save_dir / "predictions.csv"
+
+        # Create or append to the CSV file
+        def write_to_csv(image_name, prediction, confidence):
+            """Writes prediction data for an image to a CSV file, appending if the file exists."""
+            data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
+            with open(csv_path, mode="a", newline="") as f:
+                writer = csv.DictWriter(f, fieldnames=data.keys())
+                if not csv_path.is_file():
+                    writer.writeheader()
+                writer.writerow(data)
+
+        # Process predictions
+        for i, det in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f"{i}: "
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt
+            s += "%gx%g " % im.shape[2:]  # print string
+            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
+            imc = im0.copy() if save_crop else im0  # for save_crop
+            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+            if len(det):
+                # Rescale boxes from img_size to im0 size
+                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
+
+                # Print results
+                for c in det[:, 5].unique():
+                    n = (det[:, 5] == c).sum()  # detections per class
+                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
+
+                # Write results
+                for *xyxy, conf, cls in reversed(det):
+                    c = int(cls)  # integer class
+                    label = names[c] if hide_conf else f"{names[c]}"
+                    confidence = float(conf)
+                    confidence_str = f"{confidence:.2f}"
+
+                    if save_csv:
+                        write_to_csv(p.name, label, confidence_str)
+
+                    if save_txt:  # Write to file
+                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+                        with open(f"{txt_path}.txt", "a") as f:
+                            f.write(("%g " * len(line)).rstrip() % line + "\n")
+
+                    if save_img or save_crop or view_img:  # Add bbox to image
+                        c = int(cls)  # integer class
+                        label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
+                        annotator.box_label(xyxy, label, color=colors(c, True))
+                    if save_crop:
+                        save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == "Linux" and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                cv2.waitKey(1)  # 1 millisecond
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == "image":
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+    # Print results
+    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
+    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    """Parses command-line arguments for YOLOv5 detection, setting inference options and model configurations."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
+    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
+    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
+    parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
+    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
+    parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--view-img", action="store_true", help="show results")
+    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
+    parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
+    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
+    parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
+    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
+    parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
+    parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
+    parser.add_argument("--augment", action="store_true", help="augmented inference")
+    parser.add_argument("--visualize", action="store_true", help="visualize features")
+    parser.add_argument("--update", action="store_true", help="update all models")
+    parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
+    parser.add_argument("--name", default="exp", help="save results to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
+    parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
+    parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
+    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes YOLOv5 model inference with given options, checking requirements before running the model."""
+    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/export.py b/yolov5/export.py
new file mode 100644
index 0000000000000000000000000000000000000000..214d903c2998e4d82e19eeba1123707babdc7a37
--- /dev/null
+++ b/yolov5/export.py
@@ -0,0 +1,940 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+
+Usage:
+    $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
+
+Inference:
+    $ python detect.py --weights yolov5s.pt                 # PyTorch
+                                 yolov5s.torchscript        # TorchScript
+                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                 yolov5s_openvino_model     # OpenVINO
+                                 yolov5s.engine             # TensorRT
+                                 yolov5s.mlmodel            # CoreML (macOS-only)
+                                 yolov5s_saved_model        # TensorFlow SavedModel
+                                 yolov5s.pb                 # TensorFlow GraphDef
+                                 yolov5s.tflite             # TensorFlow Lite
+                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                                 yolov5s_paddle_model       # PaddlePaddle
+
+TensorFlow.js:
+    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
+    $ npm install
+    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
+    $ npm start
+"""
+
+import argparse
+import contextlib
+import json
+import os
+import platform
+import re
+import subprocess
+import sys
+import time
+import warnings
+from pathlib import Path
+
+import pandas as pd
+import torch
+from torch.utils.mobile_optimizer import optimize_for_mobile
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+if platform.system() != "Windows":
+    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.experimental import attempt_load
+from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
+from utils.dataloaders import LoadImages
+from utils.general import (
+    LOGGER,
+    Profile,
+    check_dataset,
+    check_img_size,
+    check_requirements,
+    check_version,
+    check_yaml,
+    colorstr,
+    file_size,
+    get_default_args,
+    print_args,
+    url2file,
+    yaml_save,
+)
+from utils.torch_utils import select_device, smart_inference_mode
+
+MACOS = platform.system() == "Darwin"  # macOS environment
+
+
+class iOSModel(torch.nn.Module):
+    def __init__(self, model, im):
+        """Initializes an iOS compatible model with normalization based on image dimensions."""
+        super().__init__()
+        b, c, h, w = im.shape  # batch, channel, height, width
+        self.model = model
+        self.nc = model.nc  # number of classes
+        if w == h:
+            self.normalize = 1.0 / w
+        else:
+            self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h])  # broadcast (slower, smaller)
+            # np = model(im)[0].shape[1]  # number of points
+            # self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4)  # explicit (faster, larger)
+
+    def forward(self, x):
+        """Runs forward pass on the input tensor, returning class confidences and normalized coordinates."""
+        xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
+        return cls * conf, xywh * self.normalize  # confidence (3780, 80), coordinates (3780, 4)
+
+
+def export_formats():
+    """Returns a DataFrame of supported YOLOv5 model export formats and their properties."""
+    x = [
+        ["PyTorch", "-", ".pt", True, True],
+        ["TorchScript", "torchscript", ".torchscript", True, True],
+        ["ONNX", "onnx", ".onnx", True, True],
+        ["OpenVINO", "openvino", "_openvino_model", True, False],
+        ["TensorRT", "engine", ".engine", False, True],
+        ["CoreML", "coreml", ".mlmodel", True, False],
+        ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
+        ["TensorFlow GraphDef", "pb", ".pb", True, True],
+        ["TensorFlow Lite", "tflite", ".tflite", True, False],
+        ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
+        ["TensorFlow.js", "tfjs", "_web_model", False, False],
+        ["PaddlePaddle", "paddle", "_paddle_model", True, True],
+    ]
+    return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
+
+
+def try_export(inner_func):
+    """Decorator @try_export for YOLOv5 model export functions that logs success/failure, time taken, and file size."""
+    inner_args = get_default_args(inner_func)
+
+    def outer_func(*args, **kwargs):
+        prefix = inner_args["prefix"]
+        try:
+            with Profile() as dt:
+                f, model = inner_func(*args, **kwargs)
+            LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
+            return f, model
+        except Exception as e:
+            LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
+            return None, None
+
+    return outer_func
+
+
+@try_export
+def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
+    """Exports YOLOv5 model to TorchScript format, optionally optimized for mobile, with image shape and stride
+    metadata.
+    """
+    LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
+    f = file.with_suffix(".torchscript")
+
+    ts = torch.jit.trace(model, im, strict=False)
+    d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
+    extra_files = {"config.txt": json.dumps(d)}  # torch._C.ExtraFilesMap()
+    if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
+        optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
+    else:
+        ts.save(str(f), _extra_files=extra_files)
+    return f, None
+
+
+@try_export
+def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
+    """Exports a YOLOv5 model to ONNX format with dynamic axes and optional simplification."""
+    check_requirements("onnx>=1.12.0")
+    import onnx
+
+    LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
+    f = str(file.with_suffix(".onnx"))
+
+    output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
+    if dynamic:
+        dynamic = {"images": {0: "batch", 2: "height", 3: "width"}}  # shape(1,3,640,640)
+        if isinstance(model, SegmentationModel):
+            dynamic["output0"] = {0: "batch", 1: "anchors"}  # shape(1,25200,85)
+            dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"}  # shape(1,32,160,160)
+        elif isinstance(model, DetectionModel):
+            dynamic["output0"] = {0: "batch", 1: "anchors"}  # shape(1,25200,85)
+
+    torch.onnx.export(
+        model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
+        im.cpu() if dynamic else im,
+        f,
+        verbose=False,
+        opset_version=opset,
+        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
+        input_names=["images"],
+        output_names=output_names,
+        dynamic_axes=dynamic or None,
+    )
+
+    # Checks
+    model_onnx = onnx.load(f)  # load onnx model
+    onnx.checker.check_model(model_onnx)  # check onnx model
+
+    # Metadata
+    d = {"stride": int(max(model.stride)), "names": model.names}
+    for k, v in d.items():
+        meta = model_onnx.metadata_props.add()
+        meta.key, meta.value = k, str(v)
+    onnx.save(model_onnx, f)
+
+    # Simplify
+    if simplify:
+        try:
+            cuda = torch.cuda.is_available()
+            check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnx-simplifier>=0.4.1"))
+            import onnxsim
+
+            LOGGER.info(f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...")
+            model_onnx, check = onnxsim.simplify(model_onnx)
+            assert check, "assert check failed"
+            onnx.save(model_onnx, f)
+        except Exception as e:
+            LOGGER.info(f"{prefix} simplifier failure: {e}")
+    return f, model_onnx
+
+
+@try_export
+def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
+    # YOLOv5 OpenVINO export
+    check_requirements("openvino-dev>=2023.0")  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+    import openvino.runtime as ov  # noqa
+    from openvino.tools import mo  # noqa
+
+    LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
+    f = str(file).replace(file.suffix, f"_{'int8_' if int8 else ''}openvino_model{os.sep}")
+    f_onnx = file.with_suffix(".onnx")
+    f_ov = str(Path(f) / file.with_suffix(".xml").name)
+
+    ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half)  # export
+
+    if int8:
+        check_requirements("nncf>=2.5.0")  # requires at least version 2.5.0 to use the post-training quantization
+        import nncf
+        import numpy as np
+
+        from utils.dataloaders import create_dataloader
+
+        def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
+            data_yaml = check_yaml(yaml_path)
+            data = check_dataset(data_yaml)
+            dataloader = create_dataloader(
+                data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
+            )[0]
+            return dataloader
+
+        # noqa: F811
+
+        def transform_fn(data_item):
+            """
+            Quantization transform function.
+
+            Extracts and preprocess input data from dataloader item for quantization.
+            Parameters:
+               data_item: Tuple with data item produced by DataLoader during iteration
+            Returns:
+                input_tensor: Input data for quantization
+            """
+            assert data_item[0].dtype == torch.uint8, "input image must be uint8 for the quantization preprocessing"
+
+            img = data_item[0].numpy().astype(np.float32)  # uint8 to fp16/32
+            img /= 255.0  # 0 - 255 to 0.0 - 1.0
+            return np.expand_dims(img, 0) if img.ndim == 3 else img
+
+        ds = gen_dataloader(data)
+        quantization_dataset = nncf.Dataset(ds, transform_fn)
+        ov_model = nncf.quantize(ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
+
+    ov.serialize(ov_model, f_ov)  # save
+    yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata)  # add metadata.yaml
+    return f, None
+
+
+@try_export
+def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
+    """Exports a YOLOv5 model to PaddlePaddle format using X2Paddle, saving to `save_dir` and adding a metadata.yaml
+    file.
+    """
+    check_requirements(("paddlepaddle", "x2paddle"))
+    import x2paddle
+    from x2paddle.convert import pytorch2paddle
+
+    LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
+    f = str(file).replace(".pt", f"_paddle_model{os.sep}")
+
+    pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im])  # export
+    yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata)  # add metadata.yaml
+    return f, None
+
+
+@try_export
+def export_coreml(model, im, file, int8, half, nms, prefix=colorstr("CoreML:")):
+    """Exports YOLOv5 model to CoreML format with optional NMS, INT8, and FP16 support; requires coremltools."""
+    check_requirements("coremltools")
+    import coremltools as ct
+
+    LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
+    f = file.with_suffix(".mlmodel")
+
+    if nms:
+        model = iOSModel(model, im)
+    ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
+    ct_model = ct.convert(ts, inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
+    bits, mode = (8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None)
+    if bits < 32:
+        if MACOS:  # quantization only supported on macOS
+            with warnings.catch_warnings():
+                warnings.filterwarnings("ignore", category=DeprecationWarning)  # suppress numpy==1.20 float warning
+                ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
+        else:
+            print(f"{prefix} quantization only supported on macOS, skipping...")
+    ct_model.save(f)
+    return f, ct_model
+
+
+@try_export
+def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
+    """
+    Exports a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.
+
+    https://developer.nvidia.com/tensorrt
+    """
+    assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
+    try:
+        import tensorrt as trt
+    except Exception:
+        if platform.system() == "Linux":
+            check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
+        import tensorrt as trt
+
+    if trt.__version__[0] == "7":  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
+        grid = model.model[-1].anchor_grid
+        model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
+        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
+        model.model[-1].anchor_grid = grid
+    else:  # TensorRT >= 8
+        check_version(trt.__version__, "8.0.0", hard=True)  # require tensorrt>=8.0.0
+        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
+    onnx = file.with_suffix(".onnx")
+
+    LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
+    is_trt10 = int(trt.__version__.split(".")[0]) >= 10  # is TensorRT >= 10
+    assert onnx.exists(), f"failed to export ONNX file: {onnx}"
+    f = file.with_suffix(".engine")  # TensorRT engine file
+    logger = trt.Logger(trt.Logger.INFO)
+    if verbose:
+        logger.min_severity = trt.Logger.Severity.VERBOSE
+
+    builder = trt.Builder(logger)
+    config = builder.create_builder_config()
+    if is_trt10:
+        config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)
+    else:  # TensorRT versions 7, 8
+        config.max_workspace_size = workspace * 1 << 30
+    flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
+    network = builder.create_network(flag)
+    parser = trt.OnnxParser(network, logger)
+    if not parser.parse_from_file(str(onnx)):
+        raise RuntimeError(f"failed to load ONNX file: {onnx}")
+
+    inputs = [network.get_input(i) for i in range(network.num_inputs)]
+    outputs = [network.get_output(i) for i in range(network.num_outputs)]
+    for inp in inputs:
+        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
+    for out in outputs:
+        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
+
+    if dynamic:
+        if im.shape[0] <= 1:
+            LOGGER.warning(f"{prefix} WARNING ⚠ī¸ --dynamic model requires maximum --batch-size argument")
+        profile = builder.create_optimization_profile()
+        for inp in inputs:
+            profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
+        config.add_optimization_profile(profile)
+
+    LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
+    if builder.platform_has_fast_fp16 and half:
+        config.set_flag(trt.BuilderFlag.FP16)
+
+    build = builder.build_serialized_network if is_trt10 else builder.build_engine
+    with build(network, config) as engine, open(f, "wb") as t:
+        t.write(engine if is_trt10 else engine.serialize())
+    return f, None
+
+
+@try_export
+def export_saved_model(
+    model,
+    im,
+    file,
+    dynamic,
+    tf_nms=False,
+    agnostic_nms=False,
+    topk_per_class=100,
+    topk_all=100,
+    iou_thres=0.45,
+    conf_thres=0.25,
+    keras=False,
+    prefix=colorstr("TensorFlow SavedModel:"),
+):
+    # YOLOv5 TensorFlow SavedModel export
+    try:
+        import tensorflow as tf
+    except Exception:
+        check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}<=2.15.1")
+
+        import tensorflow as tf
+    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+    from models.tf import TFModel
+
+    LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
+    if tf.__version__ > "2.13.1":
+        helper_url = "https://github.com/ultralytics/yolov5/issues/12489"
+        LOGGER.info(
+            f"WARNING ⚠ī¸ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}"
+        )  # handling issue https://github.com/ultralytics/yolov5/issues/12489
+    f = str(file).replace(".pt", "_saved_model")
+    batch_size, ch, *imgsz = list(im.shape)  # BCHW
+
+    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+    im = tf.zeros((batch_size, *imgsz, ch))  # BHWC order for TensorFlow
+    _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+    inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
+    outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+    keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
+    keras_model.trainable = False
+    keras_model.summary()
+    if keras:
+        keras_model.save(f, save_format="tf")
+    else:
+        spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
+        m = tf.function(lambda x: keras_model(x))  # full model
+        m = m.get_concrete_function(spec)
+        frozen_func = convert_variables_to_constants_v2(m)
+        tfm = tf.Module()
+        tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
+        tfm.__call__(im)
+        tf.saved_model.save(
+            tfm,
+            f,
+            options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
+            if check_version(tf.__version__, "2.6")
+            else tf.saved_model.SaveOptions(),
+        )
+    return f, keras_model
+
+
+@try_export
+def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
+    """Exports YOLOv5 model to TensorFlow GraphDef *.pb format; see https://github.com/leimao/Frozen_Graph_TensorFlow for details."""
+    import tensorflow as tf
+    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+    LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
+    f = file.with_suffix(".pb")
+
+    m = tf.function(lambda x: keras_model(x))  # full model
+    m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
+    frozen_func = convert_variables_to_constants_v2(m)
+    frozen_func.graph.as_graph_def()
+    tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
+    return f, None
+
+
+@try_export
+def export_tflite(
+    keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")
+):
+    # YOLOv5 TensorFlow Lite export
+    import tensorflow as tf
+
+    LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
+    batch_size, ch, *imgsz = list(im.shape)  # BCHW
+    f = str(file).replace(".pt", "-fp16.tflite")
+
+    converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
+    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
+    converter.target_spec.supported_types = [tf.float16]
+    converter.optimizations = [tf.lite.Optimize.DEFAULT]
+    if int8:
+        from models.tf import representative_dataset_gen
+
+        dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
+        converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
+        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
+        converter.target_spec.supported_types = []
+        converter.inference_input_type = tf.uint8  # or tf.int8
+        converter.inference_output_type = tf.uint8  # or tf.int8
+        converter.experimental_new_quantizer = True
+        if per_tensor:
+            converter._experimental_disable_per_channel = True
+        f = str(file).replace(".pt", "-int8.tflite")
+    if nms or agnostic_nms:
+        converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
+
+    tflite_model = converter.convert()
+    open(f, "wb").write(tflite_model)
+    return f, None
+
+
+@try_export
+def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
+    """
+    Exports a YOLOv5 model to Edge TPU compatible TFLite format; requires Linux and Edge TPU compiler.
+
+    https://coral.ai/docs/edgetpu/models-intro/
+    """
+    cmd = "edgetpu_compiler --version"
+    help_url = "https://coral.ai/docs/edgetpu/compiler/"
+    assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
+    if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
+        LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
+        sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0  # sudo installed on system
+        for c in (
+            "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
+            'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
+            "sudo apt-get update",
+            "sudo apt-get install edgetpu-compiler",
+        ):
+            subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
+    ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
+
+    LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
+    f = str(file).replace(".pt", "-int8_edgetpu.tflite")  # Edge TPU model
+    f_tfl = str(file).replace(".pt", "-int8.tflite")  # TFLite model
+
+    subprocess.run(
+        [
+            "edgetpu_compiler",
+            "-s",
+            "-d",
+            "-k",
+            "10",
+            "--out_dir",
+            str(file.parent),
+            f_tfl,
+        ],
+        check=True,
+    )
+    return f, None
+
+
+@try_export
+def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
+    """Exports a YOLOv5 model to TensorFlow.js format, optionally with uint8 quantization."""
+    check_requirements("tensorflowjs")
+    import tensorflowjs as tfjs
+
+    LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
+    f = str(file).replace(".pt", "_web_model")  # js dir
+    f_pb = file.with_suffix(".pb")  # *.pb path
+    f_json = f"{f}/model.json"  # *.json path
+
+    args = [
+        "tensorflowjs_converter",
+        "--input_format=tf_frozen_model",
+        "--quantize_uint8" if int8 else "",
+        "--output_node_names=Identity,Identity_1,Identity_2,Identity_3",
+        str(f_pb),
+        f,
+    ]
+    subprocess.run([arg for arg in args if arg], check=True)
+
+    json = Path(f_json).read_text()
+    with open(f_json, "w") as j:  # sort JSON Identity_* in ascending order
+        subst = re.sub(
+            r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}}}',
+            r'{"outputs": {"Identity": {"name": "Identity"}, '
+            r'"Identity_1": {"name": "Identity_1"}, '
+            r'"Identity_2": {"name": "Identity_2"}, '
+            r'"Identity_3": {"name": "Identity_3"}}}',
+            json,
+        )
+        j.write(subst)
+    return f, None
+
+
+def add_tflite_metadata(file, metadata, num_outputs):
+    """
+    Adds TFLite metadata to a model file, supporting multiple outputs, as specified by TensorFlow guidelines.
+
+    https://www.tensorflow.org/lite/models/convert/metadata
+    """
+    with contextlib.suppress(ImportError):
+        # check_requirements('tflite_support')
+        from tflite_support import flatbuffers
+        from tflite_support import metadata as _metadata
+        from tflite_support import metadata_schema_py_generated as _metadata_fb
+
+        tmp_file = Path("/tmp/meta.txt")
+        with open(tmp_file, "w") as meta_f:
+            meta_f.write(str(metadata))
+
+        model_meta = _metadata_fb.ModelMetadataT()
+        label_file = _metadata_fb.AssociatedFileT()
+        label_file.name = tmp_file.name
+        model_meta.associatedFiles = [label_file]
+
+        subgraph = _metadata_fb.SubGraphMetadataT()
+        subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
+        subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
+        model_meta.subgraphMetadata = [subgraph]
+
+        b = flatbuffers.Builder(0)
+        b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
+        metadata_buf = b.Output()
+
+        populator = _metadata.MetadataPopulator.with_model_file(file)
+        populator.load_metadata_buffer(metadata_buf)
+        populator.load_associated_files([str(tmp_file)])
+        populator.populate()
+        tmp_file.unlink()
+
+
+def pipeline_coreml(model, im, file, names, y, prefix=colorstr("CoreML Pipeline:")):
+    """Converts a PyTorch YOLOv5 model to CoreML format with NMS, handling different input/output shapes and saving the
+    model.
+    """
+    import coremltools as ct
+    from PIL import Image
+
+    print(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
+    batch_size, ch, h, w = list(im.shape)  # BCHW
+    t = time.time()
+
+    # YOLOv5 Output shapes
+    spec = model.get_spec()
+    out0, out1 = iter(spec.description.output)
+    if platform.system() == "Darwin":
+        img = Image.new("RGB", (w, h))  # img(192 width, 320 height)
+        # img = torch.zeros((*opt.img_size, 3)).numpy()  # img size(320,192,3) iDetection
+        out = model.predict({"image": img})
+        out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
+    else:  # linux and windows can not run model.predict(), get sizes from pytorch output y
+        s = tuple(y[0].shape)
+        out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4)  # (3780, 80), (3780, 4)
+
+    # Checks
+    nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
+    na, nc = out0_shape
+    # na, nc = out0.type.multiArrayType.shape  # number anchors, classes
+    assert len(names) == nc, f"{len(names)} names found for nc={nc}"  # check
+
+    # Define output shapes (missing)
+    out0.type.multiArrayType.shape[:] = out0_shape  # (3780, 80)
+    out1.type.multiArrayType.shape[:] = out1_shape  # (3780, 4)
+    # spec.neuralNetwork.preprocessing[0].featureName = '0'
+
+    # Flexible input shapes
+    # from coremltools.models.neural_network import flexible_shape_utils
+    # s = [] # shapes
+    # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
+    # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384))  # (height, width)
+    # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
+    # r = flexible_shape_utils.NeuralNetworkImageSizeRange()  # shape ranges
+    # r.add_height_range((192, 640))
+    # r.add_width_range((192, 640))
+    # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
+
+    # Print
+    print(spec.description)
+
+    # Model from spec
+    model = ct.models.MLModel(spec)
+
+    # 3. Create NMS protobuf
+    nms_spec = ct.proto.Model_pb2.Model()
+    nms_spec.specificationVersion = 5
+    for i in range(2):
+        decoder_output = model._spec.description.output[i].SerializeToString()
+        nms_spec.description.input.add()
+        nms_spec.description.input[i].ParseFromString(decoder_output)
+        nms_spec.description.output.add()
+        nms_spec.description.output[i].ParseFromString(decoder_output)
+
+    nms_spec.description.output[0].name = "confidence"
+    nms_spec.description.output[1].name = "coordinates"
+
+    output_sizes = [nc, 4]
+    for i in range(2):
+        ma_type = nms_spec.description.output[i].type.multiArrayType
+        ma_type.shapeRange.sizeRanges.add()
+        ma_type.shapeRange.sizeRanges[0].lowerBound = 0
+        ma_type.shapeRange.sizeRanges[0].upperBound = -1
+        ma_type.shapeRange.sizeRanges.add()
+        ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
+        ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
+        del ma_type.shape[:]
+
+    nms = nms_spec.nonMaximumSuppression
+    nms.confidenceInputFeatureName = out0.name  # 1x507x80
+    nms.coordinatesInputFeatureName = out1.name  # 1x507x4
+    nms.confidenceOutputFeatureName = "confidence"
+    nms.coordinatesOutputFeatureName = "coordinates"
+    nms.iouThresholdInputFeatureName = "iouThreshold"
+    nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
+    nms.iouThreshold = 0.45
+    nms.confidenceThreshold = 0.25
+    nms.pickTop.perClass = True
+    nms.stringClassLabels.vector.extend(names.values())
+    nms_model = ct.models.MLModel(nms_spec)
+
+    # 4. Pipeline models together
+    pipeline = ct.models.pipeline.Pipeline(
+        input_features=[
+            ("image", ct.models.datatypes.Array(3, ny, nx)),
+            ("iouThreshold", ct.models.datatypes.Double()),
+            ("confidenceThreshold", ct.models.datatypes.Double()),
+        ],
+        output_features=["confidence", "coordinates"],
+    )
+    pipeline.add_model(model)
+    pipeline.add_model(nms_model)
+
+    # Correct datatypes
+    pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
+    pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
+    pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
+
+    # Update metadata
+    pipeline.spec.specificationVersion = 5
+    pipeline.spec.description.metadata.versionString = "https://github.com/ultralytics/yolov5"
+    pipeline.spec.description.metadata.shortDescription = "https://github.com/ultralytics/yolov5"
+    pipeline.spec.description.metadata.author = "glenn.jocher@ultralytics.com"
+    pipeline.spec.description.metadata.license = "https://github.com/ultralytics/yolov5/blob/master/LICENSE"
+    pipeline.spec.description.metadata.userDefined.update(
+        {
+            "classes": ",".join(names.values()),
+            "iou_threshold": str(nms.iouThreshold),
+            "confidence_threshold": str(nms.confidenceThreshold),
+        }
+    )
+
+    # Save the model
+    f = file.with_suffix(".mlmodel")  # filename
+    model = ct.models.MLModel(pipeline.spec)
+    model.input_description["image"] = "Input image"
+    model.input_description["iouThreshold"] = f"(optional) IOU Threshold override (default: {nms.iouThreshold})"
+    model.input_description["confidenceThreshold"] = (
+        f"(optional) Confidence Threshold override (default: {nms.confidenceThreshold})"
+    )
+    model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
+    model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
+    model.save(f)  # pipelined
+    print(f"{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)")
+
+
+@smart_inference_mode()
+def run(
+    data=ROOT / "data/coco128.yaml",  # 'dataset.yaml path'
+    weights=ROOT / "yolov5s.pt",  # weights path
+    imgsz=(640, 640),  # image (height, width)
+    batch_size=1,  # batch size
+    device="cpu",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    include=("torchscript", "onnx"),  # include formats
+    half=False,  # FP16 half-precision export
+    inplace=False,  # set YOLOv5 Detect() inplace=True
+    keras=False,  # use Keras
+    optimize=False,  # TorchScript: optimize for mobile
+    int8=False,  # CoreML/TF INT8 quantization
+    per_tensor=False,  # TF per tensor quantization
+    dynamic=False,  # ONNX/TF/TensorRT: dynamic axes
+    simplify=False,  # ONNX: simplify model
+    opset=12,  # ONNX: opset version
+    verbose=False,  # TensorRT: verbose log
+    workspace=4,  # TensorRT: workspace size (GB)
+    nms=False,  # TF: add NMS to model
+    agnostic_nms=False,  # TF: add agnostic NMS to model
+    topk_per_class=100,  # TF.js NMS: topk per class to keep
+    topk_all=100,  # TF.js NMS: topk for all classes to keep
+    iou_thres=0.45,  # TF.js NMS: IoU threshold
+    conf_thres=0.25,  # TF.js NMS: confidence threshold
+):
+    t = time.time()
+    include = [x.lower() for x in include]  # to lowercase
+    fmts = tuple(export_formats()["Argument"][1:])  # --include arguments
+    flags = [x in include for x in fmts]
+    assert sum(flags) == len(include), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
+    jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags  # export booleans
+    file = Path(url2file(weights) if str(weights).startswith(("http:/", "https:/")) else weights)  # PyTorch weights
+
+    # Load PyTorch model
+    device = select_device(device)
+    if half:
+        assert device.type != "cpu" or coreml, "--half only compatible with GPU export, i.e. use --device 0"
+        assert not dynamic, "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
+    model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model
+
+    # Checks
+    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
+    if optimize:
+        assert device.type == "cpu", "--optimize not compatible with cuda devices, i.e. use --device cpu"
+
+    # Input
+    gs = int(max(model.stride))  # grid size (max stride)
+    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
+    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
+
+    # Update model
+    model.eval()
+    for k, m in model.named_modules():
+        if isinstance(m, Detect):
+            m.inplace = inplace
+            m.dynamic = dynamic
+            m.export = True
+
+    for _ in range(2):
+        y = model(im)  # dry runs
+    if half and not coreml:
+        im, model = im.half(), model.half()  # to FP16
+    shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
+    metadata = {"stride": int(max(model.stride)), "names": model.names}  # model metadata
+    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
+
+    # Exports
+    f = [""] * len(fmts)  # exported filenames
+    warnings.filterwarnings(action="ignore", category=torch.jit.TracerWarning)  # suppress TracerWarning
+    if jit:  # TorchScript
+        f[0], _ = export_torchscript(model, im, file, optimize)
+    if engine:  # TensorRT required before ONNX
+        f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
+    if onnx or xml:  # OpenVINO requires ONNX
+        f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
+    if xml:  # OpenVINO
+        f[3], _ = export_openvino(file, metadata, half, int8, data)
+    if coreml:  # CoreML
+        f[4], ct_model = export_coreml(model, im, file, int8, half, nms)
+        if nms:
+            pipeline_coreml(ct_model, im, file, model.names, y)
+    if any((saved_model, pb, tflite, edgetpu, tfjs)):  # TensorFlow formats
+        assert not tflite or not tfjs, "TFLite and TF.js models must be exported separately, please pass only one type."
+        assert not isinstance(model, ClassificationModel), "ClassificationModel export to TF formats not yet supported."
+        f[5], s_model = export_saved_model(
+            model.cpu(),
+            im,
+            file,
+            dynamic,
+            tf_nms=nms or agnostic_nms or tfjs,
+            agnostic_nms=agnostic_nms or tfjs,
+            topk_per_class=topk_per_class,
+            topk_all=topk_all,
+            iou_thres=iou_thres,
+            conf_thres=conf_thres,
+            keras=keras,
+        )
+        if pb or tfjs:  # pb prerequisite to tfjs
+            f[6], _ = export_pb(s_model, file)
+        if tflite or edgetpu:
+            f[7], _ = export_tflite(
+                s_model, im, file, int8 or edgetpu, per_tensor, data=data, nms=nms, agnostic_nms=agnostic_nms
+            )
+            if edgetpu:
+                f[8], _ = export_edgetpu(file)
+            add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
+        if tfjs:
+            f[9], _ = export_tfjs(file, int8)
+    if paddle:  # PaddlePaddle
+        f[10], _ = export_paddle(model, im, file, metadata)
+
+    # Finish
+    f = [str(x) for x in f if x]  # filter out '' and None
+    if any(f):
+        cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel))  # type
+        det &= not seg  # segmentation models inherit from SegmentationModel(DetectionModel)
+        dir = Path("segment" if seg else "classify" if cls else "")
+        h = "--half" if half else ""  # --half FP16 inference arg
+        s = (
+            "# WARNING ⚠ī¸ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
+            if cls
+            else "# WARNING ⚠ī¸ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
+            if seg
+            else ""
+        )
+        LOGGER.info(
+            f'\nExport complete ({time.time() - t:.1f}s)'
+            f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
+            f"\nDetect:          python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
+            f"\nValidate:        python {dir / 'val.py'} --weights {f[-1]} {h}"
+            f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')  {s}"
+            f'\nVisualize:       https://netron.app'
+        )
+    return f  # return list of exported files/dirs
+
+
+def parse_opt(known=False):
+    """Parses command-line arguments for YOLOv5 model export configurations, returning the parsed options."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model.pt path(s)")
+    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640, 640], help="image (h, w)")
+    parser.add_argument("--batch-size", type=int, default=1, help="batch size")
+    parser.add_argument("--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--half", action="store_true", help="FP16 half-precision export")
+    parser.add_argument("--inplace", action="store_true", help="set YOLOv5 Detect() inplace=True")
+    parser.add_argument("--keras", action="store_true", help="TF: use Keras")
+    parser.add_argument("--optimize", action="store_true", help="TorchScript: optimize for mobile")
+    parser.add_argument("--int8", action="store_true", help="CoreML/TF/OpenVINO INT8 quantization")
+    parser.add_argument("--per-tensor", action="store_true", help="TF per-tensor quantization")
+    parser.add_argument("--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes")
+    parser.add_argument("--simplify", action="store_true", help="ONNX: simplify model")
+    parser.add_argument("--opset", type=int, default=17, help="ONNX: opset version")
+    parser.add_argument("--verbose", action="store_true", help="TensorRT: verbose log")
+    parser.add_argument("--workspace", type=int, default=4, help="TensorRT: workspace size (GB)")
+    parser.add_argument("--nms", action="store_true", help="TF: add NMS to model")
+    parser.add_argument("--agnostic-nms", action="store_true", help="TF: add agnostic NMS to model")
+    parser.add_argument("--topk-per-class", type=int, default=100, help="TF.js NMS: topk per class to keep")
+    parser.add_argument("--topk-all", type=int, default=100, help="TF.js NMS: topk for all classes to keep")
+    parser.add_argument("--iou-thres", type=float, default=0.45, help="TF.js NMS: IoU threshold")
+    parser.add_argument("--conf-thres", type=float, default=0.25, help="TF.js NMS: confidence threshold")
+    parser.add_argument(
+        "--include",
+        nargs="+",
+        default=["torchscript"],
+        help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
+    )
+    opt = parser.parse_known_args()[0] if known else parser.parse_args()
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes the YOLOv5 model inference or export with specified weights and options."""
+    for opt.weights in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
+        run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/hubconf.py b/yolov5/hubconf.py
new file mode 100644
index 0000000000000000000000000000000000000000..53afdff62aeae7a976d33992351fa4ab78c9e07b
--- /dev/null
+++ b/yolov5/hubconf.py
@@ -0,0 +1,195 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
+
+Usage:
+    import torch
+    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # official model
+    model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')  # from branch
+    model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')  # custom/local model
+    model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')  # local repo
+"""
+
+import torch
+
+
+def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    """
+    Creates or loads a YOLOv5 model.
+
+    Arguments:
+        name (str): model name 'yolov5s' or path 'path/to/best.pt'
+        pretrained (bool): load pretrained weights into the model
+        channels (int): number of input channels
+        classes (int): number of model classes
+        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
+        verbose (bool): print all information to screen
+        device (str, torch.device, None): device to use for model parameters
+
+    Returns:
+        YOLOv5 model
+    """
+    from pathlib import Path
+
+    from models.common import AutoShape, DetectMultiBackend
+    from models.experimental import attempt_load
+    from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
+    from utils.downloads import attempt_download
+    from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
+    from utils.torch_utils import select_device
+
+    if not verbose:
+        LOGGER.setLevel(logging.WARNING)
+    check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
+    name = Path(name)
+    path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name  # checkpoint path
+    try:
+        device = select_device(device)
+        if pretrained and channels == 3 and classes == 80:
+            try:
+                model = DetectMultiBackend(path, device=device, fuse=autoshape)  # detection model
+                if autoshape:
+                    if model.pt and isinstance(model.model, ClassificationModel):
+                        LOGGER.warning(
+                            "WARNING ⚠ī¸ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
+                            "You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
+                        )
+                    elif model.pt and isinstance(model.model, SegmentationModel):
+                        LOGGER.warning(
+                            "WARNING ⚠ī¸ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
+                            "You will not be able to run inference with this model."
+                        )
+                    else:
+                        model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
+            except Exception:
+                model = attempt_load(path, device=device, fuse=False)  # arbitrary model
+        else:
+            cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0]  # model.yaml path
+            model = DetectionModel(cfg, channels, classes)  # create model
+            if pretrained:
+                ckpt = torch.load(attempt_download(path), map_location=device)  # load
+                csd = ckpt["model"].float().state_dict()  # checkpoint state_dict as FP32
+                csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"])  # intersect
+                model.load_state_dict(csd, strict=False)  # load
+                if len(ckpt["model"].names) == classes:
+                    model.names = ckpt["model"].names  # set class names attribute
+        if not verbose:
+            LOGGER.setLevel(logging.INFO)  # reset to default
+        return model.to(device)
+
+    except Exception as e:
+        help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
+        s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
+        raise Exception(s) from e
+
+
+def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
+    """Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification."""
+    return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
+
+
+def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
+    verbosity, and device.
+    """
+    return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Creates YOLOv5-small model with options for pretraining, input channels, class count, autoshaping, verbosity, and
+    device.
+    """
+    return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
+    verbosity, and device.
+    """
+    return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
+    selection.
+    """
+    return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Instantiates the YOLOv5-xlarge model with customizable pretraining, channel count, class count, autoshaping,
+    verbosity, and device.
+    """
+    return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and
+    device.
+    """
+    return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Instantiate YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
+    verbosity, and device selection.
+    """
+    return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Creates YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity,
+    and device.
+    """
+    return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Instantiates the YOLOv5-large-P6 model with customizable pretraining, channel and class counts, autoshaping,
+    verbosity, and device selection.
+    """
+    return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    """Creates YOLOv5-xlarge-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and
+    device.
+    """
+    return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
+
+
+if __name__ == "__main__":
+    import argparse
+    from pathlib import Path
+
+    import numpy as np
+    from PIL import Image
+
+    from utils.general import cv2, print_args
+
+    # Argparser
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--model", type=str, default="yolov5s", help="model name")
+    opt = parser.parse_args()
+    print_args(vars(opt))
+
+    # Model
+    model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
+    # model = custom(path='path/to/model.pt')  # custom
+
+    # Images
+    imgs = [
+        "data/images/zidane.jpg",  # filename
+        Path("data/images/zidane.jpg"),  # Path
+        "https://ultralytics.com/images/zidane.jpg",  # URI
+        cv2.imread("data/images/bus.jpg")[:, :, ::-1],  # OpenCV
+        Image.open("data/images/bus.jpg"),  # PIL
+        np.zeros((320, 640, 3)),
+    ]  # numpy
+
+    # Inference
+    results = model(imgs, size=320)  # batched inference
+
+    # Results
+    results.print()
+    results.save()
diff --git a/yolov5/models/__init__.py b/yolov5/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5/models/common.py b/yolov5/models/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..12244fd4b3cf4f6540e49a34ff9e4d74fa7b76ad
--- /dev/null
+++ b/yolov5/models/common.py
@@ -0,0 +1,1080 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Common modules."""
+
+import ast
+import contextlib
+import json
+import math
+import platform
+import warnings
+import zipfile
+from collections import OrderedDict, namedtuple
+from copy import copy
+from pathlib import Path
+from urllib.parse import urlparse
+
+import cv2
+import numpy as np
+import pandas as pd
+import requests
+import torch
+import torch.nn as nn
+from PIL import Image
+from torch.cuda import amp
+
+# Import 'ultralytics' package or install if missing
+try:
+    import ultralytics
+
+    assert hasattr(ultralytics, "__version__")  # verify package is not directory
+except (ImportError, AssertionError):
+    import os
+
+    os.system("pip install -U ultralytics")
+    import ultralytics
+
+from ultralytics.utils.plotting import Annotator, colors, save_one_box
+
+from utils import TryExcept
+from utils.dataloaders import exif_transpose, letterbox
+from utils.general import (
+    LOGGER,
+    ROOT,
+    Profile,
+    check_requirements,
+    check_suffix,
+    check_version,
+    colorstr,
+    increment_path,
+    is_jupyter,
+    make_divisible,
+    non_max_suppression,
+    scale_boxes,
+    xywh2xyxy,
+    xyxy2xywh,
+    yaml_load,
+)
+from utils.torch_utils import copy_attr, smart_inference_mode
+
+
+def autopad(k, p=None, d=1):
+    """
+    Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size.
+
+    `k`: kernel, `p`: padding, `d`: dilation.
+    """
+    if d > 1:
+        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
+    if p is None:
+        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
+    return p
+
+
+class Conv(nn.Module):
+    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
+    default_act = nn.SiLU()  # default activation
+
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
+        """Initializes a standard convolution layer with optional batch normalization and activation."""
+        super().__init__()
+        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
+        self.bn = nn.BatchNorm2d(c2)
+        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
+
+    def forward(self, x):
+        """Applies a convolution followed by batch normalization and an activation function to the input tensor `x`."""
+        return self.act(self.bn(self.conv(x)))
+
+    def forward_fuse(self, x):
+        """Applies a fused convolution and activation function to the input tensor `x`."""
+        return self.act(self.conv(x))
+
+
+class DWConv(Conv):
+    # Depth-wise convolution
+    def __init__(self, c1, c2, k=1, s=1, d=1, act=True):
+        """Initializes a depth-wise convolution layer with optional activation; args: input channels (c1), output
+        channels (c2), kernel size (k), stride (s), dilation (d), and activation flag (act).
+        """
+        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
+
+
+class DWConvTranspose2d(nn.ConvTranspose2d):
+    # Depth-wise transpose convolution
+    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):
+        """Initializes a depth-wise transpose convolutional layer for YOLOv5; args: input channels (c1), output channels
+        (c2), kernel size (k), stride (s), input padding (p1), output padding (p2).
+        """
+        super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
+
+
+class TransformerLayer(nn.Module):
+    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
+    def __init__(self, c, num_heads):
+        """
+        Initializes a transformer layer, sans LayerNorm for performance, with multihead attention and linear layers.
+
+        See  as described in https://arxiv.org/abs/2010.11929.
+        """
+        super().__init__()
+        self.q = nn.Linear(c, c, bias=False)
+        self.k = nn.Linear(c, c, bias=False)
+        self.v = nn.Linear(c, c, bias=False)
+        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
+        self.fc1 = nn.Linear(c, c, bias=False)
+        self.fc2 = nn.Linear(c, c, bias=False)
+
+    def forward(self, x):
+        """Performs forward pass using MultiheadAttention and two linear transformations with residual connections."""
+        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
+        x = self.fc2(self.fc1(x)) + x
+        return x
+
+
+class TransformerBlock(nn.Module):
+    # Vision Transformer https://arxiv.org/abs/2010.11929
+    def __init__(self, c1, c2, num_heads, num_layers):
+        """Initializes a Transformer block for vision tasks, adapting dimensions if necessary and stacking specified
+        layers.
+        """
+        super().__init__()
+        self.conv = None
+        if c1 != c2:
+            self.conv = Conv(c1, c2)
+        self.linear = nn.Linear(c2, c2)  # learnable position embedding
+        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
+        self.c2 = c2
+
+    def forward(self, x):
+        """Processes input through an optional convolution, followed by Transformer layers and position embeddings for
+        object detection.
+        """
+        if self.conv is not None:
+            x = self.conv(x)
+        b, _, w, h = x.shape
+        p = x.flatten(2).permute(2, 0, 1)
+        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
+
+
+class Bottleneck(nn.Module):
+    # Standard bottleneck
+    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):
+        """Initializes a standard bottleneck layer with optional shortcut and group convolution, supporting channel
+        expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_, c2, 3, 1, g=g)
+        self.add = shortcut and c1 == c2
+
+    def forward(self, x):
+        """Processes input through two convolutions, optionally adds shortcut if channel dimensions match; input is a
+        tensor.
+        """
+        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class BottleneckCSP(nn.Module):
+    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        """Initializes CSP bottleneck with optional shortcuts; args: ch_in, ch_out, number of repeats, shortcut bool,
+        groups, expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
+        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
+        self.cv4 = Conv(2 * c_, c2, 1, 1)
+        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
+        self.act = nn.SiLU()
+        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+    def forward(self, x):
+        """Performs forward pass by applying layers, activation, and concatenation on input x, returning feature-
+        enhanced output.
+        """
+        y1 = self.cv3(self.m(self.cv1(x)))
+        y2 = self.cv2(x)
+        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
+
+
+class CrossConv(nn.Module):
+    # Cross Convolution Downsample
+    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
+        """
+        Initializes CrossConv with downsampling, expanding, and optionally shortcutting; `c1` input, `c2` output
+        channels.
+
+        Inputs are ch_in, ch_out, kernel, stride, groups, expansion, shortcut.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, (1, k), (1, s))
+        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
+        self.add = shortcut and c1 == c2
+
+    def forward(self, x):
+        """Performs feature sampling, expanding, and applies shortcut if channels match; expects `x` input tensor."""
+        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class C3(nn.Module):
+    # CSP Bottleneck with 3 convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        """Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group
+        convolutions, and expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c1, c_, 1, 1)
+        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
+        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+    def forward(self, x):
+        """Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""
+        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
+
+
+class C3x(C3):
+    # C3 module with cross-convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        """Initializes C3x module with cross-convolutions, extending C3 with customizable channel dimensions, groups,
+        and expansion.
+        """
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
+
+
+class C3TR(C3):
+    # C3 module with TransformerBlock()
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        """Initializes C3 module with TransformerBlock for enhanced feature extraction, accepts channel sizes, shortcut
+        config, group, and expansion.
+        """
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = TransformerBlock(c_, c_, 4, n)
+
+
+class C3SPP(C3):
+    # C3 module with SPP()
+    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
+        """Initializes a C3 module with SPP layer for advanced spatial feature extraction, given channel sizes, kernel
+        sizes, shortcut, group, and expansion ratio.
+        """
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = SPP(c_, c_, k)
+
+
+class C3Ghost(C3):
+    # C3 module with GhostBottleneck()
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        """Initializes YOLOv5's C3 module with Ghost Bottlenecks for efficient feature extraction."""
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)  # hidden channels
+        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
+
+
+class SPP(nn.Module):
+    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
+    def __init__(self, c1, c2, k=(5, 9, 13)):
+        """Initializes SPP layer with Spatial Pyramid Pooling, ref: https://arxiv.org/abs/1406.4729, args: c1 (input channels), c2 (output channels), k (kernel sizes)."""
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+    def forward(self, x):
+        """Applies convolution and max pooling layers to the input tensor `x`, concatenates results, and returns output
+        tensor.
+        """
+        x = self.cv1(x)
+        with warnings.catch_warnings():
+            warnings.simplefilter("ignore")  # suppress torch 1.9.0 max_pool2d() warning
+            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class SPPF(nn.Module):
+    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
+    def __init__(self, c1, c2, k=5):
+        """
+        Initializes YOLOv5 SPPF layer with given channels and kernel size for YOLOv5 model, combining convolution and
+        max pooling.
+
+        Equivalent to SPP(k=(5, 9, 13)).
+        """
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_ * 4, c2, 1, 1)
+        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
+
+    def forward(self, x):
+        """Processes input through a series of convolutions and max pooling operations for feature extraction."""
+        x = self.cv1(x)
+        with warnings.catch_warnings():
+            warnings.simplefilter("ignore")  # suppress torch 1.9.0 max_pool2d() warning
+            y1 = self.m(x)
+            y2 = self.m(y1)
+            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
+
+
+class Focus(nn.Module):
+    # Focus wh information into c-space
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
+        """Initializes Focus module to concentrate width-height info into channel space with configurable convolution
+        parameters.
+        """
+        super().__init__()
+        self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
+        # self.contract = Contract(gain=2)
+
+    def forward(self, x):
+        """Processes input through Focus mechanism, reshaping (b,c,w,h) to (b,4c,w/2,h/2) then applies convolution."""
+        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
+        # return self.conv(self.contract(x))
+
+
+class GhostConv(nn.Module):
+    # Ghost Convolution https://github.com/huawei-noah/ghostnet
+    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
+        """Initializes GhostConv with in/out channels, kernel size, stride, groups, and activation; halves out channels
+        for efficiency.
+        """
+        super().__init__()
+        c_ = c2 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
+        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
+
+    def forward(self, x):
+        """Performs forward pass, concatenating outputs of two convolutions on input `x`: shape (B,C,H,W)."""
+        y = self.cv1(x)
+        return torch.cat((y, self.cv2(y)), 1)
+
+
+class GhostBottleneck(nn.Module):
+    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
+    def __init__(self, c1, c2, k=3, s=1):
+        """Initializes GhostBottleneck with ch_in `c1`, ch_out `c2`, kernel size `k`, stride `s`; see https://github.com/huawei-noah/ghostnet."""
+        super().__init__()
+        c_ = c2 // 2
+        self.conv = nn.Sequential(
+            GhostConv(c1, c_, 1, 1),  # pw
+            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
+            GhostConv(c_, c2, 1, 1, act=False),
+        )  # pw-linear
+        self.shortcut = (
+            nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
+        )
+
+    def forward(self, x):
+        """Processes input through conv and shortcut layers, returning their summed output."""
+        return self.conv(x) + self.shortcut(x)
+
+
+class Contract(nn.Module):
+    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
+    def __init__(self, gain=2):
+        """Initializes a layer to contract spatial dimensions (width-height) into channels, e.g., input shape
+        (1,64,80,80) to (1,256,40,40).
+        """
+        super().__init__()
+        self.gain = gain
+
+    def forward(self, x):
+        """Processes input tensor to expand channel dimensions by contracting spatial dimensions, yielding output shape
+        `(b, c*s*s, h//s, w//s)`.
+        """
+        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
+        s = self.gain
+        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
+        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
+        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)
+
+
+class Expand(nn.Module):
+    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
+    def __init__(self, gain=2):
+        """
+        Initializes the Expand module to increase spatial dimensions by redistributing channels, with an optional gain
+        factor.
+
+        Example: x(1,64,80,80) to x(1,16,160,160).
+        """
+        super().__init__()
+        self.gain = gain
+
+    def forward(self, x):
+        """Processes input tensor x to expand spatial dimensions by redistributing channels, requiring C / gain^2 ==
+        0.
+        """
+        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
+        s = self.gain
+        x = x.view(b, s, s, c // s**2, h, w)  # x(1,2,2,16,80,80)
+        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
+        return x.view(b, c // s**2, h * s, w * s)  # x(1,16,160,160)
+
+
+class Concat(nn.Module):
+    # Concatenate a list of tensors along dimension
+    def __init__(self, dimension=1):
+        """Initializes a Concat module to concatenate tensors along a specified dimension."""
+        super().__init__()
+        self.d = dimension
+
+    def forward(self, x):
+        """Concatenates a list of tensors along a specified dimension; `x` is a list of tensors, `dimension` is an
+        int.
+        """
+        return torch.cat(x, self.d)
+
+
+class DetectMultiBackend(nn.Module):
+    # YOLOv5 MultiBackend class for python inference on various backends
+    def __init__(self, weights="yolov5s.pt", device=torch.device("cpu"), dnn=False, data=None, fp16=False, fuse=True):
+        """Initializes DetectMultiBackend with support for various inference backends, including PyTorch and ONNX."""
+        #   PyTorch:              weights = *.pt
+        #   TorchScript:                    *.torchscript
+        #   ONNX Runtime:                   *.onnx
+        #   ONNX OpenCV DNN:                *.onnx --dnn
+        #   OpenVINO:                       *_openvino_model
+        #   CoreML:                         *.mlmodel
+        #   TensorRT:                       *.engine
+        #   TensorFlow SavedModel:          *_saved_model
+        #   TensorFlow GraphDef:            *.pb
+        #   TensorFlow Lite:                *.tflite
+        #   TensorFlow Edge TPU:            *_edgetpu.tflite
+        #   PaddlePaddle:                   *_paddle_model
+        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import
+
+        super().__init__()
+        w = str(weights[0] if isinstance(weights, list) else weights)
+        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
+        fp16 &= pt or jit or onnx or engine or triton  # FP16
+        nhwc = coreml or saved_model or pb or tflite or edgetpu  # BHWC formats (vs torch BCWH)
+        stride = 32  # default stride
+        cuda = torch.cuda.is_available() and device.type != "cpu"  # use CUDA
+        if not (pt or triton):
+            w = attempt_download(w)  # download if not local
+
+        if pt:  # PyTorch
+            model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
+            stride = max(int(model.stride.max()), 32)  # model stride
+            names = model.module.names if hasattr(model, "module") else model.names  # get class names
+            model.half() if fp16 else model.float()
+            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
+        elif jit:  # TorchScript
+            LOGGER.info(f"Loading {w} for TorchScript inference...")
+            extra_files = {"config.txt": ""}  # model metadata
+            model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
+            model.half() if fp16 else model.float()
+            if extra_files["config.txt"]:  # load metadata dict
+                d = json.loads(
+                    extra_files["config.txt"],
+                    object_hook=lambda d: {int(k) if k.isdigit() else k: v for k, v in d.items()},
+                )
+                stride, names = int(d["stride"]), d["names"]
+        elif dnn:  # ONNX OpenCV DNN
+            LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
+            check_requirements("opencv-python>=4.5.4")
+            net = cv2.dnn.readNetFromONNX(w)
+        elif onnx:  # ONNX Runtime
+            LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
+            check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
+            import onnxruntime
+
+            providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
+            session = onnxruntime.InferenceSession(w, providers=providers)
+            output_names = [x.name for x in session.get_outputs()]
+            meta = session.get_modelmeta().custom_metadata_map  # metadata
+            if "stride" in meta:
+                stride, names = int(meta["stride"]), eval(meta["names"])
+        elif xml:  # OpenVINO
+            LOGGER.info(f"Loading {w} for OpenVINO inference...")
+            check_requirements("openvino>=2023.0")  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+            from openvino.runtime import Core, Layout, get_batch
+
+            core = Core()
+            if not Path(w).is_file():  # if not *.xml
+                w = next(Path(w).glob("*.xml"))  # get *.xml file from *_openvino_model dir
+            ov_model = core.read_model(model=w, weights=Path(w).with_suffix(".bin"))
+            if ov_model.get_parameters()[0].get_layout().empty:
+                ov_model.get_parameters()[0].set_layout(Layout("NCHW"))
+            batch_dim = get_batch(ov_model)
+            if batch_dim.is_static:
+                batch_size = batch_dim.get_length()
+            ov_compiled_model = core.compile_model(ov_model, device_name="AUTO")  # AUTO selects best available device
+            stride, names = self._load_metadata(Path(w).with_suffix(".yaml"))  # load metadata
+        elif engine:  # TensorRT
+            LOGGER.info(f"Loading {w} for TensorRT inference...")
+            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
+
+            check_version(trt.__version__, "7.0.0", hard=True)  # require tensorrt>=7.0.0
+            if device.type == "cpu":
+                device = torch.device("cuda:0")
+            Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
+            logger = trt.Logger(trt.Logger.INFO)
+            with open(w, "rb") as f, trt.Runtime(logger) as runtime:
+                model = runtime.deserialize_cuda_engine(f.read())
+            context = model.create_execution_context()
+            bindings = OrderedDict()
+            output_names = []
+            fp16 = False  # default updated below
+            dynamic = False
+            is_trt10 = not hasattr(model, "num_bindings")
+            num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
+            for i in num:
+                if is_trt10:
+                    name = model.get_tensor_name(i)
+                    dtype = trt.nptype(model.get_tensor_dtype(name))
+                    is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
+                    if is_input:
+                        if -1 in tuple(model.get_tensor_shape(name)):  # dynamic
+                            dynamic = True
+                            context.set_input_shape(name, tuple(model.get_profile_shape(name, 0)[2]))
+                        if dtype == np.float16:
+                            fp16 = True
+                    else:  # output
+                        output_names.append(name)
+                    shape = tuple(context.get_tensor_shape(name))
+                else:
+                    name = model.get_binding_name(i)
+                    dtype = trt.nptype(model.get_binding_dtype(i))
+                    if model.binding_is_input(i):
+                        if -1 in tuple(model.get_binding_shape(i)):  # dynamic
+                            dynamic = True
+                            context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
+                        if dtype == np.float16:
+                            fp16 = True
+                    else:  # output
+                        output_names.append(name)
+                    shape = tuple(context.get_binding_shape(i))
+                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
+                bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
+            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
+            batch_size = bindings["images"].shape[0]  # if dynamic, this is instead max batch size
+        elif coreml:  # CoreML
+            LOGGER.info(f"Loading {w} for CoreML inference...")
+            import coremltools as ct
+
+            model = ct.models.MLModel(w)
+        elif saved_model:  # TF SavedModel
+            LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
+            import tensorflow as tf
+
+            keras = False  # assume TF1 saved_model
+            model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
+        elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
+            LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
+            import tensorflow as tf
+
+            def wrap_frozen_graph(gd, inputs, outputs):
+                """Wraps a TensorFlow GraphDef for inference, returning a pruned function."""
+                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
+                ge = x.graph.as_graph_element
+                return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
+
+            def gd_outputs(gd):
+                """Generates a sorted list of graph outputs excluding NoOp nodes and inputs, formatted as '<name>:0'."""
+                name_list, input_list = [], []
+                for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef
+                    name_list.append(node.name)
+                    input_list.extend(node.input)
+                return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
+
+            gd = tf.Graph().as_graph_def()  # TF GraphDef
+            with open(w, "rb") as f:
+                gd.ParseFromString(f.read())
+            frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
+        elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
+            try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
+                from tflite_runtime.interpreter import Interpreter, load_delegate
+            except ImportError:
+                import tensorflow as tf
+
+                Interpreter, load_delegate = (
+                    tf.lite.Interpreter,
+                    tf.lite.experimental.load_delegate,
+                )
+            if edgetpu:  # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
+                LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
+                delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
+                    platform.system()
+                ]
+                interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
+            else:  # TFLite
+                LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
+                interpreter = Interpreter(model_path=w)  # load TFLite model
+            interpreter.allocate_tensors()  # allocate
+            input_details = interpreter.get_input_details()  # inputs
+            output_details = interpreter.get_output_details()  # outputs
+            # load metadata
+            with contextlib.suppress(zipfile.BadZipFile):
+                with zipfile.ZipFile(w, "r") as model:
+                    meta_file = model.namelist()[0]
+                    meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
+                    stride, names = int(meta["stride"]), meta["names"]
+        elif tfjs:  # TF.js
+            raise NotImplementedError("ERROR: YOLOv5 TF.js inference is not supported")
+        elif paddle:  # PaddlePaddle
+            LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
+            check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
+            import paddle.inference as pdi
+
+            if not Path(w).is_file():  # if not *.pdmodel
+                w = next(Path(w).rglob("*.pdmodel"))  # get *.pdmodel file from *_paddle_model dir
+            weights = Path(w).with_suffix(".pdiparams")
+            config = pdi.Config(str(w), str(weights))
+            if cuda:
+                config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
+            predictor = pdi.create_predictor(config)
+            input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
+            output_names = predictor.get_output_names()
+        elif triton:  # NVIDIA Triton Inference Server
+            LOGGER.info(f"Using {w} as Triton Inference Server...")
+            check_requirements("tritonclient[all]")
+            from utils.triton import TritonRemoteModel
+
+            model = TritonRemoteModel(url=w)
+            nhwc = model.runtime.startswith("tensorflow")
+        else:
+            raise NotImplementedError(f"ERROR: {w} is not a supported format")
+
+        # class names
+        if "names" not in locals():
+            names = yaml_load(data)["names"] if data else {i: f"class{i}" for i in range(999)}
+        if names[0] == "n01440764" and len(names) == 1000:  # ImageNet
+            names = yaml_load(ROOT / "data/ImageNet.yaml")["names"]  # human-readable names
+
+        self.__dict__.update(locals())  # assign all variables to self
+
+    def forward(self, im, augment=False, visualize=False):
+        """Performs YOLOv5 inference on input images with options for augmentation and visualization."""
+        b, ch, h, w = im.shape  # batch, channel, height, width
+        if self.fp16 and im.dtype != torch.float16:
+            im = im.half()  # to FP16
+        if self.nhwc:
+            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)
+
+        if self.pt:  # PyTorch
+            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
+        elif self.jit:  # TorchScript
+            y = self.model(im)
+        elif self.dnn:  # ONNX OpenCV DNN
+            im = im.cpu().numpy()  # torch to numpy
+            self.net.setInput(im)
+            y = self.net.forward()
+        elif self.onnx:  # ONNX Runtime
+            im = im.cpu().numpy()  # torch to numpy
+            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
+        elif self.xml:  # OpenVINO
+            im = im.cpu().numpy()  # FP32
+            y = list(self.ov_compiled_model(im).values())
+        elif self.engine:  # TensorRT
+            if self.dynamic and im.shape != self.bindings["images"].shape:
+                i = self.model.get_binding_index("images")
+                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
+                self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
+                for name in self.output_names:
+                    i = self.model.get_binding_index(name)
+                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
+            s = self.bindings["images"].shape
+            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
+            self.binding_addrs["images"] = int(im.data_ptr())
+            self.context.execute_v2(list(self.binding_addrs.values()))
+            y = [self.bindings[x].data for x in sorted(self.output_names)]
+        elif self.coreml:  # CoreML
+            im = im.cpu().numpy()
+            im = Image.fromarray((im[0] * 255).astype("uint8"))
+            # im = im.resize((192, 320), Image.BILINEAR)
+            y = self.model.predict({"image": im})  # coordinates are xywh normalized
+            if "confidence" in y:
+                box = xywh2xyxy(y["coordinates"] * [[w, h, w, h]])  # xyxy pixels
+                conf, cls = y["confidence"].max(1), y["confidence"].argmax(1).astype(np.float)
+                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
+            else:
+                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
+        elif self.paddle:  # PaddlePaddle
+            im = im.cpu().numpy().astype(np.float32)
+            self.input_handle.copy_from_cpu(im)
+            self.predictor.run()
+            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
+        elif self.triton:  # NVIDIA Triton Inference Server
+            y = self.model(im)
+        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
+            im = im.cpu().numpy()
+            if self.saved_model:  # SavedModel
+                y = self.model(im, training=False) if self.keras else self.model(im)
+            elif self.pb:  # GraphDef
+                y = self.frozen_func(x=self.tf.constant(im))
+            else:  # Lite or Edge TPU
+                input = self.input_details[0]
+                int8 = input["dtype"] == np.uint8  # is TFLite quantized uint8 model
+                if int8:
+                    scale, zero_point = input["quantization"]
+                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
+                self.interpreter.set_tensor(input["index"], im)
+                self.interpreter.invoke()
+                y = []
+                for output in self.output_details:
+                    x = self.interpreter.get_tensor(output["index"])
+                    if int8:
+                        scale, zero_point = output["quantization"]
+                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale
+                    y.append(x)
+            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
+            y[0][..., :4] *= [w, h, w, h]  # xywh normalized to pixels
+
+        if isinstance(y, (list, tuple)):
+            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
+        else:
+            return self.from_numpy(y)
+
+    def from_numpy(self, x):
+        """Converts a NumPy array to a torch tensor, maintaining device compatibility."""
+        return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
+
+    def warmup(self, imgsz=(1, 3, 640, 640)):
+        """Performs a single inference warmup to initialize model weights, accepting an `imgsz` tuple for image size."""
+        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
+        if any(warmup_types) and (self.device.type != "cpu" or self.triton):
+            im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
+            for _ in range(2 if self.jit else 1):  #
+                self.forward(im)  # warmup
+
+    @staticmethod
+    def _model_type(p="path/to/model.pt"):
+        """
+        Determines model type from file path or URL, supporting various export formats.
+
+        Example: path='path/to/model.onnx' -> type=onnx
+        """
+        # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
+        from export import export_formats
+        from utils.downloads import is_url
+
+        sf = list(export_formats().Suffix)  # export suffixes
+        if not is_url(p, check=False):
+            check_suffix(p, sf)  # checks
+        url = urlparse(p)  # if url may be Triton inference server
+        types = [s in Path(p).name for s in sf]
+        types[8] &= not types[9]  # tflite &= not edgetpu
+        triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
+        return types + [triton]
+
+    @staticmethod
+    def _load_metadata(f=Path("path/to/meta.yaml")):
+        """Loads metadata from a YAML file, returning strides and names if the file exists, otherwise `None`."""
+        if f.exists():
+            d = yaml_load(f)
+            return d["stride"], d["names"]  # assign stride, names
+        return None, None
+
+
+class AutoShape(nn.Module):
+    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+    conf = 0.25  # NMS confidence threshold
+    iou = 0.45  # NMS IoU threshold
+    agnostic = False  # NMS class-agnostic
+    multi_label = False  # NMS multiple labels per box
+    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
+    max_det = 1000  # maximum number of detections per image
+    amp = False  # Automatic Mixed Precision (AMP) inference
+
+    def __init__(self, model, verbose=True):
+        """Initializes YOLOv5 model for inference, setting up attributes and preparing model for evaluation."""
+        super().__init__()
+        if verbose:
+            LOGGER.info("Adding AutoShape... ")
+        copy_attr(self, model, include=("yaml", "nc", "hyp", "names", "stride", "abc"), exclude=())  # copy attributes
+        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
+        self.pt = not self.dmb or model.pt  # PyTorch model
+        self.model = model.eval()
+        if self.pt:
+            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
+            m.inplace = False  # Detect.inplace=False for safe multithread inference
+            m.export = True  # do not output loss values
+
+    def _apply(self, fn):
+        """
+        Applies to(), cpu(), cuda(), half() etc.
+
+        to model tensors excluding parameters or registered buffers.
+        """
+        self = super()._apply(fn)
+        if self.pt:
+            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
+            m.stride = fn(m.stride)
+            m.grid = list(map(fn, m.grid))
+            if isinstance(m.anchor_grid, list):
+                m.anchor_grid = list(map(fn, m.anchor_grid))
+        return self
+
+    @smart_inference_mode()
+    def forward(self, ims, size=640, augment=False, profile=False):
+        """
+        Performs inference on inputs with optional augment & profiling.
+
+        Supports various formats including file, URI, OpenCV, PIL, numpy, torch.
+        """
+        # For size(height=640, width=1280), RGB images example inputs are:
+        #   file:        ims = 'data/images/zidane.jpg'  # str or PosixPath
+        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
+        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
+        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
+        #   numpy:           = np.zeros((640,1280,3))  # HWC
+        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
+        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images
+
+        dt = (Profile(), Profile(), Profile())
+        with dt[0]:
+            if isinstance(size, int):  # expand
+                size = (size, size)
+            p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device)  # param
+            autocast = self.amp and (p.device.type != "cpu")  # Automatic Mixed Precision (AMP) inference
+            if isinstance(ims, torch.Tensor):  # torch
+                with amp.autocast(autocast):
+                    return self.model(ims.to(p.device).type_as(p), augment=augment)  # inference
+
+            # Pre-process
+            n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims])  # number, list of images
+            shape0, shape1, files = [], [], []  # image and inference shapes, filenames
+            for i, im in enumerate(ims):
+                f = f"image{i}"  # filename
+                if isinstance(im, (str, Path)):  # filename or uri
+                    im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im), im
+                    im = np.asarray(exif_transpose(im))
+                elif isinstance(im, Image.Image):  # PIL Image
+                    im, f = np.asarray(exif_transpose(im)), getattr(im, "filename", f) or f
+                files.append(Path(f).with_suffix(".jpg").name)
+                if im.shape[0] < 5:  # image in CHW
+                    im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
+                im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)  # enforce 3ch input
+                s = im.shape[:2]  # HWC
+                shape0.append(s)  # image shape
+                g = max(size) / max(s)  # gain
+                shape1.append([int(y * g) for y in s])
+                ims[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
+            shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)]  # inf shape
+            x = [letterbox(im, shape1, auto=False)[0] for im in ims]  # pad
+            x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
+            x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
+
+        with amp.autocast(autocast):
+            # Inference
+            with dt[1]:
+                y = self.model(x, augment=augment)  # forward
+
+            # Post-process
+            with dt[2]:
+                y = non_max_suppression(
+                    y if self.dmb else y[0],
+                    self.conf,
+                    self.iou,
+                    self.classes,
+                    self.agnostic,
+                    self.multi_label,
+                    max_det=self.max_det,
+                )  # NMS
+                for i in range(n):
+                    scale_boxes(shape1, y[i][:, :4], shape0[i])
+
+            return Detections(ims, y, files, dt, self.names, x.shape)
+
+
+class Detections:
+    # YOLOv5 detections class for inference results
+    def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
+        """Initializes the YOLOv5 Detections class with image info, predictions, filenames, timing and normalization."""
+        super().__init__()
+        d = pred[0].device  # device
+        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims]  # normalizations
+        self.ims = ims  # list of images as numpy arrays
+        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
+        self.names = names  # class names
+        self.files = files  # image filenames
+        self.times = times  # profiling times
+        self.xyxy = pred  # xyxy pixels
+        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
+        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
+        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
+        self.n = len(self.pred)  # number of images (batch size)
+        self.t = tuple(x.t / self.n * 1e3 for x in times)  # timestamps (ms)
+        self.s = tuple(shape)  # inference BCHW shape
+
+    def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path("")):
+        """Executes model predictions, displaying and/or saving outputs with optional crops and labels."""
+        s, crops = "", []
+        for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
+            s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} "  # string
+            if pred.shape[0]:
+                for c in pred[:, -1].unique():
+                    n = (pred[:, -1] == c).sum()  # detections per class
+                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
+                s = s.rstrip(", ")
+                if show or save or render or crop:
+                    annotator = Annotator(im, example=str(self.names))
+                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
+                        label = f"{self.names[int(cls)]} {conf:.2f}"
+                        if crop:
+                            file = save_dir / "crops" / self.names[int(cls)] / self.files[i] if save else None
+                            crops.append(
+                                {
+                                    "box": box,
+                                    "conf": conf,
+                                    "cls": cls,
+                                    "label": label,
+                                    "im": save_one_box(box, im, file=file, save=save),
+                                }
+                            )
+                        else:  # all others
+                            annotator.box_label(box, label if labels else "", color=colors(cls))
+                    im = annotator.im
+            else:
+                s += "(no detections)"
+
+            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
+            if show:
+                if is_jupyter():
+                    from IPython.display import display
+
+                    display(im)
+                else:
+                    im.show(self.files[i])
+            if save:
+                f = self.files[i]
+                im.save(save_dir / f)  # save
+                if i == self.n - 1:
+                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
+            if render:
+                self.ims[i] = np.asarray(im)
+        if pprint:
+            s = s.lstrip("\n")
+            return f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}" % self.t
+        if crop:
+            if save:
+                LOGGER.info(f"Saved results to {save_dir}\n")
+            return crops
+
+    @TryExcept("Showing images is not supported in this environment")
+    def show(self, labels=True):
+        """
+        Displays detection results with optional labels.
+
+        Usage: show(labels=True)
+        """
+        self._run(show=True, labels=labels)  # show results
+
+    def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):
+        """
+        Saves detection results with optional labels to a specified directory.
+
+        Usage: save(labels=True, save_dir='runs/detect/exp', exist_ok=False)
+        """
+        save_dir = increment_path(save_dir, exist_ok, mkdir=True)  # increment save_dir
+        self._run(save=True, labels=labels, save_dir=save_dir)  # save results
+
+    def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False):
+        """
+        Crops detection results, optionally saves them to a directory.
+
+        Args: save (bool), save_dir (str), exist_ok (bool).
+        """
+        save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
+        return self._run(crop=True, save=save, save_dir=save_dir)  # crop results
+
+    def render(self, labels=True):
+        """Renders detection results with optional labels on images; args: labels (bool) indicating label inclusion."""
+        self._run(render=True, labels=labels)  # render results
+        return self.ims
+
+    def pandas(self):
+        """
+        Returns detections as pandas DataFrames for various box formats (xyxy, xyxyn, xywh, xywhn).
+
+        Example: print(results.pandas().xyxy[0]).
+        """
+        new = copy(self)  # return copy
+        ca = "xmin", "ymin", "xmax", "ymax", "confidence", "class", "name"  # xyxy columns
+        cb = "xcenter", "ycenter", "width", "height", "confidence", "class", "name"  # xywh columns
+        for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]):
+            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
+            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
+        return new
+
+    def tolist(self):
+        """
+        Converts a Detections object into a list of individual detection results for iteration.
+
+        Example: for result in results.tolist():
+        """
+        r = range(self.n)  # iterable
+        return [
+            Detections(
+                [self.ims[i]],
+                [self.pred[i]],
+                [self.files[i]],
+                self.times,
+                self.names,
+                self.s,
+            )
+            for i in r
+        ]
+
+    def print(self):
+        """Logs the string representation of the current object's state via the LOGGER."""
+        LOGGER.info(self.__str__())
+
+    def __len__(self):
+        """Returns the number of results stored, overrides the default len(results)."""
+        return self.n
+
+    def __str__(self):
+        """Returns a string representation of the model's results, suitable for printing, overrides default
+        print(results).
+        """
+        return self._run(pprint=True)  # print results
+
+    def __repr__(self):
+        """Returns a string representation of the YOLOv5 object, including its class and formatted results."""
+        return f"YOLOv5 {self.__class__} instance\n" + self.__str__()
+
+
+class Proto(nn.Module):
+    # YOLOv5 mask Proto module for segmentation models
+    def __init__(self, c1, c_=256, c2=32):
+        """Initializes YOLOv5 Proto module for segmentation with input, proto, and mask channels configuration."""
+        super().__init__()
+        self.cv1 = Conv(c1, c_, k=3)
+        self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
+        self.cv2 = Conv(c_, c_, k=3)
+        self.cv3 = Conv(c_, c2)
+
+    def forward(self, x):
+        """Performs a forward pass using convolutional layers and upsampling on input tensor `x`."""
+        return self.cv3(self.cv2(self.upsample(self.cv1(x))))
+
+
+class Classify(nn.Module):
+    # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
+    def __init__(
+        self, c1, c2, k=1, s=1, p=None, g=1, dropout_p=0.0
+    ):  # ch_in, ch_out, kernel, stride, padding, groups, dropout probability
+        super().__init__()
+        c_ = 1280  # efficientnet_b0 size
+        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
+        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
+        self.drop = nn.Dropout(p=dropout_p, inplace=True)
+        self.linear = nn.Linear(c_, c2)  # to x(b,c2)
+
+    def forward(self, x):
+        """Processes input through conv, pool, drop, and linear layers; supports list concatenation input."""
+        if isinstance(x, list):
+            x = torch.cat(x, 1)
+        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
diff --git a/yolov5/models/experimental.py b/yolov5/models/experimental.py
new file mode 100644
index 0000000000000000000000000000000000000000..6152cef1b3894dc336acb3449a491f097d0c4eac
--- /dev/null
+++ b/yolov5/models/experimental.py
@@ -0,0 +1,130 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Experimental modules."""
+
+import math
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from utils.downloads import attempt_download
+
+
+class Sum(nn.Module):
+    """Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070."""
+
+    def __init__(self, n, weight=False):
+        """Initializes a module to sum outputs of layers with number of inputs `n` and optional weighting, supporting 2+
+        inputs.
+        """
+        super().__init__()
+        self.weight = weight  # apply weights boolean
+        self.iter = range(n - 1)  # iter object
+        if weight:
+            self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True)  # layer weights
+
+    def forward(self, x):
+        """Processes input through a customizable weighted sum of `n` inputs, optionally applying learned weights."""
+        y = x[0]  # no weight
+        if self.weight:
+            w = torch.sigmoid(self.w) * 2
+            for i in self.iter:
+                y = y + x[i + 1] * w[i]
+        else:
+            for i in self.iter:
+                y = y + x[i + 1]
+        return y
+
+
+class MixConv2d(nn.Module):
+    """Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595."""
+
+    def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
+        """Initializes MixConv2d with mixed depth-wise convolutional layers, taking input and output channels (c1, c2),
+        kernel sizes (k), stride (s), and channel distribution strategy (equal_ch).
+        """
+        super().__init__()
+        n = len(k)  # number of convolutions
+        if equal_ch:  # equal c_ per group
+            i = torch.linspace(0, n - 1e-6, c2).floor()  # c2 indices
+            c_ = [(i == g).sum() for g in range(n)]  # intermediate channels
+        else:  # equal weight.numel() per group
+            b = [c2] + [0] * n
+            a = np.eye(n + 1, n, k=-1)
+            a -= np.roll(a, 1, axis=1)
+            a *= np.array(k) ** 2
+            a[0] = 1
+            c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()  # solve for equal weight indices, ax = b
+
+        self.m = nn.ModuleList(
+            [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]
+        )
+        self.bn = nn.BatchNorm2d(c2)
+        self.act = nn.SiLU()
+
+    def forward(self, x):
+        """Performs forward pass by applying SiLU activation on batch-normalized concatenated convolutional layer
+        outputs.
+        """
+        return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
+
+
+class Ensemble(nn.ModuleList):
+    """Ensemble of models."""
+
+    def __init__(self):
+        """Initializes an ensemble of models to be used for aggregated predictions."""
+        super().__init__()
+
+    def forward(self, x, augment=False, profile=False, visualize=False):
+        """Performs forward pass aggregating outputs from an ensemble of models.."""
+        y = [module(x, augment, profile, visualize)[0] for module in self]
+        # y = torch.stack(y).max(0)[0]  # max ensemble
+        # y = torch.stack(y).mean(0)  # mean ensemble
+        y = torch.cat(y, 1)  # nms ensemble
+        return y, None  # inference, train output
+
+
+def attempt_load(weights, device=None, inplace=True, fuse=True):
+    """
+    Loads and fuses an ensemble or single YOLOv5 model from weights, handling device placement and model adjustments.
+
+    Example inputs: weights=[a,b,c] or a single model weights=[a] or weights=a.
+    """
+    from models.yolo import Detect, Model
+
+    model = Ensemble()
+    for w in weights if isinstance(weights, list) else [weights]:
+        ckpt = torch.load(attempt_download(w), map_location="cpu")  # load
+        ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model
+
+        # Model compatibility updates
+        if not hasattr(ckpt, "stride"):
+            ckpt.stride = torch.tensor([32.0])
+        if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
+            ckpt.names = dict(enumerate(ckpt.names))  # convert to dict
+
+        model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval())  # model in eval mode
+
+    # Module updates
+    for m in model.modules():
+        t = type(m)
+        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
+            m.inplace = inplace
+            if t is Detect and not isinstance(m.anchor_grid, list):
+                delattr(m, "anchor_grid")
+                setattr(m, "anchor_grid", [torch.zeros(1)] * m.nl)
+        elif t is nn.Upsample and not hasattr(m, "recompute_scale_factor"):
+            m.recompute_scale_factor = None  # torch 1.11.0 compatibility
+
+    # Return model
+    if len(model) == 1:
+        return model[-1]
+
+    # Return detection ensemble
+    print(f"Ensemble created with {weights}\n")
+    for k in "names", "nc", "yaml":
+        setattr(model, k, getattr(model[0], k))
+    model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride  # max stride
+    assert all(model[0].nc == m.nc for m in model), f"Models have different class counts: {[m.nc for m in model]}"
+    return model
diff --git a/yolov5/models/hub/anchors.yaml b/yolov5/models/hub/anchors.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..eb77a25b91b9c04e207c4e1f1fc7c42057f192e9
--- /dev/null
+++ b/yolov5/models/hub/anchors.yaml
@@ -0,0 +1,56 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Default anchors for COCO data
+
+# P5 -------------------------------------------------------------------------------------------------------------------
+# P5-640:
+anchors_p5_640:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# P6 -------------------------------------------------------------------------------------------------------------------
+# P6-640:  thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11,  21,19,  17,41,  43,32,  39,70,  86,64,  65,131,  134,130,  120,265,  282,180,  247,354,  512,387
+anchors_p6_640:
+  - [9, 11, 21, 19, 17, 41] # P3/8
+  - [43, 32, 39, 70, 86, 64] # P4/16
+  - [65, 131, 134, 130, 120, 265] # P5/32
+  - [282, 180, 247, 354, 512, 387] # P6/64
+
+# P6-1280:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27,  44,40,  38,94,  96,68,  86,152,  180,137,  140,301,  303,264,  238,542,  436,615,  739,380,  925,792
+anchors_p6_1280:
+  - [19, 27, 44, 40, 38, 94] # P3/8
+  - [96, 68, 86, 152, 180, 137] # P4/16
+  - [140, 301, 303, 264, 238, 542] # P5/32
+  - [436, 615, 739, 380, 925, 792] # P6/64
+
+# P6-1920:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41,  67,59,  57,141,  144,103,  129,227,  270,205,  209,452,  455,396,  358,812,  653,922,  1109,570,  1387,1187
+anchors_p6_1920:
+  - [28, 41, 67, 59, 57, 141] # P3/8
+  - [144, 103, 129, 227, 270, 205] # P4/16
+  - [209, 452, 455, 396, 358, 812] # P5/32
+  - [653, 922, 1109, 570, 1387, 1187] # P6/64
+
+# P7 -------------------------------------------------------------------------------------------------------------------
+# P7-640:  thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11,  13,30,  29,20,  30,46,  61,38,  39,92,  78,80,  146,66,  79,163,  149,150,  321,143,  157,303,  257,402,  359,290,  524,372
+anchors_p7_640:
+  - [11, 11, 13, 30, 29, 20] # P3/8
+  - [30, 46, 61, 38, 39, 92] # P4/16
+  - [78, 80, 146, 66, 79, 163] # P5/32
+  - [149, 150, 321, 143, 157, 303] # P6/64
+  - [257, 402, 359, 290, 524, 372] # P7/128
+
+# P7-1280:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22,  54,36,  32,77,  70,83,  138,71,  75,173,  165,159,  148,334,  375,151,  334,317,  251,626,  499,474,  750,326,  534,814,  1079,818
+anchors_p7_1280:
+  - [19, 22, 54, 36, 32, 77] # P3/8
+  - [70, 83, 138, 71, 75, 173] # P4/16
+  - [165, 159, 148, 334, 375, 151] # P5/32
+  - [334, 317, 251, 626, 499, 474] # P6/64
+  - [750, 326, 534, 814, 1079, 818] # P7/128
+
+# P7-1920:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34,  81,55,  47,115,  105,124,  207,107,  113,259,  247,238,  222,500,  563,227,  501,476,  376,939,  749,711,  1126,489,  801,1222,  1618,1227
+anchors_p7_1920:
+  - [29, 34, 81, 55, 47, 115] # P3/8
+  - [105, 124, 207, 107, 113, 259] # P4/16
+  - [247, 238, 222, 500, 563, 227] # P5/32
+  - [501, 476, 376, 939, 749, 711] # P6/64
+  - [1126, 489, 801, 1222, 1618, 1227] # P7/128
diff --git a/yolov5/models/hub/yolov3-spp.yaml b/yolov5/models/hub/yolov3-spp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..31d3df8d087c0140e3f492fd87a40474c1b51c69
--- /dev/null
+++ b/yolov5/models/hub/yolov3-spp.yaml
@@ -0,0 +1,52 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# darknet53 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [32, 3, 1]], # 0
+    [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+    [-1, 1, Bottleneck, [64]],
+    [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+    [-1, 2, Bottleneck, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+    [-1, 8, Bottleneck, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+    [-1, 8, Bottleneck, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+    [-1, 4, Bottleneck, [1024]], # 10
+  ]
+
+# YOLOv3-SPP head
+head: [
+    [-1, 1, Bottleneck, [1024, False]],
+    [-1, 1, SPP, [512, [5, 9, 13]]],
+    [-1, 1, Conv, [1024, 3, 1]],
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+    [-2, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P4
+    [-1, 1, Bottleneck, [512, False]],
+    [-1, 1, Bottleneck, [512, False]],
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+    [-2, 1, Conv, [128, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P3
+    [-1, 1, Bottleneck, [256, False]],
+    [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+    [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov3-tiny.yaml b/yolov5/models/hub/yolov3-tiny.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ba06f22f878849a2a0a50743dd2c3dbddd553665
--- /dev/null
+++ b/yolov5/models/hub/yolov3-tiny.yaml
@@ -0,0 +1,42 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 14, 23, 27, 37, 58] # P4/16
+  - [81, 82, 135, 169, 344, 319] # P5/32
+
+# YOLOv3-tiny backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [16, 3, 1]], # 0
+    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
+    [-1, 1, Conv, [32, 3, 1]],
+    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
+    [-1, 1, Conv, [64, 3, 1]],
+    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
+    [-1, 1, Conv, [128, 3, 1]],
+    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
+    [-1, 1, Conv, [256, 3, 1]],
+    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
+    [-1, 1, Conv, [512, 3, 1]],
+    [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
+    [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
+  ]
+
+# YOLOv3-tiny head
+head: [
+    [-1, 1, Conv, [1024, 3, 1]],
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
+
+    [-2, 1, Conv, [128, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P4
+    [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
+
+    [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov3.yaml b/yolov5/models/hub/yolov3.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..cc00d7a5098b7b929ffa59a7481876cbd60b781f
--- /dev/null
+++ b/yolov5/models/hub/yolov3.yaml
@@ -0,0 +1,52 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# darknet53 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [32, 3, 1]], # 0
+    [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+    [-1, 1, Bottleneck, [64]],
+    [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+    [-1, 2, Bottleneck, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+    [-1, 8, Bottleneck, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+    [-1, 8, Bottleneck, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+    [-1, 4, Bottleneck, [1024]], # 10
+  ]
+
+# YOLOv3 head
+head: [
+    [-1, 1, Bottleneck, [1024, False]],
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, Conv, [1024, 3, 1]],
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+    [-2, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P4
+    [-1, 1, Bottleneck, [512, False]],
+    [-1, 1, Bottleneck, [512, False]],
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+    [-2, 1, Conv, [128, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P3
+    [-1, 1, Bottleneck, [256, False]],
+    [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+    [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5-bifpn.yaml b/yolov5/models/hub/yolov5-bifpn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..948f4a746b83b0844bb1158b8c44daf5961e86f2
--- /dev/null
+++ b/yolov5/models/hub/yolov5-bifpn.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 BiFPN head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5-fpn.yaml b/yolov5/models/hub/yolov5-fpn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9882a1bfae905f62cae2cca624617b1c1292399e
--- /dev/null
+++ b/yolov5/models/hub/yolov5-fpn.yaml
@@ -0,0 +1,43 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 FPN head
+head: [
+    [-1, 3, C3, [1024, False]], # 10 (P5/32-large)
+
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 3, C3, [512, False]], # 14 (P4/16-medium)
+
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 3, C3, [256, False]], # 18 (P3/8-small)
+
+    [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5-p2.yaml b/yolov5/models/hub/yolov5-p2.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6f84c44ca4486f851e9aa25890f19f926cd39ef9
--- /dev/null
+++ b/yolov5/models/hub/yolov5-p2.yaml
@@ -0,0 +1,55 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [128, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 2], 1, Concat, [1]], # cat backbone P2
+    [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
+
+    [-1, 1, Conv, [128, 3, 2]],
+    [[-1, 18], 1, Concat, [1]], # cat head P3
+    [-1, 3, C3, [256, False]], # 24 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
+
+    [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5-p34.yaml b/yolov5/models/hub/yolov5-p34.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..745ac9c975990806cd1079bb5dd99ca03876f868
--- /dev/null
+++ b/yolov5/models/hub/yolov5-p34.yaml
@@ -0,0 +1,42 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4) outputs
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [[17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4)
+  ]
diff --git a/yolov5/models/hub/yolov5-p6.yaml b/yolov5/models/hub/yolov5-p6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a6d2107819daa89c27232678335a4f26e5fdac8f
--- /dev/null
+++ b/yolov5/models/hub/yolov5-p6.yaml
@@ -0,0 +1,57 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 11
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
+head: [
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 15
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 19
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 20], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 16], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 12], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+    [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5/models/hub/yolov5-p7.yaml b/yolov5/models/hub/yolov5-p7.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d7a0bd33c27809aaab48d9c807aab395a72aa6c6
--- /dev/null
+++ b/yolov5/models/hub/yolov5-p7.yaml
@@ -0,0 +1,68 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
+    [-1, 3, C3, [1280]],
+    [-1, 1, SPPF, [1280, 5]], # 13
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
+head: [
+    [-1, 1, Conv, [1024, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 10], 1, Concat, [1]], # cat backbone P6
+    [-1, 3, C3, [1024, False]], # 17
+
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 21
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 25
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 29 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 26], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 22], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 35 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 18], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
+
+    [-1, 1, Conv, [1024, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P7
+    [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
+
+    [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
+  ]
diff --git a/yolov5/models/hub/yolov5-panet.yaml b/yolov5/models/hub/yolov5-panet.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..85ad66d6b18b060474a8d428ace7f7315c901dc5
--- /dev/null
+++ b/yolov5/models/hub/yolov5-panet.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 PANet head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5l6.yaml b/yolov5/models/hub/yolov5l6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5bc5b8c438120d52a8171105dfb64f6810296138
--- /dev/null
+++ b/yolov5/models/hub/yolov5l6.yaml
@@ -0,0 +1,61 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [19, 27, 44, 40, 38, 94] # P3/8
+  - [96, 68, 86, 152, 180, 137] # P4/16
+  - [140, 301, 303, 264, 238, 542] # P5/32
+  - [436, 615, 739, 380, 925, 792] # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 11
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 15
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 19
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 20], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 16], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 12], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+    [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5/models/hub/yolov5m6.yaml b/yolov5/models/hub/yolov5m6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a8e4580b095d467819cc8c53ac02f93a985cde30
--- /dev/null
+++ b/yolov5/models/hub/yolov5m6.yaml
@@ -0,0 +1,61 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.67 # model depth multiple
+width_multiple: 0.75 # layer channel multiple
+anchors:
+  - [19, 27, 44, 40, 38, 94] # P3/8
+  - [96, 68, 86, 152, 180, 137] # P4/16
+  - [140, 301, 303, 264, 238, 542] # P5/32
+  - [436, 615, 739, 380, 925, 792] # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 11
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 15
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 19
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 20], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 16], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 12], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+    [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5/models/hub/yolov5n6.yaml b/yolov5/models/hub/yolov5n6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b54031053835af06bec66e56657f99ef57faef0d
--- /dev/null
+++ b/yolov5/models/hub/yolov5n6.yaml
@@ -0,0 +1,61 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.25 # layer channel multiple
+anchors:
+  - [19, 27, 44, 40, 38, 94] # P3/8
+  - [96, 68, 86, 152, 180, 137] # P4/16
+  - [140, 301, 303, 264, 238, 542] # P5/32
+  - [436, 615, 739, 380, 925, 792] # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 11
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 15
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 19
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 20], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 16], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 12], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+    [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5/models/hub/yolov5s-LeakyReLU.yaml b/yolov5/models/hub/yolov5s-LeakyReLU.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7219c24380b4ecb9a3218d002e9a4fd9de80a521
--- /dev/null
+++ b/yolov5/models/hub/yolov5s-LeakyReLU.yaml
@@ -0,0 +1,50 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+activation: nn.LeakyReLU(0.1) # <----- Conv() activation used throughout entire YOLOv5 model
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5s-ghost.yaml b/yolov5/models/hub/yolov5s-ghost.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..866d87e4126e92776ca6b58eba0594b845d8e951
--- /dev/null
+++ b/yolov5/models/hub/yolov5s-ghost.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3Ghost, [128]],
+    [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3Ghost, [256]],
+    [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3Ghost, [512]],
+    [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3Ghost, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, GhostConv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3Ghost, [512, False]], # 13
+
+    [-1, 1, GhostConv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, GhostConv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, GhostConv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5s-transformer.yaml b/yolov5/models/hub/yolov5s-transformer.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6bf0fe057c445c6c32658a419e4bb56492e3935d
--- /dev/null
+++ b/yolov5/models/hub/yolov5s-transformer.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/hub/yolov5s6.yaml b/yolov5/models/hub/yolov5s6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0772d9827b48db1cb008ac1cf7a91727f70bc60f
--- /dev/null
+++ b/yolov5/models/hub/yolov5s6.yaml
@@ -0,0 +1,61 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+anchors:
+  - [19, 27, 44, 40, 38, 94] # P3/8
+  - [96, 68, 86, 152, 180, 137] # P4/16
+  - [140, 301, 303, 264, 238, 542] # P5/32
+  - [436, 615, 739, 380, 925, 792] # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 11
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 15
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 19
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 20], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 16], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 12], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+    [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5/models/hub/yolov5x6.yaml b/yolov5/models/hub/yolov5x6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c5a850ed31599ac3db0b4f6d1f515d8b58a29d25
--- /dev/null
+++ b/yolov5/models/hub/yolov5x6.yaml
@@ -0,0 +1,61 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.33 # model depth multiple
+width_multiple: 1.25 # layer channel multiple
+anchors:
+  - [19, 27, 44, 40, 38, 94] # P3/8
+  - [96, 68, 86, 152, 180, 137] # P4/16
+  - [140, 301, 303, 264, 238, 542] # P5/32
+  - [436, 615, 739, 380, 925, 792] # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [768]],
+    [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 11
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [768, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 8], 1, Concat, [1]], # cat backbone P5
+    [-1, 3, C3, [768, False]], # 15
+
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 19
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 23 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 20], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 16], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [768, False]], # 29 (P5/32-large)
+
+    [-1, 1, Conv, [768, 3, 2]],
+    [[-1, 12], 1, Concat, [1]], # cat head P6
+    [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
+
+    [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5/models/segment/yolov5l-seg.yaml b/yolov5/models/segment/yolov5l-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..77fa4977d1d813b5263641951c616fc7456495db
--- /dev/null
+++ b/yolov5/models/segment/yolov5l-seg.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/segment/yolov5m-seg.yaml b/yolov5/models/segment/yolov5m-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..bb2b266a041263d9eb6aed40a55f0ed99cc56aa7
--- /dev/null
+++ b/yolov5/models/segment/yolov5m-seg.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.67 # model depth multiple
+width_multiple: 0.75 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/segment/yolov5n-seg.yaml b/yolov5/models/segment/yolov5n-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fac31af2ff4330bdf9bc411836b5ae87bcb3191a
--- /dev/null
+++ b/yolov5/models/segment/yolov5n-seg.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.25 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/segment/yolov5s-seg.yaml b/yolov5/models/segment/yolov5s-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..10d876aaeffe7016bf784392b7b6de5218292938
--- /dev/null
+++ b/yolov5/models/segment/yolov5s-seg.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.5 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/segment/yolov5x-seg.yaml b/yolov5/models/segment/yolov5x-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9f04e449278960d4aacd47eb93a0931f0f0a7b8d
--- /dev/null
+++ b/yolov5/models/segment/yolov5x-seg.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.33 # model depth multiple
+width_multiple: 1.25 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/tf.py b/yolov5/models/tf.py
new file mode 100644
index 0000000000000000000000000000000000000000..2a5cd566c40665563b064d705be911c60210603f
--- /dev/null
+++ b/yolov5/models/tf.py
@@ -0,0 +1,773 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+TensorFlow, Keras and TFLite versions of YOLOv5
+Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
+
+Usage:
+    $ python models/tf.py --weights yolov5s.pt
+
+Export:
+    $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
+"""
+
+import argparse
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+import numpy as np
+import tensorflow as tf
+import torch
+import torch.nn as nn
+from tensorflow import keras
+
+from models.common import (
+    C3,
+    SPP,
+    SPPF,
+    Bottleneck,
+    BottleneckCSP,
+    C3x,
+    Concat,
+    Conv,
+    CrossConv,
+    DWConv,
+    DWConvTranspose2d,
+    Focus,
+    autopad,
+)
+from models.experimental import MixConv2d, attempt_load
+from models.yolo import Detect, Segment
+from utils.activations import SiLU
+from utils.general import LOGGER, make_divisible, print_args
+
+
+class TFBN(keras.layers.Layer):
+    # TensorFlow BatchNormalization wrapper
+    def __init__(self, w=None):
+        """Initializes a TensorFlow BatchNormalization layer with optional pretrained weights."""
+        super().__init__()
+        self.bn = keras.layers.BatchNormalization(
+            beta_initializer=keras.initializers.Constant(w.bias.numpy()),
+            gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
+            moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
+            moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
+            epsilon=w.eps,
+        )
+
+    def call(self, inputs):
+        """Applies batch normalization to the inputs."""
+        return self.bn(inputs)
+
+
+class TFPad(keras.layers.Layer):
+    # Pad inputs in spatial dimensions 1 and 2
+    def __init__(self, pad):
+        """
+        Initializes a padding layer for spatial dimensions 1 and 2 with specified padding, supporting both int and tuple
+        inputs.
+
+        Inputs are
+        """
+        super().__init__()
+        if isinstance(pad, int):
+            self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
+        else:  # tuple/list
+            self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
+
+    def call(self, inputs):
+        """Pads input tensor with zeros using specified padding, suitable for int and tuple pad dimensions."""
+        return tf.pad(inputs, self.pad, mode="constant", constant_values=0)
+
+
+class TFConv(keras.layers.Layer):
+    # Standard convolution
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+        """
+        Initializes a standard convolution layer with optional batch normalization and activation; supports only
+        group=1.
+
+        Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
+        """
+        super().__init__()
+        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+        # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
+        # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
+        conv = keras.layers.Conv2D(
+            filters=c2,
+            kernel_size=k,
+            strides=s,
+            padding="SAME" if s == 1 else "VALID",
+            use_bias=not hasattr(w, "bn"),
+            kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
+        )
+        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+        self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
+        self.act = activations(w.act) if act else tf.identity
+
+    def call(self, inputs):
+        """Applies convolution, batch normalization, and activation function to input tensors."""
+        return self.act(self.bn(self.conv(inputs)))
+
+
+class TFDWConv(keras.layers.Layer):
+    # Depthwise convolution
+    def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
+        """
+        Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow
+        models.
+
+        Input are ch_in, ch_out, weights, kernel, stride, padding, groups.
+        """
+        super().__init__()
+        assert c2 % c1 == 0, f"TFDWConv() output={c2} must be a multiple of input={c1} channels"
+        conv = keras.layers.DepthwiseConv2D(
+            kernel_size=k,
+            depth_multiplier=c2 // c1,
+            strides=s,
+            padding="SAME" if s == 1 else "VALID",
+            use_bias=not hasattr(w, "bn"),
+            depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()),
+        )
+        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+        self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity
+        self.act = activations(w.act) if act else tf.identity
+
+    def call(self, inputs):
+        """Applies convolution, batch normalization, and activation function to input tensors."""
+        return self.act(self.bn(self.conv(inputs)))
+
+
+class TFDWConvTranspose2d(keras.layers.Layer):
+    # Depthwise ConvTranspose2d
+    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
+        """
+        Initializes depthwise ConvTranspose2D layer with specific channel, kernel, stride, and padding settings.
+
+        Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups.
+        """
+        super().__init__()
+        assert c1 == c2, f"TFDWConv() output={c2} must be equal to input={c1} channels"
+        assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1"
+        weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
+        self.c1 = c1
+        self.conv = [
+            keras.layers.Conv2DTranspose(
+                filters=1,
+                kernel_size=k,
+                strides=s,
+                padding="VALID",
+                output_padding=p2,
+                use_bias=True,
+                kernel_initializer=keras.initializers.Constant(weight[..., i : i + 1]),
+                bias_initializer=keras.initializers.Constant(bias[i]),
+            )
+            for i in range(c1)
+        ]
+
+    def call(self, inputs):
+        """Processes input through parallel convolutions and concatenates results, trimming border pixels."""
+        return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
+
+
+class TFFocus(keras.layers.Layer):
+    # Focus wh information into c-space
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+        """
+        Initializes TFFocus layer to focus width and height information into channel space with custom convolution
+        parameters.
+
+        Inputs are ch_in, ch_out, kernel, stride, padding, groups.
+        """
+        super().__init__()
+        self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
+
+    def call(self, inputs):
+        """
+        Performs pixel shuffling and convolution on input tensor, downsampling by 2 and expanding channels by 4.
+
+        Example x(b,w,h,c) -> y(b,w/2,h/2,4c).
+        """
+        inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
+        return self.conv(tf.concat(inputs, 3))
+
+
+class TFBottleneck(keras.layers.Layer):
+    # Standard bottleneck
+    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):
+        """
+        Initializes a standard bottleneck layer for TensorFlow models, expanding and contracting channels with optional
+        shortcut.
+
+        Arguments are ch_in, ch_out, shortcut, groups, expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
+        self.add = shortcut and c1 == c2
+
+    def call(self, inputs):
+        """Performs forward pass; if shortcut is True & input/output channels match, adds input to the convolution
+        result.
+        """
+        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFCrossConv(keras.layers.Layer):
+    # Cross Convolution
+    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
+        """Initializes cross convolution layer with optional expansion, grouping, and shortcut addition capabilities."""
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
+        self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
+        self.add = shortcut and c1 == c2
+
+    def call(self, inputs):
+        """Passes input through two convolutions optionally adding the input if channel dimensions match."""
+        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFConv2d(keras.layers.Layer):
+    # Substitution for PyTorch nn.Conv2D
+    def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
+        """Initializes a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D functionality for given filter
+        sizes and stride.
+        """
+        super().__init__()
+        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+        self.conv = keras.layers.Conv2D(
+            filters=c2,
+            kernel_size=k,
+            strides=s,
+            padding="VALID",
+            use_bias=bias,
+            kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None,
+        )
+
+    def call(self, inputs):
+        """Applies a convolution operation to the inputs and returns the result."""
+        return self.conv(inputs)
+
+
+class TFBottleneckCSP(keras.layers.Layer):
+    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        """
+        Initializes CSP bottleneck layer with specified channel sizes, count, shortcut option, groups, and expansion
+        ratio.
+
+        Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
+        self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
+        self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
+        self.bn = TFBN(w.bn)
+        self.act = lambda x: keras.activations.swish(x)
+        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        """Processes input through the model layers, concatenates, normalizes, activates, and reduces the output
+        dimensions.
+        """
+        y1 = self.cv3(self.m(self.cv1(inputs)))
+        y2 = self.cv2(inputs)
+        return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
+
+
+class TFC3(keras.layers.Layer):
+    # CSP Bottleneck with 3 convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        """
+        Initializes CSP Bottleneck with 3 convolutions, supporting optional shortcuts and group convolutions.
+
+        Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        """
+        Processes input through a sequence of transformations for object detection (YOLOv5).
+
+        See https://github.com/ultralytics/yolov5.
+        """
+        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFC3x(keras.layers.Layer):
+    # 3 module with cross-convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        """
+        Initializes layer with cross-convolutions for enhanced feature extraction in object detection models.
+
+        Inputs are ch_in, ch_out, number, shortcut, groups, expansion.
+        """
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+        self.m = keras.Sequential(
+            [TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]
+        )
+
+    def call(self, inputs):
+        """Processes input through cascaded convolutions and merges features, returning the final tensor output."""
+        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFSPP(keras.layers.Layer):
+    # Spatial pyramid pooling layer used in YOLOv3-SPP
+    def __init__(self, c1, c2, k=(5, 9, 13), w=None):
+        """Initializes a YOLOv3-SPP layer with specific input/output channels and kernel sizes for pooling."""
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
+        self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k]
+
+    def call(self, inputs):
+        """Processes input through two TFConv layers and concatenates with max-pooled outputs at intermediate stage."""
+        x = self.cv1(inputs)
+        return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
+
+
+class TFSPPF(keras.layers.Layer):
+    # Spatial pyramid pooling-Fast layer
+    def __init__(self, c1, c2, k=5, w=None):
+        """Initializes a fast spatial pyramid pooling layer with customizable in/out channels, kernel size, and
+        weights.
+        """
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
+        self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME")
+
+    def call(self, inputs):
+        """Executes the model's forward pass, concatenating input features with three max-pooled versions before final
+        convolution.
+        """
+        x = self.cv1(inputs)
+        y1 = self.m(x)
+        y2 = self.m(y1)
+        return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
+
+
+class TFDetect(keras.layers.Layer):
+    # TF YOLOv5 Detect layer
+    def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):
+        """Initializes YOLOv5 detection layer for TensorFlow with configurable classes, anchors, channels, and image
+        size.
+        """
+        super().__init__()
+        self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
+        self.nc = nc  # number of classes
+        self.no = nc + 5  # number of outputs per anchor
+        self.nl = len(anchors)  # number of detection layers
+        self.na = len(anchors[0]) // 2  # number of anchors
+        self.grid = [tf.zeros(1)] * self.nl  # init grid
+        self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
+        self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
+        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
+        self.training = False  # set to False after building model
+        self.imgsz = imgsz
+        for i in range(self.nl):
+            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+            self.grid[i] = self._make_grid(nx, ny)
+
+    def call(self, inputs):
+        """Performs forward pass through the model layers to predict object bounding boxes and classifications."""
+        z = []  # inference output
+        x = []
+        for i in range(self.nl):
+            x.append(self.m[i](inputs[i]))
+            # x(bs,20,20,255) to x(bs,3,20,20,85)
+            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+            x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
+
+            if not self.training:  # inference
+                y = x[i]
+                grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
+                anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
+                xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i]  # xy
+                wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
+                # Normalize xywh to 0-1 to reduce calibration error
+                xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+                wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+                y = tf.concat([xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :]], -1)
+                z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
+
+        return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
+
+    @staticmethod
+    def _make_grid(nx=20, ny=20):
+        """Generates a 2D grid of coordinates in (x, y) format with shape [1, 1, ny*nx, 2]."""
+        # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+        xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
+        return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
+
+
+class TFSegment(TFDetect):
+    # YOLOv5 Segment head for segmentation models
+    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
+        """Initializes YOLOv5 Segment head with specified channel depths, anchors, and input size for segmentation
+        models.
+        """
+        super().__init__(nc, anchors, ch, imgsz, w)
+        self.nm = nm  # number of masks
+        self.npr = npr  # number of protos
+        self.no = 5 + nc + self.nm  # number of outputs per anchor
+        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]  # output conv
+        self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto)  # protos
+        self.detect = TFDetect.call
+
+    def call(self, x):
+        """Applies detection and proto layers on input, returning detections and optionally protos if training."""
+        p = self.proto(x[0])
+        # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0]))  # (optional) full-size protos
+        p = tf.transpose(p, [0, 3, 1, 2])  # from shape(1,160,160,32) to shape(1,32,160,160)
+        x = self.detect(self, x)
+        return (x, p) if self.training else (x[0], p)
+
+
+class TFProto(keras.layers.Layer):
+    def __init__(self, c1, c_=256, c2=32, w=None):
+        """Initializes TFProto layer with convolutional and upsampling layers for feature extraction and
+        transformation.
+        """
+        super().__init__()
+        self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
+        self.upsample = TFUpsample(None, scale_factor=2, mode="nearest")
+        self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
+        self.cv3 = TFConv(c_, c2, w=w.cv3)
+
+    def call(self, inputs):
+        """Performs forward pass through the model, applying convolutions and upscaling on input tensor."""
+        return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
+
+
+class TFUpsample(keras.layers.Layer):
+    # TF version of torch.nn.Upsample()
+    def __init__(self, size, scale_factor, mode, w=None):
+        """
+        Initializes a TensorFlow upsampling layer with specified size, scale_factor, and mode, ensuring scale_factor is
+        even.
+
+        Warning: all arguments needed including 'w'
+        """
+        super().__init__()
+        assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
+        self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
+        # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
+        # with default arguments: align_corners=False, half_pixel_centers=False
+        # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
+        #                                                            size=(x.shape[1] * 2, x.shape[2] * 2))
+
+    def call(self, inputs):
+        """Applies upsample operation to inputs using nearest neighbor interpolation."""
+        return self.upsample(inputs)
+
+
+class TFConcat(keras.layers.Layer):
+    # TF version of torch.concat()
+    def __init__(self, dimension=1, w=None):
+        """Initializes a TensorFlow layer for NCHW to NHWC concatenation, requiring dimension=1."""
+        super().__init__()
+        assert dimension == 1, "convert only NCHW to NHWC concat"
+        self.d = 3
+
+    def call(self, inputs):
+        """Concatenates a list of tensors along the last dimension, used for NCHW to NHWC conversion."""
+        return tf.concat(inputs, self.d)
+
+
+def parse_model(d, ch, model, imgsz):
+    """Parses a model definition dict `d` to create YOLOv5 model layers, including dynamic channel adjustments."""
+    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
+    anchors, nc, gd, gw, ch_mul = (
+        d["anchors"],
+        d["nc"],
+        d["depth_multiple"],
+        d["width_multiple"],
+        d.get("channel_multiple"),
+    )
+    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
+    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
+    if not ch_mul:
+        ch_mul = 8
+
+    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
+    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
+        m_str = m
+        m = eval(m) if isinstance(m, str) else m  # eval strings
+        for j, a in enumerate(args):
+            try:
+                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
+            except NameError:
+                pass
+
+        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
+        if m in [
+            nn.Conv2d,
+            Conv,
+            DWConv,
+            DWConvTranspose2d,
+            Bottleneck,
+            SPP,
+            SPPF,
+            MixConv2d,
+            Focus,
+            CrossConv,
+            BottleneckCSP,
+            C3,
+            C3x,
+        ]:
+            c1, c2 = ch[f], args[0]
+            c2 = make_divisible(c2 * gw, ch_mul) if c2 != no else c2
+
+            args = [c1, c2, *args[1:]]
+            if m in [BottleneckCSP, C3, C3x]:
+                args.insert(2, n)
+                n = 1
+        elif m is nn.BatchNorm2d:
+            args = [ch[f]]
+        elif m is Concat:
+            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
+        elif m in [Detect, Segment]:
+            args.append([ch[x + 1] for x in f])
+            if isinstance(args[1], int):  # number of anchors
+                args[1] = [list(range(args[1] * 2))] * len(f)
+            if m is Segment:
+                args[3] = make_divisible(args[3] * gw, ch_mul)
+            args.append(imgsz)
+        else:
+            c2 = ch[f]
+
+        tf_m = eval("TF" + m_str.replace("nn.", ""))
+        m_ = (
+            keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)])
+            if n > 1
+            else tf_m(*args, w=model.model[i])
+        )  # module
+
+        torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
+        t = str(m)[8:-2].replace("__main__.", "")  # module type
+        np = sum(x.numel() for x in torch_m_.parameters())  # number params
+        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
+        LOGGER.info(f"{i:>3}{str(f):>18}{str(n):>3}{np:>10}  {t:<40}{str(args):<30}")  # print
+        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
+        layers.append(m_)
+        ch.append(c2)
+    return keras.Sequential(layers), sorted(save)
+
+
+class TFModel:
+    # TF YOLOv5 model
+    def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640)):
+        """Initializes TF YOLOv5 model with specified configuration, channels, classes, model instance, and input
+        size.
+        """
+        super().__init__()
+        if isinstance(cfg, dict):
+            self.yaml = cfg  # model dict
+        else:  # is *.yaml
+            import yaml  # for torch hub
+
+            self.yaml_file = Path(cfg).name
+            with open(cfg) as f:
+                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict
+
+        # Define model
+        if nc and nc != self.yaml["nc"]:
+            LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
+            self.yaml["nc"] = nc  # override yaml value
+        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
+
+    def predict(
+        self,
+        inputs,
+        tf_nms=False,
+        agnostic_nms=False,
+        topk_per_class=100,
+        topk_all=100,
+        iou_thres=0.45,
+        conf_thres=0.25,
+    ):
+        y = []  # outputs
+        x = inputs
+        for m in self.model.layers:
+            if m.f != -1:  # if not from previous layer
+                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
+
+            x = m(x)  # run
+            y.append(x if m.i in self.savelist else None)  # save output
+
+        # Add TensorFlow NMS
+        if tf_nms:
+            boxes = self._xywh2xyxy(x[0][..., :4])
+            probs = x[0][:, :, 4:5]
+            classes = x[0][:, :, 5:]
+            scores = probs * classes
+            if agnostic_nms:
+                nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
+            else:
+                boxes = tf.expand_dims(boxes, 2)
+                nms = tf.image.combined_non_max_suppression(
+                    boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False
+                )
+            return (nms,)
+        return x  # output [1,6300,85] = [xywh, conf, class0, class1, ...]
+        # x = x[0]  # [x(1,6300,85), ...] to x(6300,85)
+        # xywh = x[..., :4]  # x(6300,4) boxes
+        # conf = x[..., 4:5]  # x(6300,1) confidences
+        # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1))  # x(6300,1)  classes
+        # return tf.concat([conf, cls, xywh], 1)
+
+    @staticmethod
+    def _xywh2xyxy(xywh):
+        """Converts bounding box format from [x, y, w, h] to [x1, y1, x2, y2], where xy1=top-left and xy2=bottom-
+        right.
+        """
+        x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
+        return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
+
+
+class AgnosticNMS(keras.layers.Layer):
+    # TF Agnostic NMS
+    def call(self, input, topk_all, iou_thres, conf_thres):
+        """Performs agnostic NMS on input tensors using given thresholds and top-K selection."""
+        return tf.map_fn(
+            lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
+            input,
+            fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
+            name="agnostic_nms",
+        )
+
+    @staticmethod
+    def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):
+        """Performs agnostic non-maximum suppression (NMS) on detected objects, filtering based on IoU and confidence
+        thresholds.
+        """
+        boxes, classes, scores = x
+        class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
+        scores_inp = tf.reduce_max(scores, -1)
+        selected_inds = tf.image.non_max_suppression(
+            boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres
+        )
+        selected_boxes = tf.gather(boxes, selected_inds)
+        padded_boxes = tf.pad(
+            selected_boxes,
+            paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
+            mode="CONSTANT",
+            constant_values=0.0,
+        )
+        selected_scores = tf.gather(scores_inp, selected_inds)
+        padded_scores = tf.pad(
+            selected_scores,
+            paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+            mode="CONSTANT",
+            constant_values=-1.0,
+        )
+        selected_classes = tf.gather(class_inds, selected_inds)
+        padded_classes = tf.pad(
+            selected_classes,
+            paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+            mode="CONSTANT",
+            constant_values=-1.0,
+        )
+        valid_detections = tf.shape(selected_inds)[0]
+        return padded_boxes, padded_scores, padded_classes, valid_detections
+
+
+def activations(act=nn.SiLU):
+    """Converts PyTorch activations to TensorFlow equivalents, supporting LeakyReLU, Hardswish, and SiLU/Swish."""
+    if isinstance(act, nn.LeakyReLU):
+        return lambda x: keras.activations.relu(x, alpha=0.1)
+    elif isinstance(act, nn.Hardswish):
+        return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
+    elif isinstance(act, (nn.SiLU, SiLU)):
+        return lambda x: keras.activations.swish(x)
+    else:
+        raise Exception(f"no matching TensorFlow activation found for PyTorch activation {act}")
+
+
+def representative_dataset_gen(dataset, ncalib=100):
+    """Generates a representative dataset for calibration by yielding transformed numpy arrays from the input
+    dataset.
+    """
+    for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
+        im = np.transpose(img, [1, 2, 0])
+        im = np.expand_dims(im, axis=0).astype(np.float32)
+        im /= 255
+        yield [im]
+        if n >= ncalib:
+            break
+
+
+def run(
+    weights=ROOT / "yolov5s.pt",  # weights path
+    imgsz=(640, 640),  # inference size h,w
+    batch_size=1,  # batch size
+    dynamic=False,  # dynamic batch size
+):
+    # PyTorch model
+    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
+    model = attempt_load(weights, device=torch.device("cpu"), inplace=True, fuse=False)
+    _ = model(im)  # inference
+    model.info()
+
+    # TensorFlow model
+    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
+    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+    _ = tf_model.predict(im)  # inference
+
+    # Keras model
+    im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
+    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
+    keras_model.summary()
+
+    LOGGER.info("PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.")
+
+
+def parse_opt():
+    """Parses and returns command-line options for model inference, including weights path, image size, batch size, and
+    dynamic batching.
+    """
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
+    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
+    parser.add_argument("--batch-size", type=int, default=1, help="batch size")
+    parser.add_argument("--dynamic", action="store_true", help="dynamic batch size")
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes the YOLOv5 model run function with parsed command line options."""
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/models/yolo.py b/yolov5/models/yolo.py
new file mode 100644
index 0000000000000000000000000000000000000000..ca62f934fc3fed890f3a493c8ae72379ce4c136a
--- /dev/null
+++ b/yolov5/models/yolo.py
@@ -0,0 +1,486 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+YOLO-specific modules.
+
+Usage:
+    $ python models/yolo.py --cfg yolov5s.yaml
+"""
+
+import argparse
+import contextlib
+import math
+import os
+import platform
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.nn as nn
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+if platform.system() != "Windows":
+    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import (
+    C3,
+    C3SPP,
+    C3TR,
+    SPP,
+    SPPF,
+    Bottleneck,
+    BottleneckCSP,
+    C3Ghost,
+    C3x,
+    Classify,
+    Concat,
+    Contract,
+    Conv,
+    CrossConv,
+    DetectMultiBackend,
+    DWConv,
+    DWConvTranspose2d,
+    Expand,
+    Focus,
+    GhostBottleneck,
+    GhostConv,
+    Proto,
+)
+from models.experimental import MixConv2d
+from utils.autoanchor import check_anchor_order
+from utils.general import LOGGER, check_version, check_yaml, colorstr, make_divisible, print_args
+from utils.plots import feature_visualization
+from utils.torch_utils import (
+    fuse_conv_and_bn,
+    initialize_weights,
+    model_info,
+    profile,
+    scale_img,
+    select_device,
+    time_sync,
+)
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+
+class Detect(nn.Module):
+    # YOLOv5 Detect head for detection models
+    stride = None  # strides computed during build
+    dynamic = False  # force grid reconstruction
+    export = False  # export mode
+
+    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
+        """Initializes YOLOv5 detection layer with specified classes, anchors, channels, and inplace operations."""
+        super().__init__()
+        self.nc = nc  # number of classes
+        self.no = nc + 5  # number of outputs per anchor
+        self.nl = len(anchors)  # number of detection layers
+        self.na = len(anchors[0]) // 2  # number of anchors
+        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid
+        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid
+        self.register_buffer("anchors", torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
+        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
+        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
+
+    def forward(self, x):
+        """Processes input through YOLOv5 layers, altering shape for detection: `x(bs, 3, ny, nx, 85)`."""
+        z = []  # inference output
+        for i in range(self.nl):
+            x[i] = self.m[i](x[i])  # conv
+            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
+            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+            if not self.training:  # inference
+                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
+                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
+
+                if isinstance(self, Segment):  # (boxes + masks)
+                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
+                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
+                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
+                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
+                else:  # Detect (boxes only)
+                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
+                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
+                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
+                    y = torch.cat((xy, wh, conf), 4)
+                z.append(y.view(bs, self.na * nx * ny, self.no))
+
+        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
+
+    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, "1.10.0")):
+        """Generates a mesh grid for anchor boxes with optional compatibility for torch versions < 1.10."""
+        d = self.anchors[i].device
+        t = self.anchors[i].dtype
+        shape = 1, self.na, ny, nx, 2  # grid shape
+        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
+        yv, xv = torch.meshgrid(y, x, indexing="ij") if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility
+        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
+        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
+        return grid, anchor_grid
+
+
+class Segment(Detect):
+    # YOLOv5 Segment head for segmentation models
+    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
+        """Initializes YOLOv5 Segment head with options for mask count, protos, and channel adjustments."""
+        super().__init__(nc, anchors, ch, inplace)
+        self.nm = nm  # number of masks
+        self.npr = npr  # number of protos
+        self.no = 5 + nc + self.nm  # number of outputs per anchor
+        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
+        self.proto = Proto(ch[0], self.npr, self.nm)  # protos
+        self.detect = Detect.forward
+
+    def forward(self, x):
+        """Processes input through the network, returning detections and prototypes; adjusts output based on
+        training/export mode.
+        """
+        p = self.proto(x[0])
+        x = self.detect(self, x)
+        return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
+
+
+class BaseModel(nn.Module):
+    """YOLOv5 base model."""
+
+    def forward(self, x, profile=False, visualize=False):
+        """Executes a single-scale inference or training pass on the YOLOv5 base model, with options for profiling and
+        visualization.
+        """
+        return self._forward_once(x, profile, visualize)  # single-scale inference, train
+
+    def _forward_once(self, x, profile=False, visualize=False):
+        """Performs a forward pass on the YOLOv5 model, enabling profiling and feature visualization options."""
+        y, dt = [], []  # outputs
+        for m in self.model:
+            if m.f != -1:  # if not from previous layer
+                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
+            if profile:
+                self._profile_one_layer(m, x, dt)
+            x = m(x)  # run
+            y.append(x if m.i in self.save else None)  # save output
+            if visualize:
+                feature_visualization(x, m.type, m.i, save_dir=visualize)
+        return x
+
+    def _profile_one_layer(self, m, x, dt):
+        """Profiles a single layer's performance by computing GFLOPs, execution time, and parameters."""
+        c = m == self.model[-1]  # is final layer, copy input as inplace fix
+        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1e9 * 2 if thop else 0  # FLOPs
+        t = time_sync()
+        for _ in range(10):
+            m(x.copy() if c else x)
+        dt.append((time_sync() - t) * 100)
+        if m == self.model[0]:
+            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
+        LOGGER.info(f"{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}")
+        if c:
+            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
+
+    def fuse(self):
+        """Fuses Conv2d() and BatchNorm2d() layers in the model to improve inference speed."""
+        LOGGER.info("Fusing layers... ")
+        for m in self.model.modules():
+            if isinstance(m, (Conv, DWConv)) and hasattr(m, "bn"):
+                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
+                delattr(m, "bn")  # remove batchnorm
+                m.forward = m.forward_fuse  # update forward
+        self.info()
+        return self
+
+    def info(self, verbose=False, img_size=640):
+        """Prints model information given verbosity and image size, e.g., `info(verbose=True, img_size=640)`."""
+        model_info(self, verbose, img_size)
+
+    def _apply(self, fn):
+        """Applies transformations like to(), cpu(), cuda(), half() to model tensors excluding parameters or registered
+        buffers.
+        """
+        self = super()._apply(fn)
+        m = self.model[-1]  # Detect()
+        if isinstance(m, (Detect, Segment)):
+            m.stride = fn(m.stride)
+            m.grid = list(map(fn, m.grid))
+            if isinstance(m.anchor_grid, list):
+                m.anchor_grid = list(map(fn, m.anchor_grid))
+        return self
+
+
+class DetectionModel(BaseModel):
+    # YOLOv5 detection model
+    def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None):
+        """Initializes YOLOv5 model with configuration file, input channels, number of classes, and custom anchors."""
+        super().__init__()
+        if isinstance(cfg, dict):
+            self.yaml = cfg  # model dict
+        else:  # is *.yaml
+            import yaml  # for torch hub
+
+            self.yaml_file = Path(cfg).name
+            with open(cfg, encoding="ascii", errors="ignore") as f:
+                self.yaml = yaml.safe_load(f)  # model dict
+
+        # Define model
+        ch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channels
+        if nc and nc != self.yaml["nc"]:
+            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
+            self.yaml["nc"] = nc  # override yaml value
+        if anchors:
+            LOGGER.info(f"Overriding model.yaml anchors with anchors={anchors}")
+            self.yaml["anchors"] = round(anchors)  # override yaml value
+        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
+        self.names = [str(i) for i in range(self.yaml["nc"])]  # default names
+        self.inplace = self.yaml.get("inplace", True)
+
+        # Build strides, anchors
+        m = self.model[-1]  # Detect()
+        if isinstance(m, (Detect, Segment)):
+            s = 256  # 2x min stride
+            m.inplace = self.inplace
+            forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
+            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
+            check_anchor_order(m)
+            m.anchors /= m.stride.view(-1, 1, 1)
+            self.stride = m.stride
+            self._initialize_biases()  # only run once
+
+        # Init weights, biases
+        initialize_weights(self)
+        self.info()
+        LOGGER.info("")
+
+    def forward(self, x, augment=False, profile=False, visualize=False):
+        """Performs single-scale or augmented inference and may include profiling or visualization."""
+        if augment:
+            return self._forward_augment(x)  # augmented inference, None
+        return self._forward_once(x, profile, visualize)  # single-scale inference, train
+
+    def _forward_augment(self, x):
+        """Performs augmented inference across different scales and flips, returning combined detections."""
+        img_size = x.shape[-2:]  # height, width
+        s = [1, 0.83, 0.67]  # scales
+        f = [None, 3, None]  # flips (2-ud, 3-lr)
+        y = []  # outputs
+        for si, fi in zip(s, f):
+            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
+            yi = self._forward_once(xi)[0]  # forward
+            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
+            yi = self._descale_pred(yi, fi, si, img_size)
+            y.append(yi)
+        y = self._clip_augmented(y)  # clip augmented tails
+        return torch.cat(y, 1), None  # augmented inference, train
+
+    def _descale_pred(self, p, flips, scale, img_size):
+        """De-scales predictions from augmented inference, adjusting for flips and image size."""
+        if self.inplace:
+            p[..., :4] /= scale  # de-scale
+            if flips == 2:
+                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
+            elif flips == 3:
+                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
+        else:
+            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
+            if flips == 2:
+                y = img_size[0] - y  # de-flip ud
+            elif flips == 3:
+                x = img_size[1] - x  # de-flip lr
+            p = torch.cat((x, y, wh, p[..., 4:]), -1)
+        return p
+
+    def _clip_augmented(self, y):
+        """Clips augmented inference tails for YOLOv5 models, affecting first and last tensors based on grid points and
+        layer counts.
+        """
+        nl = self.model[-1].nl  # number of detection layers (P3-P5)
+        g = sum(4**x for x in range(nl))  # grid points
+        e = 1  # exclude layer count
+        i = (y[0].shape[1] // g) * sum(4**x for x in range(e))  # indices
+        y[0] = y[0][:, :-i]  # large
+        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
+        y[-1] = y[-1][:, i:]  # small
+        return y
+
+    def _initialize_biases(self, cf=None):
+        """
+        Initializes biases for YOLOv5's Detect() module, optionally using class frequencies (cf).
+
+        For details see https://arxiv.org/abs/1708.02002 section 3.3.
+        """
+        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+        m = self.model[-1]  # Detect() module
+        for mi, s in zip(m.m, m.stride):  # from
+            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
+            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
+            b.data[:, 5 : 5 + m.nc] += (
+                math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())
+            )  # cls
+            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+
+Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility
+
+
+class SegmentationModel(DetectionModel):
+    # YOLOv5 segmentation model
+    def __init__(self, cfg="yolov5s-seg.yaml", ch=3, nc=None, anchors=None):
+        """Initializes a YOLOv5 segmentation model with configurable params: cfg (str) for configuration, ch (int) for channels, nc (int) for num classes, anchors (list)."""
+        super().__init__(cfg, ch, nc, anchors)
+
+
+class ClassificationModel(BaseModel):
+    # YOLOv5 classification model
+    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):
+        """Initializes YOLOv5 model with config file `cfg`, input channels `ch`, number of classes `nc`, and `cuttoff`
+        index.
+        """
+        super().__init__()
+        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
+
+    def _from_detection_model(self, model, nc=1000, cutoff=10):
+        """Creates a classification model from a YOLOv5 detection model, slicing at `cutoff` and adding a classification
+        layer.
+        """
+        if isinstance(model, DetectMultiBackend):
+            model = model.model  # unwrap DetectMultiBackend
+        model.model = model.model[:cutoff]  # backbone
+        m = model.model[-1]  # last layer
+        ch = m.conv.in_channels if hasattr(m, "conv") else m.cv1.conv.in_channels  # ch into module
+        c = Classify(ch, nc)  # Classify()
+        c.i, c.f, c.type = m.i, m.f, "models.common.Classify"  # index, from, type
+        model.model[-1] = c  # replace
+        self.model = model.model
+        self.stride = model.stride
+        self.save = []
+        self.nc = nc
+
+    def _from_yaml(self, cfg):
+        """Creates a YOLOv5 classification model from a specified *.yaml configuration file."""
+        self.model = None
+
+
+def parse_model(d, ch):
+    """Parses a YOLOv5 model from a dict `d`, configuring layers based on input channels `ch` and model architecture."""
+    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
+    anchors, nc, gd, gw, act, ch_mul = (
+        d["anchors"],
+        d["nc"],
+        d["depth_multiple"],
+        d["width_multiple"],
+        d.get("activation"),
+        d.get("channel_multiple"),
+    )
+    if act:
+        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
+        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
+    if not ch_mul:
+        ch_mul = 8
+    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
+    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
+
+    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
+    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
+        m = eval(m) if isinstance(m, str) else m  # eval strings
+        for j, a in enumerate(args):
+            with contextlib.suppress(NameError):
+                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
+
+        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
+        if m in {
+            Conv,
+            GhostConv,
+            Bottleneck,
+            GhostBottleneck,
+            SPP,
+            SPPF,
+            DWConv,
+            MixConv2d,
+            Focus,
+            CrossConv,
+            BottleneckCSP,
+            C3,
+            C3TR,
+            C3SPP,
+            C3Ghost,
+            nn.ConvTranspose2d,
+            DWConvTranspose2d,
+            C3x,
+        }:
+            c1, c2 = ch[f], args[0]
+            if c2 != no:  # if not output
+                c2 = make_divisible(c2 * gw, ch_mul)
+
+            args = [c1, c2, *args[1:]]
+            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
+                args.insert(2, n)  # number of repeats
+                n = 1
+        elif m is nn.BatchNorm2d:
+            args = [ch[f]]
+        elif m is Concat:
+            c2 = sum(ch[x] for x in f)
+        # TODO: channel, gw, gd
+        elif m in {Detect, Segment}:
+            args.append([ch[x] for x in f])
+            if isinstance(args[1], int):  # number of anchors
+                args[1] = [list(range(args[1] * 2))] * len(f)
+            if m is Segment:
+                args[3] = make_divisible(args[3] * gw, ch_mul)
+        elif m is Contract:
+            c2 = ch[f] * args[0] ** 2
+        elif m is Expand:
+            c2 = ch[f] // args[0] ** 2
+        else:
+            c2 = ch[f]
+
+        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
+        t = str(m)[8:-2].replace("__main__.", "")  # module type
+        np = sum(x.numel() for x in m_.parameters())  # number params
+        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
+        LOGGER.info(f"{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}")  # print
+        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
+        layers.append(m_)
+        if i == 0:
+            ch = []
+        ch.append(c2)
+    return nn.Sequential(*layers), sorted(save)
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--cfg", type=str, default="yolov5s.yaml", help="model.yaml")
+    parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--profile", action="store_true", help="profile model speed")
+    parser.add_argument("--line-profile", action="store_true", help="profile model speed layer by layer")
+    parser.add_argument("--test", action="store_true", help="test all yolo*.yaml")
+    opt = parser.parse_args()
+    opt.cfg = check_yaml(opt.cfg)  # check YAML
+    print_args(vars(opt))
+    device = select_device(opt.device)
+
+    # Create model
+    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
+    model = Model(opt.cfg).to(device)
+
+    # Options
+    if opt.line_profile:  # profile layer by layer
+        model(im, profile=True)
+
+    elif opt.profile:  # profile forward-backward
+        results = profile(input=im, ops=[model], n=3)
+
+    elif opt.test:  # test all models
+        for cfg in Path(ROOT / "models").rglob("yolo*.yaml"):
+            try:
+                _ = Model(cfg)
+            except Exception as e:
+                print(f"Error in {cfg}: {e}")
+
+    else:  # report fused model summary
+        model.fuse()
diff --git a/yolov5/models/yolov5l.yaml b/yolov5/models/yolov5l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f22eab9575a970fa3be56fde54ed7b32aff72740
--- /dev/null
+++ b/yolov5/models/yolov5l.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/yolov5m.yaml b/yolov5/models/yolov5m.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0a3f484c77eb760a43204ed19d1fb36931d2b30e
--- /dev/null
+++ b/yolov5/models/yolov5m.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.67 # model depth multiple
+width_multiple: 0.75 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/yolov5n.yaml b/yolov5/models/yolov5n.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6f08a0b3e921ed64f109260ba73e905d3c81ea62
--- /dev/null
+++ b/yolov5/models/yolov5n.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.25 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/yolov5s.yaml b/yolov5/models/yolov5s.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5cd3c6c22870a023e6725a7099ec70a5ab194983
--- /dev/null
+++ b/yolov5/models/yolov5s.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/models/yolov5x.yaml b/yolov5/models/yolov5x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..26a5ba7253dc30b0cd75af4517a7daf6ace4aee9
--- /dev/null
+++ b/yolov5/models/yolov5x.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# Parameters
+nc: 80 # number of classes
+depth_multiple: 1.33 # model depth multiple
+width_multiple: 1.25 # layer channel multiple
+anchors:
+  - [10, 13, 16, 30, 33, 23] # P3/8
+  - [30, 61, 62, 45, 59, 119] # P4/16
+  - [116, 90, 156, 198, 373, 326] # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [
+    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
+    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+    [-1, 3, C3, [128]],
+    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+    [-1, 6, C3, [256]],
+    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+    [-1, 9, C3, [512]],
+    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+    [-1, 3, C3, [1024]],
+    [-1, 1, SPPF, [1024, 5]], # 9
+  ]
+
+# YOLOv5 v6.0 head
+head: [
+    [-1, 1, Conv, [512, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 6], 1, Concat, [1]], # cat backbone P4
+    [-1, 3, C3, [512, False]], # 13
+
+    [-1, 1, Conv, [256, 1, 1]],
+    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
+    [[-1, 4], 1, Concat, [1]], # cat backbone P3
+    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+    [-1, 1, Conv, [256, 3, 2]],
+    [[-1, 14], 1, Concat, [1]], # cat head P4
+    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+    [-1, 1, Conv, [512, 3, 2]],
+    [[-1, 10], 1, Concat, [1]], # cat head P5
+    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5/pyproject.toml b/yolov5/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..5748b907cf3087ec1d630d67f42cbef06fe443ae
--- /dev/null
+++ b/yolov5/pyproject.toml
@@ -0,0 +1,147 @@
+# Ultralyticsv5 YOLO 🚀, AGPL-3.0 license
+
+# Overview:
+# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.
+# It defines essential project metadata, dependencies, and settings used to develop and deploy the library.
+
+# Key Sections:
+# - [build-system]: Specifies the build requirements and backend (e.g., setuptools, wheel).
+# - [project]: Includes details like name, version, description, authors, dependencies and more.
+# - [project.optional-dependencies]: Provides additional, optional packages for extended features.
+# - [tool.*]: Configures settings for various tools (pytest, yapf, etc.) used in the project.
+
+# Installation:
+# The Ultralytics library can be installed using the command: 'pip install ultralytics'
+# For development purposes, you can install the package in editable mode with: 'pip install -e .'
+# This approach allows for real-time code modifications without the need for re-installation.
+
+# Documentation:
+# For comprehensive documentation and usage instructions, visit: https://docs.ultralytics.com
+
+[build-system]
+requires = ["setuptools>=43.0.0", "wheel"]
+build-backend = "setuptools.build_meta"
+
+# Project settings -----------------------------------------------------------------------------------------------------
+[project]
+version = "7.0.0"
+name = "YOLOv5"
+description = "Ultralytics YOLOv5 for SOTA object detection, instance segmentation and image classification."
+readme = "README.md"
+requires-python = ">=3.8"
+license = { "text" = "AGPL-3.0" }
+keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "HUB", "Ultralytics"]
+authors = [
+    { name = "Glenn Jocher" },
+    { name = "Ayush Chaurasia" },
+    { name = "Jing Qiu" }
+]
+maintainers = [
+    { name = "Glenn Jocher" },
+    { name = "Ayush Chaurasia" },
+    { name = "Jing Qiu" }
+]
+classifiers = [
+    "Development Status :: 4 - Beta",
+    "Intended Audience :: Developers",
+    "Intended Audience :: Education",
+    "Intended Audience :: Science/Research",
+    "License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
+    "Programming Language :: Python :: 3",
+    "Programming Language :: Python :: 3.8",
+    "Programming Language :: Python :: 3.9",
+    "Programming Language :: Python :: 3.10",
+    "Programming Language :: Python :: 3.11",
+    "Topic :: Software Development",
+    "Topic :: Scientific/Engineering",
+    "Topic :: Scientific/Engineering :: Artificial Intelligence",
+    "Topic :: Scientific/Engineering :: Image Recognition",
+    "Operating System :: POSIX :: Linux",
+    "Operating System :: MacOS",
+    "Operating System :: Microsoft :: Windows",
+]
+
+# Required dependencies ------------------------------------------------------------------------------------------------
+dependencies = [
+    "matplotlib>=3.3.0",
+    "numpy>=1.22.2",
+    "opencv-python>=4.6.0",
+    "pillow>=7.1.2",
+    "pyyaml>=5.3.1",
+    "requests>=2.23.0",
+    "scipy>=1.4.1",
+    "torch>=1.8.0",
+    "torchvision>=0.9.0",
+    "tqdm>=4.64.0", # progress bars
+    "psutil", # system utilization
+    "py-cpuinfo", # display CPU info
+    "thop>=0.1.1", # FLOPs computation
+    "pandas>=1.1.4",
+    "seaborn>=0.11.0", # plotting
+    "ultralytics>=8.1.47"
+]
+
+# Optional dependencies ------------------------------------------------------------------------------------------------
+[project.optional-dependencies]
+dev = [
+    "ipython",
+    "check-manifest",
+    "pre-commit",
+    "pytest",
+    "pytest-cov",
+    "coverage[toml]",
+    "mkdocs-material",
+    "mkdocstrings[python]",
+    "mkdocs-redirects", # for 301 redirects
+    "mkdocs-ultralytics-plugin>=0.0.34", # for meta descriptions and images, dates and authors
+]
+export = [
+    "onnx>=1.12.0", # ONNX export
+    "coremltools>=7.0; platform_system != 'Windows'", # CoreML only supported on macOS and Linux
+    "openvino-dev>=2023.0", # OpenVINO export
+    "tensorflow<=2.13.1", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
+    "tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
+]
+# tensorflow>=2.4.1,<=2.13.1  # TF exports (-cpu, -aarch64, -macos)
+# tflite-support  # for TFLite model metadata
+# scikit-learn==0.19.2  # CoreML quantization
+# nvidia-pyindex  # TensorRT export
+# nvidia-tensorrt  # TensorRT export
+logging = [
+    "comet", # https://docs.ultralytics.com/integrations/comet/
+    "tensorboard>=2.13.0",
+    "dvclive>=2.12.0",
+]
+extra = [
+    "ipython", # interactive notebook
+    "albumentations>=1.0.3", # training augmentations
+    "pycocotools>=2.0.6", # COCO mAP
+]
+
+[project.urls]
+"Bug Reports" = "https://github.com/ultralytics/yolov5/issues"
+"Funding" = "https://ultralytics.com"
+"Source" = "https://github.com/ultralytics/yolov5/"
+
+# Tools settings -------------------------------------------------------------------------------------------------------
+[tool.pytest]
+norecursedirs = [".git", "dist", "build"]
+addopts = "--doctest-modules --durations=30 --color=yes"
+
+[tool.isort]
+line_length = 120
+multi_line_output = 0
+
+[tool.ruff]
+line-length = 120
+
+[tool.docformatter]
+wrap-summaries = 120
+wrap-descriptions = 120
+in-place = true
+pre-summary-newline = true
+close-quotes-on-newline = true
+
+[tool.codespell]
+ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
+skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'
diff --git a/yolov5/requirements.txt b/yolov5/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3892abe07308dbc477132ad82b19131732780417
--- /dev/null
+++ b/yolov5/requirements.txt
@@ -0,0 +1,50 @@
+# YOLOv5 requirements
+# Usage: pip install -r requirements.txt
+
+# Base ------------------------------------------------------------------------
+gitpython>=3.1.30
+matplotlib>=3.3
+numpy>=1.23.5
+opencv-python>=4.1.1
+pillow>=10.3.0
+psutil  # system resources
+PyYAML>=5.3.1
+requests>=2.23.0
+scipy>=1.4.1
+thop>=0.1.1  # FLOPs computation
+torch>=1.8.0  # see https://pytorch.org/get-started/locally (recommended)
+torchvision>=0.9.0
+tqdm>=4.64.0
+ultralytics>=8.0.232
+# protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012
+
+# Logging ---------------------------------------------------------------------
+# tensorboard>=2.4.1
+# clearml>=1.2.0
+# comet
+
+# Plotting --------------------------------------------------------------------
+pandas>=1.1.4
+seaborn>=0.11.0
+
+# Export ----------------------------------------------------------------------
+# coremltools>=6.0  # CoreML export
+# onnx>=1.10.0  # ONNX export
+# onnx-simplifier>=0.4.1  # ONNX simplifier
+# nvidia-pyindex  # TensorRT export
+# nvidia-tensorrt  # TensorRT export
+# scikit-learn<=1.1.2  # CoreML quantization
+# tensorflow>=2.4.0,<=2.13.1  # TF exports (-cpu, -aarch64, -macos)
+# tensorflowjs>=3.9.0  # TF.js export
+# openvino-dev>=2023.0  # OpenVINO export
+
+# Deploy ----------------------------------------------------------------------
+setuptools>=65.5.1 # Snyk vulnerability fix
+# tritonclient[all]~=2.24.0
+
+# Extras ----------------------------------------------------------------------
+# ipython  # interactive notebook
+# mss  # screenshots
+# albumentations>=1.0.3
+# pycocotools>=2.0.6  # COCO mAP
+wheel>=0.38.0 # not directly required, pinned by Snyk to avoid a vulnerability
diff --git a/yolov5/segment/predict.py b/yolov5/segment/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..bea9bfe2f21c2af3d4099abf290aba68aca35012
--- /dev/null
+++ b/yolov5/segment/predict.py
@@ -0,0 +1,306 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
+
+Usage - sources:
+    $ python segment/predict.py --weights yolov5s-seg.pt --source 0                               # webcam
+                                                                  img.jpg                         # image
+                                                                  vid.mp4                         # video
+                                                                  screen                          # screenshot
+                                                                  path/                           # directory
+                                                                  list.txt                        # list of images
+                                                                  list.streams                    # list of streams
+                                                                  'path/*.jpg'                    # glob
+                                                                  'https://youtu.be/LNwODJXcvt4'  # YouTube
+                                                                  'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python segment/predict.py --weights yolov5s-seg.pt                 # PyTorch
+                                          yolov5s-seg.torchscript        # TorchScript
+                                          yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                          yolov5s-seg_openvino_model     # OpenVINO
+                                          yolov5s-seg.engine             # TensorRT
+                                          yolov5s-seg.mlmodel            # CoreML (macOS-only)
+                                          yolov5s-seg_saved_model        # TensorFlow SavedModel
+                                          yolov5s-seg.pb                 # TensorFlow GraphDef
+                                          yolov5s-seg.tflite             # TensorFlow Lite
+                                          yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
+                                          yolov5s-seg_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from ultralytics.utils.plotting import Annotator, colors, save_one_box
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (
+    LOGGER,
+    Profile,
+    check_file,
+    check_img_size,
+    check_imshow,
+    check_requirements,
+    colorstr,
+    cv2,
+    increment_path,
+    non_max_suppression,
+    print_args,
+    scale_boxes,
+    scale_segments,
+    strip_optimizer,
+)
+from utils.segment.general import masks2segments, process_mask, process_mask_native
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    weights=ROOT / "yolov5s-seg.pt",  # model.pt path(s)
+    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
+    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
+    imgsz=(640, 640),  # inference size (height, width)
+    conf_thres=0.25,  # confidence threshold
+    iou_thres=0.45,  # NMS IOU threshold
+    max_det=1000,  # maximum detections per image
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    view_img=False,  # show results
+    save_txt=False,  # save results to *.txt
+    save_conf=False,  # save confidences in --save-txt labels
+    save_crop=False,  # save cropped prediction boxes
+    nosave=False,  # do not save images/videos
+    classes=None,  # filter by class: --class 0, or --class 0 2 3
+    agnostic_nms=False,  # class-agnostic NMS
+    augment=False,  # augmented inference
+    visualize=False,  # visualize features
+    update=False,  # update all models
+    project=ROOT / "runs/predict-seg",  # save results to project/name
+    name="exp",  # save results to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    line_thickness=3,  # bounding box thickness (pixels)
+    hide_labels=False,  # hide labels
+    hide_conf=False,  # hide confidences
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    vid_stride=1,  # video frame-rate stride
+    retina_masks=False,
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith(".txt")  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
+    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
+    screenshot = source.lower().startswith("screen")
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.from_numpy(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+            pred, proto = model(im, augment=augment, visualize=visualize)[:2]
+
+        # NMS
+        with dt[2]:
+            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
+
+        # Second-stage classifier (optional)
+        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+        # Process predictions
+        for i, det in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f"{i}: "
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt
+            s += "%gx%g " % im.shape[2:]  # print string
+            imc = im0.copy() if save_crop else im0  # for save_crop
+            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+            if len(det):
+                if retina_masks:
+                    # scale bbox first the crop masks
+                    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size
+                    masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2])  # HWC
+                else:
+                    masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True)  # HWC
+                    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size
+
+                # Segments
+                if save_txt:
+                    segments = [
+                        scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
+                        for x in reversed(masks2segments(masks))
+                    ]
+
+                # Print results
+                for c in det[:, 5].unique():
+                    n = (det[:, 5] == c).sum()  # detections per class
+                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
+
+                # Mask plotting
+                annotator.masks(
+                    masks,
+                    colors=[colors(x, True) for x in det[:, 5]],
+                    im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous()
+                    / 255
+                    if retina_masks
+                    else im[i],
+                )
+
+                # Write results
+                for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
+                    if save_txt:  # Write to file
+                        seg = segments[j].reshape(-1)  # (n,2) to (n*2)
+                        line = (cls, *seg, conf) if save_conf else (cls, *seg)  # label format
+                        with open(f"{txt_path}.txt", "a") as f:
+                            f.write(("%g " * len(line)).rstrip() % line + "\n")
+
+                    if save_img or save_crop or view_img:  # Add bbox to image
+                        c = int(cls)  # integer class
+                        label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
+                        annotator.box_label(xyxy, label, color=colors(c, True))
+                        # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
+                    if save_crop:
+                        save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == "Linux" and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                if cv2.waitKey(1) == ord("q"):  # 1 millisecond
+                    exit()
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == "image":
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+    # Print results
+    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
+    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    """Parses command-line options for YOLOv5 inference including model paths, data sources, inference settings, and
+    output preferences.
+    """
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)")
+    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
+    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
+    parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
+    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
+    parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--view-img", action="store_true", help="show results")
+    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
+    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
+    parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
+    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
+    parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
+    parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
+    parser.add_argument("--augment", action="store_true", help="augmented inference")
+    parser.add_argument("--visualize", action="store_true", help="visualize features")
+    parser.add_argument("--update", action="store_true", help="update all models")
+    parser.add_argument("--project", default=ROOT / "runs/predict-seg", help="save results to project/name")
+    parser.add_argument("--name", default="exp", help="save results to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
+    parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
+    parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
+    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
+    parser.add_argument("--retina-masks", action="store_true", help="whether to plot masks in native resolution")
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes YOLOv5 model inference with given options, checking for requirements before launching."""
+    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/segment/train.py b/yolov5/segment/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..5a6e9afb8ec0f3e59d2cf68d5e6d26bd959ab6f8
--- /dev/null
+++ b/yolov5/segment/train.py
@@ -0,0 +1,760 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5
+release.
+
+Usage - Single-GPU training:
+    $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640  # from pretrained (recommended)
+    $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640  # from scratch
+
+Usage - Multi-GPU DDP training:
+    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
+
+Models:     https://github.com/ultralytics/yolov5/tree/master/models
+Datasets:   https://github.com/ultralytics/yolov5/tree/master/data
+Tutorial:   https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
+"""
+
+import argparse
+import math
+import os
+import random
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import segment.val as validate  # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.downloads import attempt_download, is_url
+from utils.general import (
+    LOGGER,
+    TQDM_BAR_FORMAT,
+    check_amp,
+    check_dataset,
+    check_file,
+    check_git_info,
+    check_git_status,
+    check_img_size,
+    check_requirements,
+    check_suffix,
+    check_yaml,
+    colorstr,
+    get_latest_run,
+    increment_path,
+    init_seeds,
+    intersect_dicts,
+    labels_to_class_weights,
+    labels_to_image_weights,
+    one_cycle,
+    print_args,
+    print_mutation,
+    strip_optimizer,
+    yaml_save,
+)
+from utils.loggers import GenericLogger
+from utils.plots import plot_evolve, plot_labels
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.loss import ComputeLoss
+from utils.segment.metrics import KEYS, fitness
+from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
+from utils.torch_utils import (
+    EarlyStopping,
+    ModelEMA,
+    de_parallel,
+    select_device,
+    smart_DDP,
+    smart_optimizer,
+    smart_resume,
+    torch_distributed_zero_first,
+)
+
+LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv("RANK", -1))
+WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
+GIT_INFO = check_git_info()
+
+
+def train(hyp, opt, device, callbacks):
+    """
+    Trains the YOLOv5 model on a dataset, managing hyperparameters, model optimization, logging, and validation.
+
+    `hyp` is path/to/hyp.yaml or hyp dictionary.
+    """
+    (
+        save_dir,
+        epochs,
+        batch_size,
+        weights,
+        single_cls,
+        evolve,
+        data,
+        cfg,
+        resume,
+        noval,
+        nosave,
+        workers,
+        freeze,
+        mask_ratio,
+    ) = (
+        Path(opt.save_dir),
+        opt.epochs,
+        opt.batch_size,
+        opt.weights,
+        opt.single_cls,
+        opt.evolve,
+        opt.data,
+        opt.cfg,
+        opt.resume,
+        opt.noval,
+        opt.nosave,
+        opt.workers,
+        opt.freeze,
+        opt.mask_ratio,
+    )
+    # callbacks.run('on_pretrain_routine_start')
+
+    # Directories
+    w = save_dir / "weights"  # weights dir
+    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = w / "last.pt", w / "best.pt"
+
+    # Hyperparameters
+    if isinstance(hyp, str):
+        with open(hyp, errors="ignore") as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+    LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
+    opt.hyp = hyp.copy()  # for saving hyps to checkpoints
+
+    # Save run settings
+    if not evolve:
+        yaml_save(save_dir / "hyp.yaml", hyp)
+        yaml_save(save_dir / "opt.yaml", vars(opt))
+
+    # Loggers
+    data_dict = None
+    if RANK in {-1, 0}:
+        logger = GenericLogger(opt=opt, console_logger=LOGGER)
+
+    # Config
+    plots = not evolve and not opt.noplots  # create plots
+    overlap = not opt.no_overlap
+    cuda = device.type != "cpu"
+    init_seeds(opt.seed + 1 + RANK, deterministic=True)
+    with torch_distributed_zero_first(LOCAL_RANK):
+        data_dict = data_dict or check_dataset(data)  # check if None
+    train_path, val_path = data_dict["train"], data_dict["val"]
+    nc = 1 if single_cls else int(data_dict["nc"])  # number of classes
+    names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"]  # class names
+    is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt")  # COCO dataset
+
+    # Model
+    check_suffix(weights, ".pt")  # check weights
+    pretrained = weights.endswith(".pt")
+    if pretrained:
+        with torch_distributed_zero_first(LOCAL_RANK):
+            weights = attempt_download(weights)  # download if not found locally
+        ckpt = torch.load(weights, map_location="cpu")  # load checkpoint to CPU to avoid CUDA memory leak
+        model = SegmentationModel(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)
+        exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []  # exclude keys
+        csd = ckpt["model"].float().state_dict()  # checkpoint state_dict as FP32
+        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
+        model.load_state_dict(csd, strict=False)  # load
+        LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}")  # report
+    else:
+        model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create
+    amp = check_amp(model)  # check AMP
+
+    # Freeze
+    freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
+    for k, v in model.named_parameters():
+        v.requires_grad = True  # train all layers
+        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
+        if any(x in k for x in freeze):
+            LOGGER.info(f"freezing {k}")
+            v.requires_grad = False
+
+    # Image size
+    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
+    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
+
+    # Batch size
+    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
+        batch_size = check_train_batch_size(model, imgsz, amp)
+        logger.update_params({"batch_size": batch_size})
+        # loggers.on_params_update({"batch_size": batch_size})
+
+    # Optimizer
+    nbs = 64  # nominal batch size
+    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
+    hyp["weight_decay"] *= batch_size * accumulate / nbs  # scale weight_decay
+    optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
+
+    # Scheduler
+    if opt.cos_lr:
+        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
+    else:
+        lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"]  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+    # Resume
+    best_fitness, start_epoch = 0.0, 0
+    if pretrained:
+        if resume:
+            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+        del ckpt, csd
+
+    # DP mode
+    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+        LOGGER.warning(
+            "WARNING ⚠ī¸ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
+            "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
+        )
+        model = torch.nn.DataParallel(model)
+
+    # SyncBatchNorm
+    if opt.sync_bn and cuda and RANK != -1:
+        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+        LOGGER.info("Using SyncBatchNorm()")
+
+    # Trainloader
+    train_loader, dataset = create_dataloader(
+        train_path,
+        imgsz,
+        batch_size // WORLD_SIZE,
+        gs,
+        single_cls,
+        hyp=hyp,
+        augment=True,
+        cache=None if opt.cache == "val" else opt.cache,
+        rect=opt.rect,
+        rank=LOCAL_RANK,
+        workers=workers,
+        image_weights=opt.image_weights,
+        quad=opt.quad,
+        prefix=colorstr("train: "),
+        shuffle=True,
+        mask_downsample_ratio=mask_ratio,
+        overlap_mask=overlap,
+    )
+    labels = np.concatenate(dataset.labels, 0)
+    mlc = int(labels[:, 0].max())  # max label class
+    assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
+
+    # Process 0
+    if RANK in {-1, 0}:
+        val_loader = create_dataloader(
+            val_path,
+            imgsz,
+            batch_size // WORLD_SIZE * 2,
+            gs,
+            single_cls,
+            hyp=hyp,
+            cache=None if noval else opt.cache,
+            rect=True,
+            rank=-1,
+            workers=workers * 2,
+            pad=0.5,
+            mask_downsample_ratio=mask_ratio,
+            overlap_mask=overlap,
+            prefix=colorstr("val: "),
+        )[0]
+
+        if not resume:
+            if not opt.noautoanchor:
+                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)  # run AutoAnchor
+            model.half().float()  # pre-reduce anchor precision
+
+            if plots:
+                plot_labels(labels, names, save_dir)
+        # callbacks.run('on_pretrain_routine_end', labels, names)
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = smart_DDP(model)
+
+    # Model attributes
+    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
+    hyp["box"] *= 3 / nl  # scale to layers
+    hyp["cls"] *= nc / 80 * 3 / nl  # scale to classes and layers
+    hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
+    hyp["label_smoothing"] = opt.label_smoothing
+    model.nc = nc  # attach number of classes to model
+    model.hyp = hyp  # attach hyperparameters to model
+    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
+    model.names = names
+
+    # Start training
+    t0 = time.time()
+    nb = len(train_loader)  # number of batches
+    nw = max(round(hyp["warmup_epochs"] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
+    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
+    last_opt_step = -1
+    maps = np.zeros(nc)  # mAP per class
+    results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+    scheduler.last_epoch = start_epoch - 1  # do not move
+    scaler = torch.cuda.amp.GradScaler(enabled=amp)
+    stopper, stop = EarlyStopping(patience=opt.patience), False
+    compute_loss = ComputeLoss(model, overlap=overlap)  # init loss class
+    # callbacks.run('on_train_start')
+    LOGGER.info(
+        f'Image sizes {imgsz} train, {imgsz} val\n'
+        f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+        f"Logging results to {colorstr('bold', save_dir)}\n"
+        f'Starting training for {epochs} epochs...'
+    )
+    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
+        # callbacks.run('on_train_epoch_start')
+        model.train()
+
+        # Update image weights (optional, single-GPU only)
+        if opt.image_weights:
+            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
+            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
+            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
+
+        # Update mosaic border (optional)
+        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
+
+        mloss = torch.zeros(4, device=device)  # mean losses
+        if RANK != -1:
+            train_loader.sampler.set_epoch(epoch)
+        pbar = enumerate(train_loader)
+        LOGGER.info(
+            ("\n" + "%11s" * 8)
+            % ("Epoch", "GPU_mem", "box_loss", "seg_loss", "obj_loss", "cls_loss", "Instances", "Size")
+        )
+        if RANK in {-1, 0}:
+            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
+        optimizer.zero_grad()
+        for i, (imgs, targets, paths, _, masks) in pbar:  # batch ------------------------------------------------------
+            # callbacks.run('on_train_batch_start')
+            ni = i + nb * epoch  # number integrated batches (since train start)
+            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
+
+            # Warmup
+            if ni <= nw:
+                xi = [0, nw]  # x interp
+                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
+                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+                for j, x in enumerate(optimizer.param_groups):
+                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+                    x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
+                    if "momentum" in x:
+                        x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
+
+            # Multi-scale
+            if opt.multi_scale:
+                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
+                sf = sz / max(imgs.shape[2:])  # scale factor
+                if sf != 1:
+                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
+                    imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
+
+            # Forward
+            with torch.cuda.amp.autocast(amp):
+                pred = model(imgs)  # forward
+                loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
+                if RANK != -1:
+                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
+                if opt.quad:
+                    loss *= 4.0
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+            if ni - last_opt_step >= accumulate:
+                scaler.unscale_(optimizer)  # unscale gradients
+                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
+                scaler.step(optimizer)  # optimizer.step
+                scaler.update()
+                optimizer.zero_grad()
+                if ema:
+                    ema.update(model)
+                last_opt_step = ni
+
+            # Log
+            if RANK in {-1, 0}:
+                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
+                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)
+                pbar.set_description(
+                    ("%11s" * 2 + "%11.4g" * 6)
+                    % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
+                )
+                # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
+                # if callbacks.stop_training:
+                #    return
+
+                # Mosaic plots
+                if plots:
+                    if ni < 3:
+                        plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg")
+                    if ni == 10:
+                        files = sorted(save_dir.glob("train*.jpg"))
+                        logger.log_images(files, "Mosaics", epoch)
+            # end batch ------------------------------------------------------------------------------------------------
+
+        # Scheduler
+        lr = [x["lr"] for x in optimizer.param_groups]  # for loggers
+        scheduler.step()
+
+        if RANK in {-1, 0}:
+            # mAP
+            # callbacks.run('on_train_epoch_end', epoch=epoch)
+            ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
+            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+            if not noval or final_epoch:  # Calculate mAP
+                results, maps, _ = validate.run(
+                    data_dict,
+                    batch_size=batch_size // WORLD_SIZE * 2,
+                    imgsz=imgsz,
+                    half=amp,
+                    model=ema.ema,
+                    single_cls=single_cls,
+                    dataloader=val_loader,
+                    save_dir=save_dir,
+                    plots=False,
+                    callbacks=callbacks,
+                    compute_loss=compute_loss,
+                    mask_downsample_ratio=mask_ratio,
+                    overlap=overlap,
+                )
+
+            # Update best mAP
+            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
+            if fi > best_fitness:
+                best_fitness = fi
+            log_vals = list(mloss) + list(results) + lr
+            # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+            # Log val metrics and media
+            metrics_dict = dict(zip(KEYS, log_vals))
+            logger.log_metrics(metrics_dict, epoch)
+
+            # Save model
+            if (not nosave) or (final_epoch and not evolve):  # if save
+                ckpt = {
+                    "epoch": epoch,
+                    "best_fitness": best_fitness,
+                    "model": deepcopy(de_parallel(model)).half(),
+                    "ema": deepcopy(ema.ema).half(),
+                    "updates": ema.updates,
+                    "optimizer": optimizer.state_dict(),
+                    "opt": vars(opt),
+                    "git": GIT_INFO,  # {remote, branch, commit} if a git repo
+                    "date": datetime.now().isoformat(),
+                }
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fi:
+                    torch.save(ckpt, best)
+                if opt.save_period > 0 and epoch % opt.save_period == 0:
+                    torch.save(ckpt, w / f"epoch{epoch}.pt")
+                    logger.log_model(w / f"epoch{epoch}.pt")
+                del ckpt
+                # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+        # EarlyStopping
+        if RANK != -1:  # if DDP training
+            broadcast_list = [stop if RANK == 0 else None]
+            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
+            if RANK != 0:
+                stop = broadcast_list[0]
+        if stop:
+            break  # must break all DDP ranks
+
+        # end epoch ----------------------------------------------------------------------------------------------------
+    # end training -----------------------------------------------------------------------------------------------------
+    if RANK in {-1, 0}:
+        LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
+        for f in last, best:
+            if f.exists():
+                strip_optimizer(f)  # strip optimizers
+                if f is best:
+                    LOGGER.info(f"\nValidating {f}...")
+                    results, _, _ = validate.run(
+                        data_dict,
+                        batch_size=batch_size // WORLD_SIZE * 2,
+                        imgsz=imgsz,
+                        model=attempt_load(f, device).half(),
+                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
+                        single_cls=single_cls,
+                        dataloader=val_loader,
+                        save_dir=save_dir,
+                        save_json=is_coco,
+                        verbose=True,
+                        plots=plots,
+                        callbacks=callbacks,
+                        compute_loss=compute_loss,
+                        mask_downsample_ratio=mask_ratio,
+                        overlap=overlap,
+                    )  # val best model with plots
+                    if is_coco:
+                        # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+                        metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
+                        logger.log_metrics(metrics_dict, epoch)
+
+        # callbacks.run('on_train_end', last, best, epoch, results)
+        # on train end callback using genericLogger
+        logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
+        if not opt.evolve:
+            logger.log_model(best, epoch)
+        if plots:
+            plot_results_with_masks(file=save_dir / "results.csv")  # save results.png
+            files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
+            files = [(save_dir / f) for f in files if (save_dir / f).exists()]  # filter
+            LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+            logger.log_images(files, "Results", epoch + 1)
+            logger.log_images(sorted(save_dir.glob("val*.jpg")), "Validation", epoch + 1)
+    torch.cuda.empty_cache()
+    return results
+
+
+def parse_opt(known=False):
+    """
+    Parses command line arguments for training configurations, returning parsed arguments.
+
+    Supports both known and unknown args.
+    """
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s-seg.pt", help="initial weights path")
+    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path")
+    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
+    parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
+    parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
+    parser.add_argument("--rect", action="store_true", help="rectangular training")
+    parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
+    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
+    parser.add_argument("--noval", action="store_true", help="only validate final epoch")
+    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
+    parser.add_argument("--noplots", action="store_true", help="save no plot files")
+    parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
+    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
+    parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
+    parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
+    parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
+    parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
+    parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--project", default=ROOT / "runs/train-seg", help="save to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--quad", action="store_true", help="quad dataloader")
+    parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
+    parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
+    parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
+    parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
+    parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
+    parser.add_argument("--seed", type=int, default=0, help="Global training seed")
+    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
+
+    # Instance Segmentation Args
+    parser.add_argument("--mask-ratio", type=int, default=4, help="Downsample the truth masks to saving memory")
+    parser.add_argument("--no-overlap", action="store_true", help="Overlap masks train faster at slightly less mAP")
+
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+    """Initializes training or evolution of YOLOv5 models based on provided configuration and options."""
+    if RANK in {-1, 0}:
+        print_args(vars(opt))
+        check_git_status()
+        check_requirements(ROOT / "requirements.txt")
+
+    # Resume
+    if opt.resume and not opt.evolve:  # resume from specified or most recent last.pt
+        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+        opt_yaml = last.parent.parent / "opt.yaml"  # train options yaml
+        opt_data = opt.data  # original dataset
+        if opt_yaml.is_file():
+            with open(opt_yaml, errors="ignore") as f:
+                d = yaml.safe_load(f)
+        else:
+            d = torch.load(last, map_location="cpu")["opt"]
+        opt = argparse.Namespace(**d)  # replace
+        opt.cfg, opt.weights, opt.resume = "", str(last), True  # reinstate
+        if is_url(opt_data):
+            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
+    else:
+        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
+            check_file(opt.data),
+            check_yaml(opt.cfg),
+            check_yaml(opt.hyp),
+            str(opt.weights),
+            str(opt.project),
+        )  # checks
+        assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
+        if opt.evolve:
+            if opt.project == str(ROOT / "runs/train-seg"):  # if default project name, rename to runs/evolve-seg
+                opt.project = str(ROOT / "runs/evolve-seg")
+            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
+        if opt.name == "cfg":
+            opt.name = Path(opt.cfg).stem  # use model.yaml as name
+        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
+        assert not opt.image_weights, f"--image-weights {msg}"
+        assert not opt.evolve, f"--evolve {msg}"
+        assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
+        assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
+        assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device("cuda", LOCAL_RANK)
+        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+    # Train
+    if not opt.evolve:
+        train(opt.hyp, opt, device, callbacks)
+
+    # Evolve hyperparameters (optional)
+    else:
+        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+        meta = {
+            "lr0": (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
+            "lrf": (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
+            "momentum": (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
+            "weight_decay": (1, 0.0, 0.001),  # optimizer weight decay
+            "warmup_epochs": (1, 0.0, 5.0),  # warmup epochs (fractions ok)
+            "warmup_momentum": (1, 0.0, 0.95),  # warmup initial momentum
+            "warmup_bias_lr": (1, 0.0, 0.2),  # warmup initial bias lr
+            "box": (1, 0.02, 0.2),  # box loss gain
+            "cls": (1, 0.2, 4.0),  # cls loss gain
+            "cls_pw": (1, 0.5, 2.0),  # cls BCELoss positive_weight
+            "obj": (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
+            "obj_pw": (1, 0.5, 2.0),  # obj BCELoss positive_weight
+            "iou_t": (0, 0.1, 0.7),  # IoU training threshold
+            "anchor_t": (1, 2.0, 8.0),  # anchor-multiple threshold
+            "anchors": (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
+            "fl_gamma": (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
+            "hsv_h": (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
+            "hsv_s": (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
+            "hsv_v": (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
+            "degrees": (1, 0.0, 45.0),  # image rotation (+/- deg)
+            "translate": (1, 0.0, 0.9),  # image translation (+/- fraction)
+            "scale": (1, 0.0, 0.9),  # image scale (+/- gain)
+            "shear": (1, 0.0, 10.0),  # image shear (+/- deg)
+            "perspective": (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
+            "flipud": (1, 0.0, 1.0),  # image flip up-down (probability)
+            "fliplr": (0, 0.0, 1.0),  # image flip left-right (probability)
+            "mosaic": (1, 0.0, 1.0),  # image mixup (probability)
+            "mixup": (1, 0.0, 1.0),  # image mixup (probability)
+            "copy_paste": (1, 0.0, 1.0),
+        }  # segment copy-paste (probability)
+
+        with open(opt.hyp, errors="ignore") as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+            if "anchors" not in hyp:  # anchors commented in hyp.yaml
+                hyp["anchors"] = 3
+        if opt.noautoanchor:
+            del hyp["anchors"], meta["anchors"]
+        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
+        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
+        evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
+        if opt.bucket:
+            # download evolve.csv if exists
+            subprocess.run(
+                [
+                    "gsutil",
+                    "cp",
+                    f"gs://{opt.bucket}/evolve.csv",
+                    str(evolve_csv),
+                ]
+            )
+
+        for _ in range(opt.evolve):  # generations to evolve
+            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
+                # Select parent(s)
+                parent = "single"  # parent selection method: 'single' or 'weighted'
+                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
+                n = min(5, len(x))  # number of previous results to consider
+                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
+                w = fitness(x) - fitness(x).min() + 1e-6  # weights (sum > 0)
+                if parent == "single" or len(x) == 1:
+                    # x = x[random.randint(0, n - 1)]  # random selection
+                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
+                elif parent == "weighted":
+                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
+
+                # Mutate
+                mp, s = 0.8, 0.2  # mutation probability, sigma
+                npr = np.random
+                npr.seed(int(time.time()))
+                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
+                ng = len(meta)
+                v = np.ones(ng)
+                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
+                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
+                    hyp[k] = float(x[i + 12] * v[i])  # mutate
+
+            # Constrain to limits
+            for k, v in meta.items():
+                hyp[k] = max(hyp[k], v[1])  # lower limit
+                hyp[k] = min(hyp[k], v[2])  # upper limit
+                hyp[k] = round(hyp[k], 5)  # significant digits
+
+            # Train mutation
+            results = train(hyp.copy(), opt, device, callbacks)
+            callbacks = Callbacks()
+            # Write mutation results
+            print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket)
+
+        # Plot results
+        plot_evolve(evolve_csv)
+        LOGGER.info(
+            f'Hyperparameter evolution finished {opt.evolve} generations\n'
+            f"Results saved to {colorstr('bold', save_dir)}\n"
+            f'Usage example: $ python train.py --hyp {evolve_yaml}'
+        )
+
+
+def run(**kwargs):
+    """
+    Executes YOLOv5 training with given parameters, altering options programmatically; returns updated options.
+
+    Example: mport train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
+    """
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/segment/tutorial.ipynb b/yolov5/segment/tutorial.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0e6091869b7c93f902528ee3ef849bd0577e06e2
--- /dev/null
+++ b/yolov5/segment/tutorial.ipynb
@@ -0,0 +1,595 @@
+{
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<div align=\"center\">\n",
+        "\n",
+        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
+        "\n",
+        "\n",
+        "<br>\n",
+        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
+        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
+        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "<br>\n",
+        "\n",
+        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
+        "\n",
+        "</div>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "wbvMlHd_QwMG",
+        "outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
+          ]
+        }
+      ],
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt comet_ml  # install\n",
+        "\n",
+        "import torch\n",
+        "import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Predict\n",
+        "\n",
+        "`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python segment/predict.py --source 0  # webcam\n",
+        "                             img.jpg  # image \n",
+        "                             vid.mp4  # video\n",
+        "                             screen  # screenshot\n",
+        "                             path/  # directory\n",
+        "                             'path/*.jpg'  # glob\n",
+        "                             'https://youtu.be/LNwODJXcvt4'  # YouTube\n",
+        "                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "zR9ZbuQCH7FX",
+        "outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n",
+            "100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n",
+            "Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n",
+        "#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/199030123-08c72f8d-6871-4116-8ed3-c373642cf28e.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "WQPtK1QYVaD_",
+        "outputId": "9d751d8c-bee8-4339-cf30-9854ca530449"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip  ...\n",
+            "Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
+            "######################################################################## 100.0%\n",
+            "######################################################################## 100.0%\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Download COCO val\n",
+        "!bash data/scripts/get_coco.sh --val --segments  # download (780M - 5000 images)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "X58w8JLpMnjH",
+        "outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 157/157 [01:54<00:00,  1.37it/s]\n",
+            "                   all       5000      36335      0.673      0.517      0.566      0.373      0.672       0.49      0.532      0.319\n",
+            "Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Validate YOLOv5s-seg on COCO val\n",
+        "!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
+        "- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n",
+        "<br><br>\n",
+        "\n",
+        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
+        "\n",
+        "## Train on Custom Data with Roboflow 🌟 NEW\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
+        "\n",
+        "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n",
+        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n",
+        "<br>\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://robflow-public-assets.s3.amazonaws.com/how-to-train-yolov5-segmentation-annotation.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "i3oKtE4g-aNn"
+      },
+      "outputs": [],
+      "source": [
+        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
+        "logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
+        "\n",
+        "if logger == 'Comet':\n",
+        "  %pip install -q comet_ml\n",
+        "  import comet_ml; comet_ml.init()\n",
+        "elif logger == 'ClearML':\n",
+        "  %pip install -q clearml\n",
+        "  import clearml; clearml.browser_login()\n",
+        "elif logger == 'TensorBoard':\n",
+        "  %load_ext tensorboard\n",
+        "  %tensorboard --logdir runs/train"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "1NcFxRcFdJ_O",
+        "outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
+            "\n",
+            "Dataset not found ⚠ī¸, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
+            "Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
+            "100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n",
+            "Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
+            "\n",
+            "                 from  n    params  module                                  arguments                     \n",
+            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
+            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
+            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
+            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
+            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
+            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
+            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
+            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
+            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
+            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
+            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
+            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
+            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
+            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
+            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
+            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
+            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
+            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
+            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
+            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
+            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
+            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
+            " 24      [17, 20, 23]  1    615133  models.yolo.Segment                     [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n",
+            "Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n",
+            "\n",
+            "Transferred 367/367 items from yolov5s-seg.pt\n",
+            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]\n",
+            "\n",
+            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
+            "Plotting labels to runs/train-seg/exp/labels.jpg... \n",
+            "Image sizes 640 train, 640 val\n",
+            "Using 2 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
+            "Starting training for 3 epochs...\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        0/2      4.92G     0.0417    0.04646    0.06066    0.02126        192        640: 100% 8/8 [00:08<00:00,  1.10s/it]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.81it/s]\n",
+            "                   all        128        929      0.737      0.649      0.715      0.492      0.719      0.617      0.658      0.408\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        1/2      6.29G    0.04157    0.04503    0.05772    0.01777        208        640: 100% 8/8 [00:09<00:00,  1.21s/it]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.87it/s]\n",
+            "                   all        128        929      0.756      0.674      0.738      0.506      0.725       0.64       0.68      0.422\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        2/2      6.29G     0.0425    0.04793    0.06784    0.01863        161        640: 100% 8/8 [00:03<00:00,  2.02it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.88it/s]\n",
+            "                   all        128        929      0.736      0.694      0.747      0.522      0.769      0.622      0.683      0.427\n",
+            "\n",
+            "3 epochs completed in 0.009 hours.\n",
+            "Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
+            "Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
+            "\n",
+            "Validating runs/train-seg/exp/weights/best.pt...\n",
+            "Fusing layers... \n",
+            "Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:06<00:00,  1.59s/it]\n",
+            "                   all        128        929      0.738      0.694      0.746      0.522      0.759      0.625      0.682      0.426\n",
+            "                person        128        254      0.845      0.756      0.836       0.55      0.861      0.669      0.759      0.407\n",
+            "               bicycle        128          6      0.475      0.333      0.549      0.341      0.711      0.333      0.526      0.322\n",
+            "                   car        128         46      0.612      0.565      0.539      0.257      0.555      0.435      0.477      0.171\n",
+            "            motorcycle        128          5       0.73        0.8      0.752      0.571      0.747        0.8      0.752       0.42\n",
+            "              airplane        128          6          1      0.943      0.995      0.732       0.92      0.833      0.839      0.555\n",
+            "                   bus        128          7      0.677      0.714      0.722      0.653      0.711      0.714      0.722      0.593\n",
+            "                 train        128          3          1      0.951      0.995      0.551          1      0.884      0.995      0.781\n",
+            "                 truck        128         12      0.555      0.417      0.457      0.285      0.624      0.417      0.397      0.277\n",
+            "                  boat        128          6      0.624        0.5      0.584      0.186          1      0.326      0.412      0.133\n",
+            "         traffic light        128         14      0.513      0.302      0.411      0.247      0.435      0.214      0.376      0.251\n",
+            "             stop sign        128          2      0.824          1      0.995      0.796      0.906          1      0.995      0.747\n",
+            "                 bench        128          9       0.75      0.667      0.763      0.367      0.724      0.585      0.698      0.209\n",
+            "                  bird        128         16      0.961          1      0.995      0.686      0.918      0.938       0.91      0.525\n",
+            "                   cat        128          4      0.771      0.857      0.945      0.752       0.76        0.8      0.945      0.728\n",
+            "                   dog        128          9      0.987      0.778      0.963      0.681          1      0.705       0.89      0.574\n",
+            "                 horse        128          2      0.703          1      0.995      0.697      0.759          1      0.995      0.249\n",
+            "              elephant        128         17      0.916      0.882       0.93      0.691      0.811      0.765      0.829      0.537\n",
+            "                  bear        128          1      0.664          1      0.995      0.995      0.701          1      0.995      0.895\n",
+            "                 zebra        128          4      0.864          1      0.995      0.921      0.879          1      0.995      0.804\n",
+            "               giraffe        128          9      0.883      0.889       0.94      0.683      0.845      0.778       0.78      0.463\n",
+            "              backpack        128          6          1       0.59      0.701      0.372          1      0.474       0.52      0.252\n",
+            "              umbrella        128         18      0.654      0.839      0.887       0.52      0.517      0.556      0.427      0.229\n",
+            "               handbag        128         19       0.54      0.211      0.408      0.221      0.796      0.206      0.396      0.196\n",
+            "                   tie        128          7      0.864      0.857      0.857      0.577      0.925      0.857      0.857      0.534\n",
+            "              suitcase        128          4      0.716          1      0.945      0.647      0.767          1      0.945      0.634\n",
+            "               frisbee        128          5      0.708        0.8      0.761      0.643      0.737        0.8      0.761      0.501\n",
+            "                  skis        128          1      0.691          1      0.995      0.796      0.761          1      0.995      0.199\n",
+            "             snowboard        128          7      0.918      0.857      0.904      0.604       0.32      0.286      0.235      0.137\n",
+            "           sports ball        128          6      0.902      0.667      0.701      0.466      0.727        0.5      0.497      0.471\n",
+            "                  kite        128         10      0.586        0.4      0.511      0.231      0.663      0.394      0.417      0.139\n",
+            "          baseball bat        128          4      0.359        0.5      0.401      0.169      0.631        0.5      0.526      0.133\n",
+            "        baseball glove        128          7          1      0.519       0.58      0.327      0.687      0.286      0.455      0.328\n",
+            "            skateboard        128          5      0.729        0.8      0.862      0.631      0.599        0.6      0.604      0.379\n",
+            "         tennis racket        128          7       0.57      0.714      0.645      0.448      0.608      0.714      0.645      0.412\n",
+            "                bottle        128         18      0.469      0.393      0.537      0.357      0.661      0.389      0.543      0.349\n",
+            "            wine glass        128         16      0.677      0.938      0.866      0.441       0.53      0.625       0.67      0.334\n",
+            "                   cup        128         36      0.777      0.722      0.812      0.466      0.725      0.583      0.762      0.467\n",
+            "                  fork        128          6      0.948      0.333      0.425       0.27      0.527      0.167       0.18      0.102\n",
+            "                 knife        128         16      0.757      0.587      0.669      0.458       0.79        0.5      0.552       0.34\n",
+            "                 spoon        128         22       0.74      0.364      0.559      0.269      0.925      0.364      0.513      0.213\n",
+            "                  bowl        128         28      0.766      0.714      0.725      0.559      0.803      0.584      0.665      0.353\n",
+            "                banana        128          1      0.408          1      0.995      0.398      0.539          1      0.995      0.497\n",
+            "              sandwich        128          2          1          0      0.695      0.536          1          0      0.498      0.448\n",
+            "                orange        128          4      0.467          1      0.995      0.693      0.518          1      0.995      0.663\n",
+            "              broccoli        128         11      0.462      0.455      0.383      0.259      0.548      0.455      0.384      0.256\n",
+            "                carrot        128         24      0.631      0.875       0.77      0.533      0.757      0.909      0.853      0.499\n",
+            "               hot dog        128          2      0.555          1      0.995      0.995      0.578          1      0.995      0.796\n",
+            "                 pizza        128          5       0.89        0.8      0.962      0.796          1      0.778      0.962      0.766\n",
+            "                 donut        128         14      0.695          1      0.893      0.772      0.704          1      0.893      0.696\n",
+            "                  cake        128          4      0.826          1      0.995       0.92      0.862          1      0.995      0.846\n",
+            "                 chair        128         35       0.53      0.571      0.613      0.336       0.67        0.6      0.538      0.271\n",
+            "                 couch        128          6      0.972      0.667      0.833      0.627          1       0.62      0.696      0.394\n",
+            "          potted plant        128         14        0.7      0.857      0.883      0.552      0.836      0.857      0.883      0.473\n",
+            "                   bed        128          3      0.979      0.667       0.83      0.366          1          0       0.83      0.373\n",
+            "          dining table        128         13      0.775      0.308      0.505      0.364      0.644      0.231       0.25     0.0804\n",
+            "                toilet        128          2      0.836          1      0.995      0.846      0.887          1      0.995      0.797\n",
+            "                    tv        128          2        0.6          1      0.995      0.846      0.655          1      0.995      0.896\n",
+            "                laptop        128          3      0.822      0.333      0.445      0.307          1          0      0.392       0.12\n",
+            "                 mouse        128          2          1          0          0          0          1          0          0          0\n",
+            "                remote        128          8      0.745        0.5       0.62      0.459      0.821        0.5      0.624      0.449\n",
+            "            cell phone        128          8      0.686      0.375      0.502      0.272      0.488       0.25       0.28      0.132\n",
+            "             microwave        128          3      0.831          1      0.995      0.722      0.867          1      0.995      0.592\n",
+            "                  oven        128          5      0.439        0.4      0.435      0.294      0.823        0.6      0.645      0.418\n",
+            "                  sink        128          6      0.677        0.5      0.565      0.448      0.722        0.5       0.46      0.362\n",
+            "          refrigerator        128          5      0.533        0.8      0.783      0.524      0.558        0.8      0.783      0.527\n",
+            "                  book        128         29      0.732      0.379      0.423      0.196       0.69      0.207       0.38      0.131\n",
+            "                 clock        128          9      0.889      0.778      0.917      0.677      0.908      0.778      0.875      0.604\n",
+            "                  vase        128          2      0.375          1      0.995      0.995      0.455          1      0.995      0.796\n",
+            "              scissors        128          1          1          0     0.0166    0.00166          1          0          0          0\n",
+            "            teddy bear        128         21      0.813      0.829      0.841      0.457      0.826      0.678      0.786      0.422\n",
+            "            toothbrush        128          5      0.806          1      0.995      0.733      0.991          1      0.995      0.628\n",
+            "Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Train YOLOv5s on COCO128 for 3 epochs\n",
+        "!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "nWOsI5wJR1o3"
+      },
+      "source": [
+        "## Comet Logging and Visualization 🌟 NEW\n",
+        "\n",
+        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
+        "\n",
+        "Getting started is easy:\n",
+        "```shell\n",
+        "pip install comet_ml  # 1. install\n",
+        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
+        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
+        "```\n",
+        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
+        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
+        "\n",
+        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
+        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Lay2WsTjNJzP"
+      },
+      "source": [
+        "## ClearML Logging and Automation 🌟 NEW\n",
+        "\n",
+        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
+        "\n",
+        "- `pip install clearml`\n",
+        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
+        "\n",
+        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
+        "\n",
+        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
+        "\n",
+        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
+        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
+        "\n",
+        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
+        "\n",
+        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Additional content below."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "outputs": [],
+      "source": [
+        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
+        "import torch\n",
+        "\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg', force_reload=True, trust_repo=True)  # or yolov5n - yolov5x6 or custom\n",
+        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
+        "results = model(im)  # inference\n",
+        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
+      ]
+    }
+  ],
+  "metadata": {
+    "accelerator": "GPU",
+    "colab": {
+      "name": "YOLOv5 Segmentation Tutorial",
+      "provenance": [],
+      "toc_visible": true
+    },
+    "kernelspec": {
+      "display_name": "Python 3 (ipykernel)",
+      "language": "python",
+      "name": "python3"
+    },
+    "language_info": {
+      "codemirror_mode": {
+        "name": "ipython",
+        "version": 3
+      },
+      "file_extension": ".py",
+      "mimetype": "text/x-python",
+      "name": "python",
+      "nbconvert_exporter": "python",
+      "pygments_lexer": "ipython3",
+      "version": "3.7.12"
+    }
+  },
+  "nbformat": 4,
+  "nbformat_minor": 0
+}
diff --git a/yolov5/segment/val.py b/yolov5/segment/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..bafdb5dcec07e7bb16f8c57ea4caf4de9b422743
--- /dev/null
+++ b/yolov5/segment/val.py
@@ -0,0 +1,518 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Validate a trained YOLOv5 segment model on a segment dataset.
+
+Usage:
+    $ bash data/scripts/get_coco.sh --val --segments  # download COCO-segments val split (1G, 5000 images)
+    $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # validate COCO-segments
+
+Usage - formats:
+    $ python segment/val.py --weights yolov5s-seg.pt                 # PyTorch
+                                      yolov5s-seg.torchscript        # TorchScript
+                                      yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                      yolov5s-seg_openvino_label     # OpenVINO
+                                      yolov5s-seg.engine             # TensorRT
+                                      yolov5s-seg.mlmodel            # CoreML (macOS-only)
+                                      yolov5s-seg_saved_model        # TensorFlow SavedModel
+                                      yolov5s-seg.pb                 # TensorFlow GraphDef
+                                      yolov5s-seg.tflite             # TensorFlow Lite
+                                      yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
+                                      yolov5s-seg_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import json
+import os
+import subprocess
+import sys
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import torch.nn.functional as F
+
+from models.common import DetectMultiBackend
+from models.yolo import SegmentationModel
+from utils.callbacks import Callbacks
+from utils.general import (
+    LOGGER,
+    NUM_THREADS,
+    TQDM_BAR_FORMAT,
+    Profile,
+    check_dataset,
+    check_img_size,
+    check_requirements,
+    check_yaml,
+    coco80_to_coco91_class,
+    colorstr,
+    increment_path,
+    non_max_suppression,
+    print_args,
+    scale_boxes,
+    xywh2xyxy,
+    xyxy2xywh,
+)
+from utils.metrics import ConfusionMatrix, box_iou
+from utils.plots import output_to_target, plot_val_study
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
+from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
+from utils.segment.plots import plot_images_and_masks
+from utils.torch_utils import de_parallel, select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    """Saves detection results in txt format; includes class, xywh (normalized), optionally confidence if `save_conf` is
+    True.
+    """
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, "a") as f:
+            f.write(("%g " * len(line)).rstrip() % line + "\n")
+
+
+def save_one_json(predn, jdict, path, class_map, pred_masks):
+    """
+    Saves a JSON file with detection results including bounding boxes, category IDs, scores, and segmentation masks.
+
+    Example JSON result: {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}.
+    """
+    from pycocotools.mask import encode
+
+    def single_encode(x):
+        rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
+        rle["counts"] = rle["counts"].decode("utf-8")
+        return rle
+
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    pred_masks = np.transpose(pred_masks, (2, 0, 1))
+    with ThreadPool(NUM_THREADS) as pool:
+        rles = pool.map(single_encode, pred_masks)
+    for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
+        jdict.append(
+            {
+                "image_id": image_id,
+                "category_id": class_map[int(p[5])],
+                "bbox": [round(x, 3) for x in b],
+                "score": round(p[4], 5),
+                "segmentation": rles[i],
+            }
+        )
+
+
+def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
+    """
+    Return correct prediction matrix
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+    """
+    if masks:
+        if overlap:
+            nl = len(labels)
+            index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
+            gt_masks = gt_masks.repeat(nl, 1, 1)  # shape(1,640,640) -> (n,640,640)
+            gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
+        if gt_masks.shape[1:] != pred_masks.shape[1:]:
+            gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
+            gt_masks = gt_masks.gt_(0.5)
+        iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
+    else:  # boxes
+        iou = box_iou(labels[:, 1:], detections[:, :4])
+
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+    data,
+    weights=None,  # model.pt path(s)
+    batch_size=32,  # batch size
+    imgsz=640,  # inference size (pixels)
+    conf_thres=0.001,  # confidence threshold
+    iou_thres=0.6,  # NMS IoU threshold
+    max_det=300,  # maximum detections per image
+    task="val",  # train, val, test, speed or study
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    workers=8,  # max dataloader workers (per RANK in DDP mode)
+    single_cls=False,  # treat as single-class dataset
+    augment=False,  # augmented inference
+    verbose=False,  # verbose output
+    save_txt=False,  # save results to *.txt
+    save_hybrid=False,  # save label+prediction hybrid results to *.txt
+    save_conf=False,  # save confidences in --save-txt labels
+    save_json=False,  # save a COCO-JSON results file
+    project=ROOT / "runs/val-seg",  # save to project/name
+    name="exp",  # save to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    half=True,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    model=None,
+    dataloader=None,
+    save_dir=Path(""),
+    plots=True,
+    overlap=False,
+    mask_downsample_ratio=1,
+    compute_loss=None,
+    callbacks=Callbacks(),
+):
+    if save_json:
+        check_requirements("pycocotools>=2.0.6")
+        process = process_mask_native  # more accurate
+    else:
+        process = process_mask  # faster
+
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != "cpu"  # half precision only supported on CUDA
+        model.half() if half else model.float()
+        nm = de_parallel(model).model[-1].nm  # number of masks
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32  # number of masks
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    cuda = device.type != "cpu"
+    is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt")  # COCO dataset
+    nc = 1 if single_cls else int(data["nc"])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        if pt and not single_cls:  # check --weights are trained on --data
+            ncm = model.model.nc
+            assert ncm == nc, (
+                f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
+                f"classes). Pass correct combination of --weights and --data that are trained together."
+            )
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
+        pad, rect = (0.0, False) if task == "speed" else (0.5, pt)  # square inference for benchmarks
+        task = task if task in ("train", "val", "test") else "val"  # path to train/val/test images
+        dataloader = create_dataloader(
+            data[task],
+            imgsz,
+            batch_size,
+            stride,
+            single_cls,
+            pad=pad,
+            rect=rect,
+            workers=workers,
+            prefix=colorstr(f"{task}: "),
+            overlap_mask=overlap,
+            mask_downsample_ratio=mask_downsample_ratio,
+        )[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = model.names if hasattr(model, "names") else model.module.names  # get class names
+    if isinstance(names, (list, tuple)):  # old format
+        names = dict(enumerate(names))
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ("%22s" + "%11s" * 10) % (
+        "Class",
+        "Images",
+        "Instances",
+        "Box(P",
+        "R",
+        "mAP50",
+        "mAP50-95)",
+        "Mask(P",
+        "R",
+        "mAP50",
+        "mAP50-95)",
+    )
+    dt = Profile(device=device), Profile(device=device), Profile(device=device)
+    metrics = Metrics()
+    loss = torch.zeros(4, device=device)
+    jdict, stats = [], []
+    # callbacks.run('on_val_start')
+    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
+        # callbacks.run('on_val_batch_start')
+        with dt[0]:
+            if cuda:
+                im = im.to(device, non_blocking=True)
+                targets = targets.to(device)
+                masks = masks.to(device)
+            masks = masks.float()
+            im = im.half() if half else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            nb, _, height, width = im.shape  # batch size, channels, height, width
+
+        # Inference
+        with dt[1]:
+            preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss((train_out, protos), targets, masks)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        with dt[2]:
+            preds = non_max_suppression(
+                preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det, nm=nm
+            )
+
+        # Metrics
+        plot_masks = []  # masks for plotting
+        for si, (pred, proto) in enumerate(zip(preds, protos)):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
+            path, shape = Path(paths[si]), shapes[si][0]
+            correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            seen += 1
+
+            if npr == 0:
+                if nl:
+                    stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
+                    if plots:
+                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+                continue
+
+            # Masks
+            midx = [si] if overlap else targets[:, 0] == si
+            gt_masks = masks[midx]
+            pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct_bboxes = process_batch(predn, labelsn, iouv)
+                correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0]))  # (conf, pcls, tcls)
+
+            pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
+            if plots and batch_i < 3:
+                plot_masks.append(pred_masks[:15])  # filter top 15 to plot
+
+            # Save/log
+            if save_txt:
+                save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
+            if save_json:
+                pred_masks = scale_image(
+                    im[si].shape[1:], pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1]
+                )
+                save_one_json(predn, jdict, path, class_map, pred_masks)  # append to COCO-JSON dictionary
+            # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            if len(plot_masks):
+                plot_masks = torch.cat(plot_masks, dim=0)
+            plot_images_and_masks(im, targets, masks, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names)
+            plot_images_and_masks(
+                im,
+                output_to_target(preds, max_det=15),
+                plot_masks,
+                paths,
+                save_dir / f"val_batch{batch_i}_pred.jpg",
+                names,
+            )  # pred
+
+        # callbacks.run('on_val_batch_end')
+
+    # Compute metrics
+    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
+        metrics.update(results)
+    nt = np.bincount(stats[4].astype(int), minlength=nc)  # number of targets per class
+
+    # Print results
+    pf = "%22s" + "%11i" * 2 + "%11.3g" * 8  # print format
+    LOGGER.info(pf % ("all", seen, nt.sum(), *metrics.mean_results()))
+    if nt.sum() == 0:
+        LOGGER.warning(f"WARNING ⚠ī¸ no labels found in {task} set, can not compute metrics without labels")
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(metrics.ap_class_index):
+            LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
+
+    # Print speeds
+    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+    # callbacks.run('on_val_end')
+
+    mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ""  # weights
+        anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json"))  # annotations
+        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions
+        LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
+        with open(pred_json, "w") as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            results = []
+            for eval in COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm"):
+                if is_coco:
+                    eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # img ID to evaluate
+                eval.evaluate()
+                eval.accumulate()
+                eval.summarize()
+                results.extend(eval.stats[:2])  # update results (mAP@0.5:0.95, mAP@0.5)
+            map_bbox, map50_bbox, map_mask, map50_mask = results
+        except Exception as e:
+            LOGGER.info(f"pycocotools unable to run: {e}")
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
+    return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
+
+
+def parse_opt():
+    """Parses command line arguments for configuring YOLOv5 options like dataset path, weights, batch size, and
+    inference settings.
+    """
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path")
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-seg.pt", help="model path(s)")
+    parser.add_argument("--batch-size", type=int, default=32, help="batch size")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
+    parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
+    parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
+    parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
+    parser.add_argument("--task", default="val", help="train, val, test, speed or study")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
+    parser.add_argument("--augment", action="store_true", help="augmented inference")
+    parser.add_argument("--verbose", action="store_true", help="report mAP by class")
+    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
+    parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
+    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
+    parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
+    parser.add_argument("--project", default=ROOT / "runs/val-seg", help="save results to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    # opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes YOLOv5 tasks including training, validation, testing, speed, and study with configurable options."""
+    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
+
+    if opt.task in ("train", "val", "test"):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.warning(f"WARNING ⚠ī¸ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
+        if opt.save_hybrid:
+            LOGGER.warning("WARNING ⚠ī¸ --save-hybrid returns high mAP from hybrid labels, not from predictions alone")
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = torch.cuda.is_available() and opt.device != "cpu"  # FP16 for fastest results
+        if opt.task == "speed":  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == "study":  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt"  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt="%10.4g")  # save
+            subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
+            plot_val_study(x=x)  # plot
+        else:
+            raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/train.py b/yolov5/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..df0972a67c70f87168bded6c96d9174727d275c8
--- /dev/null
+++ b/yolov5/train.py
@@ -0,0 +1,848 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
+
+Usage - Single-GPU training:
+    $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)
+    $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
+
+Usage - Multi-GPU DDP training:
+    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
+
+Models:     https://github.com/ultralytics/yolov5/tree/master/models
+Datasets:   https://github.com/ultralytics/yolov5/tree/master/data
+Tutorial:   https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
+"""
+
+import argparse
+import math
+import os
+import random
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime, timedelta
+from pathlib import Path
+
+try:
+    import comet_ml  # must be imported before torch (if installed)
+except ImportError:
+    comet_ml = None
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import val as validate  # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.downloads import attempt_download, is_url
+from utils.general import (
+    LOGGER,
+    TQDM_BAR_FORMAT,
+    check_amp,
+    check_dataset,
+    check_file,
+    check_git_info,
+    check_git_status,
+    check_img_size,
+    check_requirements,
+    check_suffix,
+    check_yaml,
+    colorstr,
+    get_latest_run,
+    increment_path,
+    init_seeds,
+    intersect_dicts,
+    labels_to_class_weights,
+    labels_to_image_weights,
+    methods,
+    one_cycle,
+    print_args,
+    print_mutation,
+    strip_optimizer,
+    yaml_save,
+)
+from utils.loggers import LOGGERS, Loggers
+from utils.loggers.comet.comet_utils import check_comet_resume
+from utils.loss import ComputeLoss
+from utils.metrics import fitness
+from utils.plots import plot_evolve
+from utils.torch_utils import (
+    EarlyStopping,
+    ModelEMA,
+    de_parallel,
+    select_device,
+    smart_DDP,
+    smart_optimizer,
+    smart_resume,
+    torch_distributed_zero_first,
+)
+
+LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv("RANK", -1))
+WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
+GIT_INFO = check_git_info()
+
+
+def train(hyp, opt, device, callbacks):
+    """
+    Trains YOLOv5 model with given hyperparameters, options, and device, managing datasets, model architecture, loss
+    computation, and optimizer steps.
+
+    `hyp` argument is path/to/hyp.yaml or hyp dictionary.
+    """
+    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = (
+        Path(opt.save_dir),
+        opt.epochs,
+        opt.batch_size,
+        opt.weights,
+        opt.single_cls,
+        opt.evolve,
+        opt.data,
+        opt.cfg,
+        opt.resume,
+        opt.noval,
+        opt.nosave,
+        opt.workers,
+        opt.freeze,
+    )
+    callbacks.run("on_pretrain_routine_start")
+
+    # Directories
+    w = save_dir / "weights"  # weights dir
+    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = w / "last.pt", w / "best.pt"
+
+    # Hyperparameters
+    if isinstance(hyp, str):
+        with open(hyp, errors="ignore") as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+    LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
+    opt.hyp = hyp.copy()  # for saving hyps to checkpoints
+
+    # Save run settings
+    if not evolve:
+        yaml_save(save_dir / "hyp.yaml", hyp)
+        yaml_save(save_dir / "opt.yaml", vars(opt))
+
+    # Loggers
+    data_dict = None
+    if RANK in {-1, 0}:
+        include_loggers = list(LOGGERS)
+        if getattr(opt, "ndjson_console", False):
+            include_loggers.append("ndjson_console")
+        if getattr(opt, "ndjson_file", False):
+            include_loggers.append("ndjson_file")
+
+        loggers = Loggers(
+            save_dir=save_dir,
+            weights=weights,
+            opt=opt,
+            hyp=hyp,
+            logger=LOGGER,
+            include=tuple(include_loggers),
+        )
+
+        # Register actions
+        for k in methods(loggers):
+            callbacks.register_action(k, callback=getattr(loggers, k))
+
+        # Process custom dataset artifact link
+        data_dict = loggers.remote_dataset
+        if resume:  # If resuming runs from remote artifact
+            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
+
+    # Config
+    plots = not evolve and not opt.noplots  # create plots
+    cuda = device.type != "cpu"
+    init_seeds(opt.seed + 1 + RANK, deterministic=True)
+    with torch_distributed_zero_first(LOCAL_RANK):
+        data_dict = data_dict or check_dataset(data)  # check if None
+    train_path, val_path = data_dict["train"], data_dict["val"]
+    nc = 1 if single_cls else int(data_dict["nc"])  # number of classes
+    names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"]  # class names
+    is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt")  # COCO dataset
+
+    # Model
+    check_suffix(weights, ".pt")  # check weights
+    pretrained = weights.endswith(".pt")
+    if pretrained:
+        with torch_distributed_zero_first(LOCAL_RANK):
+            weights = attempt_download(weights)  # download if not found locally
+        ckpt = torch.load(weights, map_location="cpu")  # load checkpoint to CPU to avoid CUDA memory leak
+        model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create
+        exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []  # exclude keys
+        csd = ckpt["model"].float().state_dict()  # checkpoint state_dict as FP32
+        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
+        model.load_state_dict(csd, strict=False)  # load
+        LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}")  # report
+    else:
+        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create
+    amp = check_amp(model)  # check AMP
+
+    # Freeze
+    freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
+    for k, v in model.named_parameters():
+        v.requires_grad = True  # train all layers
+        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
+        if any(x in k for x in freeze):
+            LOGGER.info(f"freezing {k}")
+            v.requires_grad = False
+
+    # Image size
+    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
+    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
+
+    # Batch size
+    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
+        batch_size = check_train_batch_size(model, imgsz, amp)
+        loggers.on_params_update({"batch_size": batch_size})
+
+    # Optimizer
+    nbs = 64  # nominal batch size
+    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
+    hyp["weight_decay"] *= batch_size * accumulate / nbs  # scale weight_decay
+    optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
+
+    # Scheduler
+    if opt.cos_lr:
+        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
+    else:
+        lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"]  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+    # Resume
+    best_fitness, start_epoch = 0.0, 0
+    if pretrained:
+        if resume:
+            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+        del ckpt, csd
+
+    # DP mode
+    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+        LOGGER.warning(
+            "WARNING ⚠ī¸ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
+            "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
+        )
+        model = torch.nn.DataParallel(model)
+
+    # SyncBatchNorm
+    if opt.sync_bn and cuda and RANK != -1:
+        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+        LOGGER.info("Using SyncBatchNorm()")
+
+    # Trainloader
+    train_loader, dataset = create_dataloader(
+        train_path,
+        imgsz,
+        batch_size // WORLD_SIZE,
+        gs,
+        single_cls,
+        hyp=hyp,
+        augment=True,
+        cache=None if opt.cache == "val" else opt.cache,
+        rect=opt.rect,
+        rank=LOCAL_RANK,
+        workers=workers,
+        image_weights=opt.image_weights,
+        quad=opt.quad,
+        prefix=colorstr("train: "),
+        shuffle=True,
+        seed=opt.seed,
+    )
+    labels = np.concatenate(dataset.labels, 0)
+    mlc = int(labels[:, 0].max())  # max label class
+    assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
+
+    # Process 0
+    if RANK in {-1, 0}:
+        val_loader = create_dataloader(
+            val_path,
+            imgsz,
+            batch_size // WORLD_SIZE * 2,
+            gs,
+            single_cls,
+            hyp=hyp,
+            cache=None if noval else opt.cache,
+            rect=True,
+            rank=-1,
+            workers=workers * 2,
+            pad=0.5,
+            prefix=colorstr("val: "),
+        )[0]
+
+        if not resume:
+            if not opt.noautoanchor:
+                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)  # run AutoAnchor
+            model.half().float()  # pre-reduce anchor precision
+
+        callbacks.run("on_pretrain_routine_end", labels, names)
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = smart_DDP(model)
+
+    # Model attributes
+    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
+    hyp["box"] *= 3 / nl  # scale to layers
+    hyp["cls"] *= nc / 80 * 3 / nl  # scale to classes and layers
+    hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
+    hyp["label_smoothing"] = opt.label_smoothing
+    model.nc = nc  # attach number of classes to model
+    model.hyp = hyp  # attach hyperparameters to model
+    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
+    model.names = names
+
+    # Start training
+    t0 = time.time()
+    nb = len(train_loader)  # number of batches
+    nw = max(round(hyp["warmup_epochs"] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
+    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
+    last_opt_step = -1
+    maps = np.zeros(nc)  # mAP per class
+    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+    scheduler.last_epoch = start_epoch - 1  # do not move
+    scaler = torch.cuda.amp.GradScaler(enabled=amp)
+    stopper, stop = EarlyStopping(patience=opt.patience), False
+    compute_loss = ComputeLoss(model)  # init loss class
+    callbacks.run("on_train_start")
+    LOGGER.info(
+        f'Image sizes {imgsz} train, {imgsz} val\n'
+        f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+        f"Logging results to {colorstr('bold', save_dir)}\n"
+        f'Starting training for {epochs} epochs...'
+    )
+    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
+        callbacks.run("on_train_epoch_start")
+        model.train()
+
+        # Update image weights (optional, single-GPU only)
+        if opt.image_weights:
+            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
+            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
+            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
+
+        # Update mosaic border (optional)
+        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
+
+        mloss = torch.zeros(3, device=device)  # mean losses
+        if RANK != -1:
+            train_loader.sampler.set_epoch(epoch)
+        pbar = enumerate(train_loader)
+        LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size"))
+        if RANK in {-1, 0}:
+            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
+        optimizer.zero_grad()
+        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
+            callbacks.run("on_train_batch_start")
+            ni = i + nb * epoch  # number integrated batches (since train start)
+            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
+
+            # Warmup
+            if ni <= nw:
+                xi = [0, nw]  # x interp
+                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
+                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+                for j, x in enumerate(optimizer.param_groups):
+                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+                    x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
+                    if "momentum" in x:
+                        x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
+
+            # Multi-scale
+            if opt.multi_scale:
+                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
+                sf = sz / max(imgs.shape[2:])  # scale factor
+                if sf != 1:
+                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
+                    imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
+
+            # Forward
+            with torch.cuda.amp.autocast(amp):
+                pred = model(imgs)  # forward
+                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
+                if RANK != -1:
+                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
+                if opt.quad:
+                    loss *= 4.0
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+            if ni - last_opt_step >= accumulate:
+                scaler.unscale_(optimizer)  # unscale gradients
+                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
+                scaler.step(optimizer)  # optimizer.step
+                scaler.update()
+                optimizer.zero_grad()
+                if ema:
+                    ema.update(model)
+                last_opt_step = ni
+
+            # Log
+            if RANK in {-1, 0}:
+                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
+                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)
+                pbar.set_description(
+                    ("%11s" * 2 + "%11.4g" * 5)
+                    % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
+                )
+                callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss))
+                if callbacks.stop_training:
+                    return
+            # end batch ------------------------------------------------------------------------------------------------
+
+        # Scheduler
+        lr = [x["lr"] for x in optimizer.param_groups]  # for loggers
+        scheduler.step()
+
+        if RANK in {-1, 0}:
+            # mAP
+            callbacks.run("on_train_epoch_end", epoch=epoch)
+            ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
+            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+            if not noval or final_epoch:  # Calculate mAP
+                results, maps, _ = validate.run(
+                    data_dict,
+                    batch_size=batch_size // WORLD_SIZE * 2,
+                    imgsz=imgsz,
+                    half=amp,
+                    model=ema.ema,
+                    single_cls=single_cls,
+                    dataloader=val_loader,
+                    save_dir=save_dir,
+                    plots=False,
+                    callbacks=callbacks,
+                    compute_loss=compute_loss,
+                )
+
+            # Update best mAP
+            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
+            if fi > best_fitness:
+                best_fitness = fi
+            log_vals = list(mloss) + list(results) + lr
+            callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)
+
+            # Save model
+            if (not nosave) or (final_epoch and not evolve):  # if save
+                ckpt = {
+                    "epoch": epoch,
+                    "best_fitness": best_fitness,
+                    "model": deepcopy(de_parallel(model)).half(),
+                    "ema": deepcopy(ema.ema).half(),
+                    "updates": ema.updates,
+                    "optimizer": optimizer.state_dict(),
+                    "opt": vars(opt),
+                    "git": GIT_INFO,  # {remote, branch, commit} if a git repo
+                    "date": datetime.now().isoformat(),
+                }
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fi:
+                    torch.save(ckpt, best)
+                if opt.save_period > 0 and epoch % opt.save_period == 0:
+                    torch.save(ckpt, w / f"epoch{epoch}.pt")
+                del ckpt
+                callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)
+
+        # EarlyStopping
+        if RANK != -1:  # if DDP training
+            broadcast_list = [stop if RANK == 0 else None]
+            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
+            if RANK != 0:
+                stop = broadcast_list[0]
+        if stop:
+            break  # must break all DDP ranks
+
+        # end epoch ----------------------------------------------------------------------------------------------------
+    # end training -----------------------------------------------------------------------------------------------------
+    if RANK in {-1, 0}:
+        LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
+        for f in last, best:
+            if f.exists():
+                strip_optimizer(f)  # strip optimizers
+                if f is best:
+                    LOGGER.info(f"\nValidating {f}...")
+                    results, _, _ = validate.run(
+                        data_dict,
+                        batch_size=batch_size // WORLD_SIZE * 2,
+                        imgsz=imgsz,
+                        model=attempt_load(f, device).half(),
+                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
+                        single_cls=single_cls,
+                        dataloader=val_loader,
+                        save_dir=save_dir,
+                        save_json=is_coco,
+                        verbose=True,
+                        plots=plots,
+                        callbacks=callbacks,
+                        compute_loss=compute_loss,
+                    )  # val best model with plots
+                    if is_coco:
+                        callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+
+        callbacks.run("on_train_end", last, best, epoch, results)
+
+    torch.cuda.empty_cache()
+    return results
+
+
+def parse_opt(known=False):
+    """Parses command-line arguments for YOLOv5 training, validation, and testing."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
+    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
+    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
+    parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
+    parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
+    parser.add_argument("--rect", action="store_true", help="rectangular training")
+    parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
+    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
+    parser.add_argument("--noval", action="store_true", help="only validate final epoch")
+    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
+    parser.add_argument("--noplots", action="store_true", help="save no plot files")
+    parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
+    parser.add_argument(
+        "--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population"
+    )
+    parser.add_argument("--resume_evolve", type=str, default=None, help="resume evolve from last generation")
+    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
+    parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
+    parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
+    parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
+    parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
+    parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--quad", action="store_true", help="quad dataloader")
+    parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
+    parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
+    parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
+    parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
+    parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
+    parser.add_argument("--seed", type=int, default=0, help="Global training seed")
+    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
+
+    # Logger arguments
+    parser.add_argument("--entity", default=None, help="Entity")
+    parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option')
+    parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval")
+    parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use")
+
+    # NDJSON logging
+    parser.add_argument("--ndjson-console", action="store_true", help="Log ndjson to console")
+    parser.add_argument("--ndjson-file", action="store_true", help="Log ndjson to file")
+
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+    """Runs training or hyperparameter evolution with specified options and optional callbacks."""
+    if RANK in {-1, 0}:
+        print_args(vars(opt))
+        check_git_status()
+        check_requirements(ROOT / "requirements.txt")
+
+    # Resume (from specified or most recent last.pt)
+    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
+        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+        opt_yaml = last.parent.parent / "opt.yaml"  # train options yaml
+        opt_data = opt.data  # original dataset
+        if opt_yaml.is_file():
+            with open(opt_yaml, errors="ignore") as f:
+                d = yaml.safe_load(f)
+        else:
+            d = torch.load(last, map_location="cpu")["opt"]
+        opt = argparse.Namespace(**d)  # replace
+        opt.cfg, opt.weights, opt.resume = "", str(last), True  # reinstate
+        if is_url(opt_data):
+            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
+    else:
+        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
+            check_file(opt.data),
+            check_yaml(opt.cfg),
+            check_yaml(opt.hyp),
+            str(opt.weights),
+            str(opt.project),
+        )  # checks
+        assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
+        if opt.evolve:
+            if opt.project == str(ROOT / "runs/train"):  # if default project name, rename to runs/evolve
+                opt.project = str(ROOT / "runs/evolve")
+            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
+        if opt.name == "cfg":
+            opt.name = Path(opt.cfg).stem  # use model.yaml as name
+        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
+        assert not opt.image_weights, f"--image-weights {msg}"
+        assert not opt.evolve, f"--evolve {msg}"
+        assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
+        assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
+        assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device("cuda", LOCAL_RANK)
+        dist.init_process_group(
+            backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800)
+        )
+
+    # Train
+    if not opt.evolve:
+        train(opt.hyp, opt, device, callbacks)
+
+    # Evolve hyperparameters (optional)
+    else:
+        # Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit)
+        meta = {
+            "lr0": (False, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
+            "lrf": (False, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
+            "momentum": (False, 0.6, 0.98),  # SGD momentum/Adam beta1
+            "weight_decay": (False, 0.0, 0.001),  # optimizer weight decay
+            "warmup_epochs": (False, 0.0, 5.0),  # warmup epochs (fractions ok)
+            "warmup_momentum": (False, 0.0, 0.95),  # warmup initial momentum
+            "warmup_bias_lr": (False, 0.0, 0.2),  # warmup initial bias lr
+            "box": (False, 0.02, 0.2),  # box loss gain
+            "cls": (False, 0.2, 4.0),  # cls loss gain
+            "cls_pw": (False, 0.5, 2.0),  # cls BCELoss positive_weight
+            "obj": (False, 0.2, 4.0),  # obj loss gain (scale with pixels)
+            "obj_pw": (False, 0.5, 2.0),  # obj BCELoss positive_weight
+            "iou_t": (False, 0.1, 0.7),  # IoU training threshold
+            "anchor_t": (False, 2.0, 8.0),  # anchor-multiple threshold
+            "anchors": (False, 2.0, 10.0),  # anchors per output grid (0 to ignore)
+            "fl_gamma": (False, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
+            "hsv_h": (True, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
+            "hsv_s": (True, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
+            "hsv_v": (True, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
+            "degrees": (True, 0.0, 45.0),  # image rotation (+/- deg)
+            "translate": (True, 0.0, 0.9),  # image translation (+/- fraction)
+            "scale": (True, 0.0, 0.9),  # image scale (+/- gain)
+            "shear": (True, 0.0, 10.0),  # image shear (+/- deg)
+            "perspective": (True, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
+            "flipud": (True, 0.0, 1.0),  # image flip up-down (probability)
+            "fliplr": (True, 0.0, 1.0),  # image flip left-right (probability)
+            "mosaic": (True, 0.0, 1.0),  # image mixup (probability)
+            "mixup": (True, 0.0, 1.0),  # image mixup (probability)
+            "copy_paste": (True, 0.0, 1.0),
+        }  # segment copy-paste (probability)
+
+        # GA configs
+        pop_size = 50
+        mutation_rate_min = 0.01
+        mutation_rate_max = 0.5
+        crossover_rate_min = 0.5
+        crossover_rate_max = 1
+        min_elite_size = 2
+        max_elite_size = 5
+        tournament_size_min = 2
+        tournament_size_max = 10
+
+        with open(opt.hyp, errors="ignore") as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+            if "anchors" not in hyp:  # anchors commented in hyp.yaml
+                hyp["anchors"] = 3
+        if opt.noautoanchor:
+            del hyp["anchors"], meta["anchors"]
+        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
+        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
+        evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
+        if opt.bucket:
+            # download evolve.csv if exists
+            subprocess.run(
+                [
+                    "gsutil",
+                    "cp",
+                    f"gs://{opt.bucket}/evolve.csv",
+                    str(evolve_csv),
+                ]
+            )
+
+        # Delete the items in meta dictionary whose first value is False
+        del_ = [item for item, value_ in meta.items() if value_[0] is False]
+        hyp_GA = hyp.copy()  # Make a copy of hyp dictionary
+        for item in del_:
+            del meta[item]  # Remove the item from meta dictionary
+            del hyp_GA[item]  # Remove the item from hyp_GA dictionary
+
+        # Set lower_limit and upper_limit arrays to hold the search space boundaries
+        lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()])
+        upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()])
+
+        # Create gene_ranges list to hold the range of values for each gene in the population
+        gene_ranges = [(lower_limit[i], upper_limit[i]) for i in range(len(upper_limit))]
+
+        # Initialize the population with initial_values or random values
+        initial_values = []
+
+        # If resuming evolution from a previous checkpoint
+        if opt.resume_evolve is not None:
+            assert os.path.isfile(ROOT / opt.resume_evolve), "evolve population path is wrong!"
+            with open(ROOT / opt.resume_evolve, errors="ignore") as f:
+                evolve_population = yaml.safe_load(f)
+                for value in evolve_population.values():
+                    value = np.array([value[k] for k in hyp_GA.keys()])
+                    initial_values.append(list(value))
+
+        # If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population
+        else:
+            yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith(".yaml")]
+            for file_name in yaml_files:
+                with open(os.path.join(opt.evolve_population, file_name)) as yaml_file:
+                    value = yaml.safe_load(yaml_file)
+                    value = np.array([value[k] for k in hyp_GA.keys()])
+                    initial_values.append(list(value))
+
+        # Generate random values within the search space for the rest of the population
+        if initial_values is None:
+            population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size)]
+        elif pop_size > 1:
+            population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size - len(initial_values))]
+            for initial_value in initial_values:
+                population = [initial_value] + population
+
+        # Run the genetic algorithm for a fixed number of generations
+        list_keys = list(hyp_GA.keys())
+        for generation in range(opt.evolve):
+            if generation >= 1:
+                save_dict = {}
+                for i in range(len(population)):
+                    little_dict = {list_keys[j]: float(population[i][j]) for j in range(len(population[i]))}
+                    save_dict[f"gen{str(generation)}number{str(i)}"] = little_dict
+
+                with open(save_dir / "evolve_population.yaml", "w") as outfile:
+                    yaml.dump(save_dict, outfile, default_flow_style=False)
+
+            # Adaptive elite size
+            elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve))
+            # Evaluate the fitness of each individual in the population
+            fitness_scores = []
+            for individual in population:
+                for key, value in zip(hyp_GA.keys(), individual):
+                    hyp_GA[key] = value
+                hyp.update(hyp_GA)
+                results = train(hyp.copy(), opt, device, callbacks)
+                callbacks = Callbacks()
+                # Write mutation results
+                keys = (
+                    "metrics/precision",
+                    "metrics/recall",
+                    "metrics/mAP_0.5",
+                    "metrics/mAP_0.5:0.95",
+                    "val/box_loss",
+                    "val/obj_loss",
+                    "val/cls_loss",
+                )
+                print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
+                fitness_scores.append(results[2])
+
+            # Select the fittest individuals for reproduction using adaptive tournament selection
+            selected_indices = []
+            for _ in range(pop_size - elite_size):
+                # Adaptive tournament size
+                tournament_size = max(
+                    max(2, tournament_size_min),
+                    int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10))),
+                )
+                # Perform tournament selection to choose the best individual
+                tournament_indices = random.sample(range(pop_size), tournament_size)
+                tournament_fitness = [fitness_scores[j] for j in tournament_indices]
+                winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))]
+                selected_indices.append(winner_index)
+
+            # Add the elite individuals to the selected indices
+            elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]]
+            selected_indices.extend(elite_indices)
+            # Create the next generation through crossover and mutation
+            next_generation = []
+            for _ in range(pop_size):
+                parent1_index = selected_indices[random.randint(0, pop_size - 1)]
+                parent2_index = selected_indices[random.randint(0, pop_size - 1)]
+                # Adaptive crossover rate
+                crossover_rate = max(
+                    crossover_rate_min, min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve))
+                )
+                if random.uniform(0, 1) < crossover_rate:
+                    crossover_point = random.randint(1, len(hyp_GA) - 1)
+                    child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:]
+                else:
+                    child = population[parent1_index]
+                # Adaptive mutation rate
+                mutation_rate = max(
+                    mutation_rate_min, min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve))
+                )
+                for j in range(len(hyp_GA)):
+                    if random.uniform(0, 1) < mutation_rate:
+                        child[j] += random.uniform(-0.1, 0.1)
+                        child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1])
+                next_generation.append(child)
+            # Replace the old population with the new generation
+            population = next_generation
+        # Print the best solution found
+        best_index = fitness_scores.index(max(fitness_scores))
+        best_individual = population[best_index]
+        print("Best solution found:", best_individual)
+        # Plot results
+        plot_evolve(evolve_csv)
+        LOGGER.info(
+            f'Hyperparameter evolution finished {opt.evolve} generations\n'
+            f"Results saved to {colorstr('bold', save_dir)}\n"
+            f'Usage example: $ python train.py --hyp {evolve_yaml}'
+        )
+
+
+def generate_individual(input_ranges, individual_length):
+    """Generates a list of random values within specified input ranges for each gene in the individual."""
+    individual = []
+    for i in range(individual_length):
+        lower_bound, upper_bound = input_ranges[i]
+        individual.append(random.uniform(lower_bound, upper_bound))
+    return individual
+
+
+def run(**kwargs):
+    """
+    Executes YOLOv5 training with given options, overriding with any kwargs provided.
+
+    Example: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
+    """
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5/tutorial.ipynb b/yolov5/tutorial.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..1657c67965b0c312be6b3225917f7a69307e16ae
--- /dev/null
+++ b/yolov5/tutorial.ipynb
@@ -0,0 +1,604 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "YOLOv5 Tutorial",
+      "provenance": []
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "accelerator": "GPU"
+  },
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<div align=\"center\">\n",
+        "\n",
+        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
+        "\n",
+        "[中文](https://docs.ultralytics.com/zh/) | [한ęĩ­ė–´](https://docs.ultralytics.com/ko/) | [æ—ĨæœŦčĒž](https://docs.ultralytics.com/ja/) | [Đ ŅƒŅŅĐēиК](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [EspaÃąol](https://docs.ultralytics.com/es/) | [PortuguÃĒs](https://docs.ultralytics.com/pt/) | [ā¤šā¤ŋā¤¨āĨā¤ĻāĨ€](https://docs.ultralytics.com/hi/) | [اŲ„ØšØąØ¨ŲŠØŠ](https://docs.ultralytics.com/ar/)\n",
+        "\n",
+        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
+        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
+        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "\n",
+        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>We hope that the resources in this notebook will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href=\"https://docs.ultralytics.com/yolov5\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/yolov5\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
+        "\n",
+        "</div>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "wbvMlHd_QwMG",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "e8225db4-e61d-4640-8b1f-8bfce3331cea"
+      },
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt comet_ml  # install\n",
+        "\n",
+        "import torch\n",
+        "import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 23.3/166.8 GB disk)\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Detect\n",
+        "\n",
+        "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python detect.py --source 0  # webcam\n",
+        "                          img.jpg  # image\n",
+        "                          vid.mp4  # video\n",
+        "                          screen  # screenshot\n",
+        "                          path/  # directory\n",
+        "                         'path/*.jpg'  # glob\n",
+        "                         'https://youtu.be/LNwODJXcvt4'  # YouTube\n",
+        "                         'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "zR9ZbuQCH7FX",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "284ef04b-1596-412f-88f6-948828dd2b49"
+      },
+      "source": [
+        "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
+        "# display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n",
+            "YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
+            "100% 14.1M/14.1M [00:00<00:00, 24.5MB/s]\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 41.5ms\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 60.0ms\n",
+            "Speed: 0.5ms pre-process, 50.8ms inference, 37.7ms NMS per image at shape (1, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "WQPtK1QYVaD_",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "cf7d52f0-281c-4c96-a488-79f5908f8426"
+      },
+      "source": [
+        "# Download COCO val\n",
+        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')  # download (780M - 5000 images)\n",
+        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip  # unzip"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "100%|██████████| 780M/780M [00:12<00:00, 66.6MB/s]\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "X58w8JLpMnjH",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "3e234e05-ee8b-4ad1-b1a4-f6a55d5e4f3d"
+      },
+      "source": [
+        "# Validate YOLOv5s on COCO val\n",
+        "!python val.py --weights yolov5s.pt --data coco.yaml --img 640 --half"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
+            "YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00, 2024.59it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 157/157 [01:25<00:00,  1.84it/s]\n",
+            "                   all       5000      36335      0.671      0.519      0.566      0.371\n",
+            "Speed: 0.1ms pre-process, 3.1ms inference, 2.3ms NMS per image at shape (32, 3, 640, 640)\n",
+            "\n",
+            "Evaluating pycocotools mAP... saving runs/val/exp/yolov5s_predictions.json...\n",
+            "loading annotations into memory...\n",
+            "Done (t=0.43s)\n",
+            "creating index...\n",
+            "index created!\n",
+            "Loading and preparing results...\n",
+            "DONE (t=5.32s)\n",
+            "creating index...\n",
+            "index created!\n",
+            "Running per image evaluation...\n",
+            "Evaluate annotation type *bbox*\n",
+            "DONE (t=78.89s).\n",
+            "Accumulating evaluation results...\n",
+            "DONE (t=14.51s).\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.374\n",
+            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.572\n",
+            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.402\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.311\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.516\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.566\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.625\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.722\n",
+            "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://bit.ly/ultralytics_hub\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
+        "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
+        "<br>\n",
+        "\n",
+        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
+        "\n",
+        "## Label a dataset on Roboflow (optional)\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
+        "logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
+        "\n",
+        "if logger == 'Comet':\n",
+        "  %pip install -q comet_ml\n",
+        "  import comet_ml; comet_ml.init()\n",
+        "elif logger == 'ClearML':\n",
+        "  %pip install -q clearml\n",
+        "  import clearml; clearml.browser_login()\n",
+        "elif logger == 'TensorBoard':\n",
+        "  %load_ext tensorboard\n",
+        "  %tensorboard --logdir runs/train"
+      ],
+      "metadata": {
+        "id": "i3oKtE4g-aNn"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "1NcFxRcFdJ_O",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "bbeeea2b-04fc-4185-aa64-258690495b5a"
+      },
+      "source": [
+        "# Train YOLOv5s on COCO128 for 3 epochs\n",
+        "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "2023-04-09 14:11:38.063605: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
+            "To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
+            "2023-04-09 14:11:39.026661: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v7.0-136-g71244ae Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
+            "\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
+            "\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
+            "\n",
+            "Dataset not found ⚠ī¸, missing paths ['/content/datasets/coco128/images/train2017']\n",
+            "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
+            "100% 6.66M/6.66M [00:00<00:00, 75.6MB/s]\n",
+            "Dataset download success ✅ (0.6s), saved to \u001b[1m/content/datasets\u001b[0m\n",
+            "\n",
+            "                 from  n    params  module                                  arguments                     \n",
+            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
+            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
+            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
+            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
+            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
+            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
+            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
+            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
+            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
+            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
+            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
+            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
+            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
+            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
+            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
+            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
+            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
+            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
+            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
+            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
+            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
+            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
+            " 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
+            "Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n",
+            "\n",
+            "Transferred 349/349 items from yolov5s.pt\n",
+            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1709.36it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 264.35it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 107.05it/s]\n",
+            "\n",
+            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
+            "Plotting labels to runs/train/exp/labels.jpg... \n",
+            "Image sizes 640 train, 640 val\n",
+            "Using 2 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
+            "Starting training for 3 epochs...\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        0/2      3.91G    0.04618    0.07209    0.01703        232        640: 100% 8/8 [00:09<00:00,  1.17s/it]\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  2.01it/s]\n",
+            "                   all        128        929      0.667      0.602       0.68       0.45\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        1/2      4.76G    0.04622    0.06891    0.01817        201        640: 100% 8/8 [00:02<00:00,  3.78it/s]\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  2.16it/s]\n",
+            "                   all        128        929      0.709      0.645      0.722      0.478\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        2/2      4.76G     0.0436     0.0647    0.01698        227        640: 100% 8/8 [00:01<00:00,  4.19it/s]\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  2.95it/s]\n",
+            "                   all        128        929      0.761      0.647      0.735       0.49\n",
+            "\n",
+            "3 epochs completed in 0.006 hours.\n",
+            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.8MB\n",
+            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.8MB\n",
+            "\n",
+            "Validating runs/train/exp/weights/best.pt...\n",
+            "Fusing layers... \n",
+            "Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:06<00:00,  1.56s/it]\n",
+            "                   all        128        929      0.759      0.646      0.734       0.49\n",
+            "                person        128        254      0.857      0.706      0.805      0.525\n",
+            "               bicycle        128          6      0.773      0.577      0.725      0.414\n",
+            "                   car        128         46      0.664      0.435      0.551       0.24\n",
+            "            motorcycle        128          5      0.587        0.8      0.837      0.635\n",
+            "              airplane        128          6          1      0.989      0.995      0.715\n",
+            "                   bus        128          7      0.635      0.714      0.753      0.651\n",
+            "                 train        128          3      0.686      0.333       0.72      0.504\n",
+            "                 truck        128         12      0.604      0.333      0.472      0.259\n",
+            "                  boat        128          6      0.938      0.333      0.449      0.177\n",
+            "         traffic light        128         14      0.778      0.255      0.401      0.217\n",
+            "             stop sign        128          2      0.826          1      0.995      0.895\n",
+            "                 bench        128          9      0.711      0.556      0.661      0.313\n",
+            "                  bird        128         16      0.962          1      0.995      0.642\n",
+            "                   cat        128          4      0.868          1      0.995      0.754\n",
+            "                   dog        128          9          1      0.652      0.899      0.651\n",
+            "                 horse        128          2      0.853          1      0.995      0.622\n",
+            "              elephant        128         17      0.909      0.882      0.934      0.698\n",
+            "                  bear        128          1      0.696          1      0.995      0.995\n",
+            "                 zebra        128          4      0.855          1      0.995      0.905\n",
+            "               giraffe        128          9      0.788      0.828      0.912      0.701\n",
+            "              backpack        128          6      0.835        0.5      0.738      0.311\n",
+            "              umbrella        128         18      0.785      0.814      0.859       0.48\n",
+            "               handbag        128         19      0.759      0.263      0.366      0.205\n",
+            "                   tie        128          7      0.983      0.714       0.77      0.492\n",
+            "              suitcase        128          4      0.656          1      0.945      0.631\n",
+            "               frisbee        128          5      0.721        0.8      0.759      0.724\n",
+            "                  skis        128          1      0.737          1      0.995        0.3\n",
+            "             snowboard        128          7      0.829      0.696       0.83      0.537\n",
+            "           sports ball        128          6      0.637      0.667      0.602      0.311\n",
+            "                  kite        128         10      0.636        0.6      0.599      0.226\n",
+            "          baseball bat        128          4      0.501       0.25      0.468      0.205\n",
+            "        baseball glove        128          7      0.483      0.429      0.465      0.292\n",
+            "            skateboard        128          5      0.932        0.6      0.687      0.493\n",
+            "         tennis racket        128          7       0.77      0.429      0.547      0.332\n",
+            "                bottle        128         18      0.577      0.379      0.554      0.276\n",
+            "            wine glass        128         16      0.704      0.875       0.89       0.51\n",
+            "                   cup        128         36      0.841      0.667      0.837      0.533\n",
+            "                  fork        128          6      0.992      0.333       0.45      0.315\n",
+            "                 knife        128         16      0.768      0.688      0.695      0.403\n",
+            "                 spoon        128         22      0.838       0.47      0.639      0.384\n",
+            "                  bowl        128         28      0.764       0.58      0.716      0.513\n",
+            "                banana        128          1      0.902          1      0.995      0.301\n",
+            "              sandwich        128          2          1          0      0.359      0.326\n",
+            "                orange        128          4      0.722       0.75      0.912      0.581\n",
+            "              broccoli        128         11      0.547      0.364      0.432      0.317\n",
+            "                carrot        128         24      0.619      0.625      0.724      0.495\n",
+            "               hot dog        128          2      0.409          1      0.828      0.762\n",
+            "                 pizza        128          5      0.833      0.995      0.962      0.727\n",
+            "                 donut        128         14      0.631          1       0.96      0.839\n",
+            "                  cake        128          4       0.87          1      0.995       0.83\n",
+            "                 chair        128         35      0.583        0.6      0.608      0.317\n",
+            "                 couch        128          6      0.907      0.667      0.815      0.544\n",
+            "          potted plant        128         14      0.739      0.786      0.823       0.48\n",
+            "                   bed        128          3      0.985      0.333       0.83      0.441\n",
+            "          dining table        128         13      0.821      0.357      0.578      0.342\n",
+            "                toilet        128          2          1      0.988      0.995      0.846\n",
+            "                    tv        128          2       0.57          1      0.995      0.796\n",
+            "                laptop        128          3          1          0      0.593      0.312\n",
+            "                 mouse        128          2          1          0      0.089     0.0445\n",
+            "                remote        128          8          1      0.624      0.634      0.538\n",
+            "            cell phone        128          8      0.622      0.417      0.421      0.187\n",
+            "             microwave        128          3      0.711          1      0.995      0.766\n",
+            "                  oven        128          5      0.329        0.4       0.43      0.282\n",
+            "                  sink        128          6      0.437      0.333      0.338      0.265\n",
+            "          refrigerator        128          5      0.567        0.8      0.799      0.536\n",
+            "                  book        128         29      0.597      0.257      0.349      0.154\n",
+            "                 clock        128          9      0.765      0.889      0.932      0.736\n",
+            "                  vase        128          2       0.33          1      0.995      0.895\n",
+            "              scissors        128          1          1          0      0.497     0.0498\n",
+            "            teddy bear        128         21      0.856      0.569      0.841      0.547\n",
+            "            toothbrush        128          5        0.8          1      0.928      0.574\n",
+            "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## Comet Logging and Visualization 🌟 NEW\n",
+        "\n",
+        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
+        "\n",
+        "Getting started is easy:\n",
+        "```shell\n",
+        "pip install comet_ml  # 1. install\n",
+        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
+        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
+        "```\n",
+        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
+        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
+        "\n",
+        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
+        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
+      ],
+      "metadata": {
+        "id": "nWOsI5wJR1o3"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## ClearML Logging and Automation 🌟 NEW\n",
+        "\n",
+        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
+        "\n",
+        "- `pip install clearml`\n",
+        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
+        "\n",
+        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
+        "\n",
+        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
+        "\n",
+        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
+        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
+      ],
+      "metadata": {
+        "id": "Lay2WsTjNJzP"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
+        "\n",
+        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices.\n",
+        "\n",
+        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Additional content below."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "source": [
+        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
+        "import torch\n",
+        "\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True, trust_repo=True)  # or yolov5n - yolov5x6 or custom\n",
+        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
+        "results = model(im)  # inference\n",
+        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
+      ],
+      "execution_count": null,
+      "outputs": []
+    }
+  ]
+}
diff --git a/yolov5/utils/__init__.py b/yolov5/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b7e1fdfc31a73dbf5905bdedc1b806abab424ed
--- /dev/null
+++ b/yolov5/utils/__init__.py
@@ -0,0 +1,95 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""utils/initialization."""
+
+import contextlib
+import platform
+import threading
+
+
+def emojis(str=""):
+    """Returns an emoji-safe version of a string, stripped of emojis on Windows platforms."""
+    return str.encode().decode("ascii", "ignore") if platform.system() == "Windows" else str
+
+
+class TryExcept(contextlib.ContextDecorator):
+    # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
+    def __init__(self, msg=""):
+        """Initializes TryExcept with an optional message, used as a decorator or context manager for error handling."""
+        self.msg = msg
+
+    def __enter__(self):
+        """Enter the runtime context related to this object for error handling with an optional message."""
+        pass
+
+    def __exit__(self, exc_type, value, traceback):
+        """Context manager exit method that prints an error message with emojis if an exception occurred, always returns
+        True.
+        """
+        if value:
+            print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
+        return True
+
+
+def threaded(func):
+    """Decorator @threaded to run a function in a separate thread, returning the thread instance."""
+
+    def wrapper(*args, **kwargs):
+        thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
+        thread.start()
+        return thread
+
+    return wrapper
+
+
+def join_threads(verbose=False):
+    """
+    Joins all daemon threads, optionally printing their names if verbose is True.
+
+    Example: atexit.register(lambda: join_threads())
+    """
+    main_thread = threading.current_thread()
+    for t in threading.enumerate():
+        if t is not main_thread:
+            if verbose:
+                print(f"Joining thread {t.name}")
+            t.join()
+
+
+def notebook_init(verbose=True):
+    """Initializes notebook environment by checking requirements, cleaning up, and displaying system info."""
+    print("Checking setup...")
+
+    import os
+    import shutil
+
+    from ultralytics.utils.checks import check_requirements
+
+    from utils.general import check_font, is_colab
+    from utils.torch_utils import select_device  # imports
+
+    check_font()
+
+    import psutil
+
+    if check_requirements("wandb", install=False):
+        os.system("pip uninstall -y wandb")  # eliminate unexpected account creation prompt with infinite hang
+    if is_colab():
+        shutil.rmtree("/content/sample_data", ignore_errors=True)  # remove colab /sample_data directory
+
+    # System info
+    display = None
+    if verbose:
+        gb = 1 << 30  # bytes to GiB (1024 ** 3)
+        ram = psutil.virtual_memory().total
+        total, used, free = shutil.disk_usage("/")
+        with contextlib.suppress(Exception):  # clear display if ipython is installed
+            from IPython import display
+
+            display.clear_output()
+        s = f"({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)"
+    else:
+        s = ""
+
+    select_device(newline=False)
+    print(emojis(f"Setup complete ✅ {s}"))
+    return display
diff --git a/yolov5/utils/activations.py b/yolov5/utils/activations.py
new file mode 100644
index 0000000000000000000000000000000000000000..928ae55a0b604bfb673bc383d85a9d7c123e4489
--- /dev/null
+++ b/yolov5/utils/activations.py
@@ -0,0 +1,126 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Activation functions."""
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class SiLU(nn.Module):
+    @staticmethod
+    def forward(x):
+        """
+        Applies the Sigmoid-weighted Linear Unit (SiLU) activation function.
+
+        https://arxiv.org/pdf/1606.08415.pdf.
+        """
+        return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module):
+    @staticmethod
+    def forward(x):
+        """
+        Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX.
+
+        Equivalent to x * F.hardsigmoid(x)
+        """
+        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX
+
+
+class Mish(nn.Module):
+    """Mish activation https://github.com/digantamisra98/Mish."""
+
+    @staticmethod
+    def forward(x):
+        """Applies the Mish activation function, a smooth alternative to ReLU."""
+        return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+    class F(torch.autograd.Function):
+        @staticmethod
+        def forward(ctx, x):
+            """Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`."""
+            ctx.save_for_backward(x)
+            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))
+
+        @staticmethod
+        def backward(ctx, grad_output):
+            """Computes the gradient of the Mish activation function with respect to input `x`."""
+            x = ctx.saved_tensors[0]
+            sx = torch.sigmoid(x)
+            fx = F.softplus(x).tanh()
+            return grad_output * (fx + x * sx * (1 - fx * fx))
+
+    def forward(self, x):
+        """Applies the Mish activation function to the input tensor `x`."""
+        return self.F.apply(x)
+
+
+class FReLU(nn.Module):
+    """FReLU activation https://arxiv.org/abs/2007.11824."""
+
+    def __init__(self, c1, k=3):  # ch_in, kernel
+        """Initializes FReLU activation with channel `c1` and kernel size `k`."""
+        super().__init__()
+        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
+        self.bn = nn.BatchNorm2d(c1)
+
+    def forward(self, x):
+        """
+        Applies FReLU activation with max operation between input and BN-convolved input.
+
+        https://arxiv.org/abs/2007.11824
+        """
+        return torch.max(x, self.bn(self.conv(x)))
+
+
+class AconC(nn.Module):
+    """
+    ACON activation (activate or not) function.
+
+    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
+    See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
+    """
+
+    def __init__(self, c1):
+        """Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control."""
+        super().__init__()
+        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
+
+    def forward(self, x):
+        """Applies AconC activation function with learnable parameters for channel-wise control on input tensor x."""
+        dpx = (self.p1 - self.p2) * x
+        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
+
+
+class MetaAconC(nn.Module):
+    """
+    ACON activation (activate or not) function.
+
+    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
+    See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf.
+    """
+
+    def __init__(self, c1, k=1, s=1, r=16):
+        """Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16)."""
+        super().__init__()
+        c2 = max(r, c1 // r)
+        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
+        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
+        # self.bn1 = nn.BatchNorm2d(c2)
+        # self.bn2 = nn.BatchNorm2d(c1)
+
+    def forward(self, x):
+        """Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation."""
+        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
+        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
+        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
+        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
+        dpx = (self.p1 - self.p2) * x
+        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
diff --git a/yolov5/utils/augmentations.py b/yolov5/utils/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..3025ebdb7092cecfd97f6aa860415f972a6b7950
--- /dev/null
+++ b/yolov5/utils/augmentations.py
@@ -0,0 +1,441 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Image augmentation functions."""
+
+import math
+import random
+
+import cv2
+import numpy as np
+import torch
+import torchvision.transforms as T
+import torchvision.transforms.functional as TF
+
+from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
+from utils.metrics import bbox_ioa
+
+IMAGENET_MEAN = 0.485, 0.456, 0.406  # RGB mean
+IMAGENET_STD = 0.229, 0.224, 0.225  # RGB standard deviation
+
+
+class Albumentations:
+    # YOLOv5 Albumentations class (optional, only used if package is installed)
+    def __init__(self, size=640):
+        """Initializes Albumentations class for optional data augmentation in YOLOv5 with specified input size."""
+        self.transform = None
+        prefix = colorstr("albumentations: ")
+        try:
+            import albumentations as A
+
+            check_version(A.__version__, "1.0.3", hard=True)  # version requirement
+
+            T = [
+                A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
+                A.Blur(p=0.01),
+                A.MedianBlur(p=0.01),
+                A.ToGray(p=0.01),
+                A.CLAHE(p=0.01),
+                A.RandomBrightnessContrast(p=0.0),
+                A.RandomGamma(p=0.0),
+                A.ImageCompression(quality_lower=75, p=0.0),
+            ]  # transforms
+            self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
+
+            LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
+        except ImportError:  # package not installed, skip
+            pass
+        except Exception as e:
+            LOGGER.info(f"{prefix}{e}")
+
+    def __call__(self, im, labels, p=1.0):
+        """Applies transformations to an image and labels with probability `p`, returning updated image and labels."""
+        if self.transform and random.random() < p:
+            new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0])  # transformed
+            im, labels = new["image"], np.array([[c, *b] for c, b in zip(new["class_labels"], new["bboxes"])])
+        return im, labels
+
+
+def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
+    """
+    Applies ImageNet normalization to RGB images in BCHW format, modifying them in-place if specified.
+
+    Example: y = (x - mean) / std
+    """
+    return TF.normalize(x, mean, std, inplace=inplace)
+
+
+def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
+    """Reverses ImageNet normalization for BCHW format RGB images by applying `x = x * std + mean`."""
+    for i in range(3):
+        x[:, i] = x[:, i] * std[i] + mean[i]
+    return x
+
+
+def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
+    """Applies HSV color-space augmentation to an image with random gains for hue, saturation, and value."""
+    if hgain or sgain or vgain:
+        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
+        hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
+        dtype = im.dtype  # uint8
+
+        x = np.arange(0, 256, dtype=r.dtype)
+        lut_hue = ((x * r[0]) % 180).astype(dtype)
+        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
+        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im)  # no return needed
+
+
+def hist_equalize(im, clahe=True, bgr=False):
+    """Equalizes image histogram, with optional CLAHE, for BGR or RGB image with shape (n,m,3) and range 0-255."""
+    yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+    if clahe:
+        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+    else:
+        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
+    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB
+
+
+def replicate(im, labels):
+    """
+    Replicates half of the smallest object labels in an image for data augmentation.
+
+    Returns augmented image and labels.
+    """
+    h, w = im.shape[:2]
+    boxes = labels[:, 1:].astype(int)
+    x1, y1, x2, y2 = boxes.T
+    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
+    for i in s.argsort()[: round(s.size * 0.5)]:  # smallest indices
+        x1b, y1b, x2b, y2b = boxes[i]
+        bh, bw = y2b - y1b, x2b - x1b
+        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
+        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+        im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]  # im4[ymin:ymax, xmin:xmax]
+        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+    return im, labels
+
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+    """Resizes and pads image to new_shape with stride-multiple constraints, returns resized image, ratio, padding."""
+    shape = im.shape[:2]  # current shape [height, width]
+    if isinstance(new_shape, int):
+        new_shape = (new_shape, new_shape)
+
+    # Scale ratio (new / old)
+    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+    if not scaleup:  # only scale down, do not scale up (for better val mAP)
+        r = min(r, 1.0)
+
+    # Compute padding
+    ratio = r, r  # width, height ratios
+    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
+    if auto:  # minimum rectangle
+        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
+    elif scaleFill:  # stretch
+        dw, dh = 0.0, 0.0
+        new_unpad = (new_shape[1], new_shape[0])
+        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
+
+    dw /= 2  # divide padding into 2 sides
+    dh /= 2
+
+    if shape[::-1] != new_unpad:  # resize
+        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
+    return im, ratio, (dw, dh)
+
+
+def random_perspective(
+    im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0)
+):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = im.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
+    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(im[:, :, ::-1])  # base
+    # ax[1].imshow(im2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    if n:
+        use_segments = any(x.any() for x in segments) and len(segments) == n
+        new = np.zeros((n, 4))
+        if use_segments:  # warp segments
+            segments = resample_segments(segments)  # upsample
+            for i, segment in enumerate(segments):
+                xy = np.ones((len(segment), 3))
+                xy[:, :2] = segment
+                xy = xy @ M.T  # transform
+                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine
+
+                # clip
+                new[i] = segment2box(xy, width, height)
+
+        else:  # warp boxes
+            xy = np.ones((n * 4, 3))
+            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
+            xy = xy @ M.T  # transform
+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine
+
+            # create new boxes
+            x = xy[:, [0, 2, 4, 6]]
+            y = xy[:, [1, 3, 5, 7]]
+            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+            # clip
+            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+
+    return im, targets
+
+
+def copy_paste(im, labels, segments, p=0.5):
+    """
+    Applies Copy-Paste augmentation by flipping and merging segments and labels on an image.
+
+    Details at https://arxiv.org/abs/2012.07177.
+    """
+    n = len(segments)
+    if p and n:
+        h, w, c = im.shape  # height, width, channels
+        im_new = np.zeros(im.shape, np.uint8)
+        for j in random.sample(range(n), k=round(p * n)):
+            l, s = labels[j], segments[j]
+            box = w - l[3], l[2], w - l[1], l[4]
+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
+            if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
+                labels = np.concatenate((labels, [[l[0], *box]]), 0)
+                segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+                cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
+
+        result = cv2.flip(im, 1)  # augment segments (flip left-right)
+        i = cv2.flip(im_new, 1).astype(bool)
+        im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug
+
+    return im, labels, segments
+
+
+def cutout(im, labels, p=0.5):
+    """
+    Applies cutout augmentation to an image with optional label adjustment, using random masks of varying sizes.
+
+    Details at https://arxiv.org/abs/1708.04552.
+    """
+    if random.random() < p:
+        h, w = im.shape[:2]
+        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
+        for s in scales:
+            mask_h = random.randint(1, int(h * s))  # create random masks
+            mask_w = random.randint(1, int(w * s))
+
+            # box
+            xmin = max(0, random.randint(0, w) - mask_w // 2)
+            ymin = max(0, random.randint(0, h) - mask_h // 2)
+            xmax = min(w, xmin + mask_w)
+            ymax = min(h, ymin + mask_h)
+
+            # apply random color mask
+            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+            # return unobscured labels
+            if len(labels) and s > 0.03:
+                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+                ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))  # intersection over area
+                labels = labels[ioa < 0.60]  # remove >60% obscured labels
+
+    return labels
+
+
+def mixup(im, labels, im2, labels2):
+    """
+    Applies MixUp augmentation by blending images and labels.
+
+    See https://arxiv.org/pdf/1710.09412.pdf for details.
+    """
+    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
+    im = (im * r + im2 * (1 - r)).astype(np.uint8)
+    labels = np.concatenate((labels, labels2), 0)
+    return im, labels
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
+    """
+    Filters bounding box candidates by minimum width-height threshold `wh_thr` (pixels), aspect ratio threshold
+    `ar_thr`, and area ratio threshold `area_thr`.
+
+    box1(4,n) is before augmentation, box2(4,n) is after augmentation.
+    """
+    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
+    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates
+
+
+def classify_albumentations(
+    augment=True,
+    size=224,
+    scale=(0.08, 1.0),
+    ratio=(0.75, 1.0 / 0.75),  # 0.75, 1.33
+    hflip=0.5,
+    vflip=0.0,
+    jitter=0.4,
+    mean=IMAGENET_MEAN,
+    std=IMAGENET_STD,
+    auto_aug=False,
+):
+    # YOLOv5 classification Albumentations (optional, only used if package is installed)
+    prefix = colorstr("albumentations: ")
+    try:
+        import albumentations as A
+        from albumentations.pytorch import ToTensorV2
+
+        check_version(A.__version__, "1.0.3", hard=True)  # version requirement
+        if augment:  # Resize and crop
+            T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
+            if auto_aug:
+                # TODO: implement AugMix, AutoAug & RandAug in albumentation
+                LOGGER.info(f"{prefix}auto augmentations are currently not supported")
+            else:
+                if hflip > 0:
+                    T += [A.HorizontalFlip(p=hflip)]
+                if vflip > 0:
+                    T += [A.VerticalFlip(p=vflip)]
+                if jitter > 0:
+                    color_jitter = (float(jitter),) * 3  # repeat value for brightness, contrast, satuaration, 0 hue
+                    T += [A.ColorJitter(*color_jitter, 0)]
+        else:  # Use fixed crop for eval set (reproducibility)
+            T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
+        T += [A.Normalize(mean=mean, std=std), ToTensorV2()]  # Normalize and convert to Tensor
+        LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
+        return A.Compose(T)
+
+    except ImportError:  # package not installed, skip
+        LOGGER.warning(f"{prefix}⚠ī¸ not found, install with `pip install albumentations` (recommended)")
+    except Exception as e:
+        LOGGER.info(f"{prefix}{e}")
+
+
+def classify_transforms(size=224):
+    """Applies a series of transformations including center crop, ToTensor, and normalization for classification."""
+    assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
+    # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
+    return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
+
+
+class LetterBox:
+    # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
+    def __init__(self, size=(640, 640), auto=False, stride=32):
+        """Initializes a LetterBox object for YOLOv5 image preprocessing with optional auto sizing and stride
+        adjustment.
+        """
+        super().__init__()
+        self.h, self.w = (size, size) if isinstance(size, int) else size
+        self.auto = auto  # pass max size integer, automatically solve for short side using stride
+        self.stride = stride  # used with auto
+
+    def __call__(self, im):
+        """
+        Resizes and pads input image `im` (HWC format) to specified dimensions, maintaining aspect ratio.
+
+        im = np.array HWC
+        """
+        imh, imw = im.shape[:2]
+        r = min(self.h / imh, self.w / imw)  # ratio of new/old
+        h, w = round(imh * r), round(imw * r)  # resized image
+        hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
+        top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
+        im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
+        im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
+        return im_out
+
+
+class CenterCrop:
+    # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
+    def __init__(self, size=640):
+        """Initializes CenterCrop for image preprocessing, accepting single int or tuple for size, defaults to 640."""
+        super().__init__()
+        self.h, self.w = (size, size) if isinstance(size, int) else size
+
+    def __call__(self, im):
+        """
+        Applies center crop to the input image and resizes it to a specified size, maintaining aspect ratio.
+
+        im = np.array HWC
+        """
+        imh, imw = im.shape[:2]
+        m = min(imh, imw)  # min dimension
+        top, left = (imh - m) // 2, (imw - m) // 2
+        return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
+
+
+class ToTensor:
+    # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
+    def __init__(self, half=False):
+        """Initializes ToTensor for YOLOv5 image preprocessing, with optional half precision (half=True for FP16)."""
+        super().__init__()
+        self.half = half
+
+    def __call__(self, im):
+        """
+        Converts BGR np.array image from HWC to RGB CHW format, and normalizes to [0, 1], with support for FP16 if
+        `half=True`.
+
+        im = np.array HWC in BGR order
+        """
+        im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
+        im = torch.from_numpy(im)  # to torch
+        im = im.half() if self.half else im.float()  # uint8 to fp16/32
+        im /= 255.0  # 0-255 to 0.0-1.0
+        return im
diff --git a/yolov5/utils/autoanchor.py b/yolov5/utils/autoanchor.py
new file mode 100644
index 0000000000000000000000000000000000000000..62c39811657b3b6475da9cef1a3256cbb570ef38
--- /dev/null
+++ b/yolov5/utils/autoanchor.py
@@ -0,0 +1,171 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""AutoAnchor utils."""
+
+import random
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from utils import TryExcept
+from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
+
+PREFIX = colorstr("AutoAnchor: ")
+
+
+def check_anchor_order(m):
+    """Checks and corrects anchor order against stride in YOLOv5 Detect() module if necessary."""
+    a = m.anchors.prod(-1).mean(-1).view(-1)  # mean anchor area per output layer
+    da = a[-1] - a[0]  # delta a
+    ds = m.stride[-1] - m.stride[0]  # delta s
+    if da and (da.sign() != ds.sign()):  # same order
+        LOGGER.info(f"{PREFIX}Reversing anchor order")
+        m.anchors[:] = m.anchors.flip(0)
+
+
+@TryExcept(f"{PREFIX}ERROR")
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+    """Evaluates anchor fit to dataset and adjusts if necessary, supporting customizable threshold and image size."""
+    m = model.module.model[-1] if hasattr(model, "module") else model.model[-1]  # Detect()
+    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
+    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh
+
+    def metric(k):  # compute metric
+        r = wh[:, None] / k[None]
+        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
+        best = x.max(1)[0]  # best_x
+        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
+        bpr = (best > 1 / thr).float().mean()  # best possible recall
+        return bpr, aat
+
+    stride = m.stride.to(m.anchors.device).view(-1, 1, 1)  # model strides
+    anchors = m.anchors.clone() * stride  # current anchors
+    bpr, aat = metric(anchors.cpu().view(-1, 2))
+    s = f"\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). "
+    if bpr > 0.98:  # threshold to recompute
+        LOGGER.info(f"{s}Current anchors are a good fit to dataset ✅")
+    else:
+        LOGGER.info(f"{s}Anchors are a poor fit to dataset ⚠ī¸, attempting to improve...")
+        na = m.anchors.numel() // 2  # number of anchors
+        anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+        new_bpr = metric(anchors)[0]
+        if new_bpr > bpr:  # replace anchors
+            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
+            m.anchors[:] = anchors.clone().view_as(m.anchors)
+            check_anchor_order(m)  # must be in pixel-space (not grid-space)
+            m.anchors /= stride
+            s = f"{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)"
+        else:
+            s = f"{PREFIX}Done ⚠ī¸ (original anchors better than new anchors, proceeding with original anchors)"
+        LOGGER.info(s)
+
+
+def kmean_anchors(dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+    """
+    Creates kmeans-evolved anchors from training dataset.
+
+    Arguments:
+        dataset: path to data.yaml, or a loaded dataset
+        n: number of anchors
+        img_size: image size used for training
+        thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+        gen: generations to evolve anchors using genetic algorithm
+        verbose: print all results
+
+    Return:
+        k: kmeans evolved anchors
+
+    Usage:
+        from utils.autoanchor import *; _ = kmean_anchors()
+    """
+    from scipy.cluster.vq import kmeans
+
+    npr = np.random
+    thr = 1 / thr
+
+    def metric(k, wh):  # compute metrics
+        r = wh[:, None] / k[None]
+        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
+        # x = wh_iou(wh, torch.tensor(k))  # iou metric
+        return x, x.max(1)[0]  # x, best_x
+
+    def anchor_fitness(k):  # mutation fitness
+        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+        return (best * (best > thr).float()).mean()  # fitness
+
+    def print_results(k, verbose=True):
+        k = k[np.argsort(k.prod(1))]  # sort small to large
+        x, best = metric(k, wh0)
+        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
+        s = (
+            f"{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n"
+            f"{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, "
+            f"past_thr={x[x > thr].mean():.3f}-mean: "
+        )
+        for x in k:
+            s += "%i,%i, " % (round(x[0]), round(x[1]))
+        if verbose:
+            LOGGER.info(s[:-2])
+        return k
+
+    if isinstance(dataset, str):  # *.yaml file
+        with open(dataset, errors="ignore") as f:
+            data_dict = yaml.safe_load(f)  # model dict
+        from utils.dataloaders import LoadImagesAndLabels
+
+        dataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True)
+
+    # Get label wh
+    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
+
+    # Filter
+    i = (wh0 < 3.0).any(1).sum()
+    if i:
+        LOGGER.info(f"{PREFIX}WARNING ⚠ī¸ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size")
+    wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32)  # filter > 2 pixels
+    # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
+
+    # Kmeans init
+    try:
+        LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...")
+        assert n <= len(wh)  # apply overdetermined constraint
+        s = wh.std(0)  # sigmas for whitening
+        k = kmeans(wh / s, n, iter=30)[0] * s  # points
+        assert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similar
+    except Exception:
+        LOGGER.warning(f"{PREFIX}WARNING ⚠ī¸ switching strategies from kmeans to random init")
+        k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random init
+    wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
+    k = print_results(k, verbose=False)
+
+    # Plot
+    # k, d = [None] * 20, [None] * 20
+    # for i in tqdm(range(1, 21)):
+    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
+    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
+    # ax = ax.ravel()
+    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
+    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+    # fig.savefig('wh.png', dpi=200)
+
+    # Evolve
+    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
+    pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for _ in pbar:
+        v = np.ones(sh)
+        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
+            v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+        kg = (k.copy() * v).clip(min=2.0)
+        fg = anchor_fitness(kg)
+        if fg > f:
+            f, k = fg, kg.copy()
+            pbar.desc = f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}"
+            if verbose:
+                print_results(k, verbose)
+
+    return print_results(k).astype(np.float32)
diff --git a/yolov5/utils/autobatch.py b/yolov5/utils/autobatch.py
new file mode 100644
index 0000000000000000000000000000000000000000..52a71f62c47c3ba607589c59899f717624fed4e3
--- /dev/null
+++ b/yolov5/utils/autobatch.py
@@ -0,0 +1,70 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Auto-batch utils."""
+
+from copy import deepcopy
+
+import numpy as np
+import torch
+
+from utils.general import LOGGER, colorstr
+from utils.torch_utils import profile
+
+
+def check_train_batch_size(model, imgsz=640, amp=True):
+    """Checks and computes optimal training batch size for YOLOv5 model, given image size and AMP setting."""
+    with torch.cuda.amp.autocast(amp):
+        return autobatch(deepcopy(model).train(), imgsz)  # compute optimal batch size
+
+
+def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
+    """Estimates optimal YOLOv5 batch size using `fraction` of CUDA memory."""
+    # Usage:
+    #     import torch
+    #     from utils.autobatch import autobatch
+    #     model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
+    #     print(autobatch(model))
+
+    # Check device
+    prefix = colorstr("AutoBatch: ")
+    LOGGER.info(f"{prefix}Computing optimal batch size for --imgsz {imgsz}")
+    device = next(model.parameters()).device  # get model device
+    if device.type == "cpu":
+        LOGGER.info(f"{prefix}CUDA not detected, using default CPU batch-size {batch_size}")
+        return batch_size
+    if torch.backends.cudnn.benchmark:
+        LOGGER.info(f"{prefix} ⚠ī¸ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
+        return batch_size
+
+    # Inspect CUDA memory
+    gb = 1 << 30  # bytes to GiB (1024 ** 3)
+    d = str(device).upper()  # 'CUDA:0'
+    properties = torch.cuda.get_device_properties(device)  # device properties
+    t = properties.total_memory / gb  # GiB total
+    r = torch.cuda.memory_reserved(device) / gb  # GiB reserved
+    a = torch.cuda.memory_allocated(device) / gb  # GiB allocated
+    f = t - (r + a)  # GiB free
+    LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
+
+    # Profile batch sizes
+    batch_sizes = [1, 2, 4, 8, 16]
+    try:
+        img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
+        results = profile(img, model, n=3, device=device)
+    except Exception as e:
+        LOGGER.warning(f"{prefix}{e}")
+
+    # Fit a solution
+    y = [x[2] for x in results if x]  # memory [2]
+    p = np.polyfit(batch_sizes[: len(y)], y, deg=1)  # first degree polynomial fit
+    b = int((f * fraction - p[1]) / p[0])  # y intercept (optimal batch size)
+    if None in results:  # some sizes failed
+        i = results.index(None)  # first fail index
+        if b >= batch_sizes[i]:  # y intercept above failure point
+            b = batch_sizes[max(i - 1, 0)]  # select prior safe point
+    if b < 1 or b > 1024:  # b outside of safe range
+        b = batch_size
+        LOGGER.warning(f"{prefix}WARNING ⚠ī¸ CUDA anomaly detected, recommend restart environment and retry command.")
+
+    fraction = (np.polyval(p, b) + r + a) / t  # actual fraction predicted
+    LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
+    return b
diff --git a/yolov5/utils/aws/__init__.py b/yolov5/utils/aws/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5/utils/aws/mime.sh b/yolov5/utils/aws/mime.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c319a83cfbdf09bea634c3bd9fca737c0b1dd505
--- /dev/null
+++ b/yolov5/utils/aws/mime.sh
@@ -0,0 +1,26 @@
+# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
+# This script will run on every instance restart, not only on first start
+# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
+
+Content-Type: multipart/mixed; boundary="//"
+MIME-Version: 1.0
+
+--//
+Content-Type: text/cloud-config; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="cloud-config.txt"
+
+#cloud-config
+cloud_final_modules:
+- [scripts-user, always]
+
+--//
+Content-Type: text/x-shellscript; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="userdata.txt"
+
+#!/bin/bash
+# --- paste contents of userdata.sh here ---
+--//
diff --git a/yolov5/utils/aws/resume.py b/yolov5/utils/aws/resume.py
new file mode 100644
index 0000000000000000000000000000000000000000..4525ba96749a72b414833e410426deb9b4fcca60
--- /dev/null
+++ b/yolov5/utils/aws/resume.py
@@ -0,0 +1,40 @@
+# Resume all interrupted trainings in yolov5/ dir including DDP trainings
+# Usage: $ python utils/aws/resume.py
+
+import os
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[2]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+port = 0  # --master_port
+path = Path("").resolve()
+for last in path.rglob("*/**/last.pt"):
+    ckpt = torch.load(last)
+    if ckpt["optimizer"] is None:
+        continue
+
+    # Load opt.yaml
+    with open(last.parent.parent / "opt.yaml", errors="ignore") as f:
+        opt = yaml.safe_load(f)
+
+    # Get device count
+    d = opt["device"].split(",")  # devices
+    nd = len(d)  # number of devices
+    ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1)  # distributed data parallel
+
+    if ddp:  # multi-GPU
+        port += 1
+        cmd = f"python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}"
+    else:  # single-GPU
+        cmd = f"python train.py --resume {last}"
+
+    cmd += " > /dev/null 2>&1 &"  # redirect output to dev/null and run in daemon thread
+    print(cmd)
+    os.system(cmd)
diff --git a/yolov5/utils/aws/userdata.sh b/yolov5/utils/aws/userdata.sh
new file mode 100644
index 0000000000000000000000000000000000000000..5fc1332ac1b0d1794cf8f8c5f6918059ae5dc381
--- /dev/null
+++ b/yolov5/utils/aws/userdata.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
+# This script will run only once on first instance start (for a re-start script see mime.sh)
+# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
+# Use >300 GB SSD
+
+cd home/ubuntu
+if [ ! -d yolov5 ]; then
+  echo "Running first-time script." # install dependencies, download COCO, pull Docker
+  git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
+  cd yolov5
+  bash data/scripts/get_coco.sh && echo "COCO done." &
+  sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
+  python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
+  wait && echo "All tasks done." # finish background tasks
+else
+  echo "Running re-start script." # resume interrupted runs
+  i=0
+  list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
+  while IFS= read -r id; do
+    ((i++))
+    echo "restarting container $i: $id"
+    sudo docker start $id
+    # sudo docker exec -it $id python train.py --resume # single-GPU
+    sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
+  done <<<"$list"
+fi
diff --git a/yolov5/utils/callbacks.py b/yolov5/utils/callbacks.py
new file mode 100644
index 0000000000000000000000000000000000000000..3275789fa12e9ecb9cdfffe67ca42b64d593dd91
--- /dev/null
+++ b/yolov5/utils/callbacks.py
@@ -0,0 +1,73 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Callback utils."""
+
+import threading
+
+
+class Callbacks:
+    """Handles all registered callbacks for YOLOv5 Hooks."""
+
+    def __init__(self):
+        """Initializes a Callbacks object to manage registered YOLOv5 training event hooks."""
+        self._callbacks = {
+            "on_pretrain_routine_start": [],
+            "on_pretrain_routine_end": [],
+            "on_train_start": [],
+            "on_train_epoch_start": [],
+            "on_train_batch_start": [],
+            "optimizer_step": [],
+            "on_before_zero_grad": [],
+            "on_train_batch_end": [],
+            "on_train_epoch_end": [],
+            "on_val_start": [],
+            "on_val_batch_start": [],
+            "on_val_image_end": [],
+            "on_val_batch_end": [],
+            "on_val_end": [],
+            "on_fit_epoch_end": [],  # fit = train + val
+            "on_model_save": [],
+            "on_train_end": [],
+            "on_params_update": [],
+            "teardown": [],
+        }
+        self.stop_training = False  # set True to interrupt training
+
+    def register_action(self, hook, name="", callback=None):
+        """
+        Register a new action to a callback hook.
+
+        Args:
+            hook: The callback hook name to register the action to
+            name: The name of the action for later reference
+            callback: The callback to fire
+        """
+        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+        assert callable(callback), f"callback '{callback}' is not callable"
+        self._callbacks[hook].append({"name": name, "callback": callback})
+
+    def get_registered_actions(self, hook=None):
+        """
+        Returns all the registered actions by callback hook.
+
+        Args:
+            hook: The name of the hook to check, defaults to all
+        """
+        return self._callbacks[hook] if hook else self._callbacks
+
+    def run(self, hook, *args, thread=False, **kwargs):
+        """
+        Loop through the registered actions and fire all callbacks on main thread.
+
+        Args:
+            hook: The name of the hook to check, defaults to all
+            args: Arguments to receive from YOLOv5
+            thread: (boolean) Run callbacks in daemon thread
+            kwargs: Keyword Arguments to receive from YOLOv5
+        """
+
+        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+        for logger in self._callbacks[hook]:
+            if thread:
+                threading.Thread(target=logger["callback"], args=args, kwargs=kwargs, daemon=True).start()
+            else:
+                logger["callback"](*args, **kwargs)
diff --git a/yolov5/utils/dataloaders.py b/yolov5/utils/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..04420c77a673617970715b299b65807db3d3e924
--- /dev/null
+++ b/yolov5/utils/dataloaders.py
@@ -0,0 +1,1371 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Dataloaders and dataset utils."""
+
+import contextlib
+import glob
+import hashlib
+import json
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+from pathlib import Path
+from threading import Thread
+from urllib.parse import urlparse
+
+import numpy as np
+import psutil
+import torch
+import torch.nn.functional as F
+import torchvision
+import yaml
+from PIL import ExifTags, Image, ImageOps
+from torch.utils.data import DataLoader, Dataset, dataloader, distributed
+from tqdm import tqdm
+
+from utils.augmentations import (
+    Albumentations,
+    augment_hsv,
+    classify_albumentations,
+    classify_transforms,
+    copy_paste,
+    letterbox,
+    mixup,
+    random_perspective,
+)
+from utils.general import (
+    DATASETS_DIR,
+    LOGGER,
+    NUM_THREADS,
+    TQDM_BAR_FORMAT,
+    check_dataset,
+    check_requirements,
+    check_yaml,
+    clean_str,
+    cv2,
+    is_colab,
+    is_kaggle,
+    segments2boxes,
+    unzip_file,
+    xyn2xy,
+    xywh2xyxy,
+    xywhn2xyxy,
+    xyxy2xywhn,
+)
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+HELP_URL = "See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data"
+IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm"  # include image suffixes
+VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv"  # include video suffixes
+LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv("RANK", -1))
+WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
+PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true"  # global pin_memory for dataloaders
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+    if ExifTags.TAGS[orientation] == "Orientation":
+        break
+
+
+def get_hash(paths):
+    """Generates a single SHA256 hash for a list of file or directory paths by combining their sizes and paths."""
+    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
+    h = hashlib.sha256(str(size).encode())  # hash sizes
+    h.update("".join(paths).encode())  # hash paths
+    return h.hexdigest()  # return hash
+
+
+def exif_size(img):
+    """Returns corrected PIL image size (width, height) considering EXIF orientation."""
+    s = img.size  # (width, height)
+    with contextlib.suppress(Exception):
+        rotation = dict(img._getexif().items())[orientation]
+        if rotation in [6, 8]:  # rotation 270 or 90
+            s = (s[1], s[0])
+    return s
+
+
+def exif_transpose(image):
+    """
+    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
+    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
+
+    :param image: The image to transpose.
+    :return: An image.
+    """
+    exif = image.getexif()
+    orientation = exif.get(0x0112, 1)  # default 1
+    if orientation > 1:
+        method = {
+            2: Image.FLIP_LEFT_RIGHT,
+            3: Image.ROTATE_180,
+            4: Image.FLIP_TOP_BOTTOM,
+            5: Image.TRANSPOSE,
+            6: Image.ROTATE_270,
+            7: Image.TRANSVERSE,
+            8: Image.ROTATE_90,
+        }.get(orientation)
+        if method is not None:
+            image = image.transpose(method)
+            del exif[0x0112]
+            image.info["exif"] = exif.tobytes()
+    return image
+
+
+def seed_worker(worker_id):
+    """
+    Sets the seed for a dataloader worker to ensure reproducibility, based on PyTorch's randomness notes.
+
+    See https://pytorch.org/docs/stable/notes/randomness.html#dataloader.
+    """
+    worker_seed = torch.initial_seed() % 2**32
+    np.random.seed(worker_seed)
+    random.seed(worker_seed)
+
+
+# Inherit from DistributedSampler and override iterator
+# https://github.com/pytorch/pytorch/blob/master/torch/utils/data/distributed.py
+class SmartDistributedSampler(distributed.DistributedSampler):
+    def __iter__(self):
+        """Yields indices for distributed data sampling, shuffled deterministically based on epoch and seed."""
+        g = torch.Generator()
+        g.manual_seed(self.seed + self.epoch)
+
+        # determine the the eventual size (n) of self.indices (DDP indices)
+        n = int((len(self.dataset) - self.rank - 1) / self.num_replicas) + 1  # num_replicas == WORLD_SIZE
+        idx = torch.randperm(n, generator=g)
+        if not self.shuffle:
+            idx = idx.sort()[0]
+
+        idx = idx.tolist()
+        if self.drop_last:
+            idx = idx[: self.num_samples]
+        else:
+            padding_size = self.num_samples - len(idx)
+            if padding_size <= len(idx):
+                idx += idx[:padding_size]
+            else:
+                idx += (idx * math.ceil(padding_size / len(idx)))[:padding_size]
+
+        return iter(idx)
+
+
+def create_dataloader(
+    path,
+    imgsz,
+    batch_size,
+    stride,
+    single_cls=False,
+    hyp=None,
+    augment=False,
+    cache=False,
+    pad=0.0,
+    rect=False,
+    rank=-1,
+    workers=8,
+    image_weights=False,
+    quad=False,
+    prefix="",
+    shuffle=False,
+    seed=0,
+):
+    if rect and shuffle:
+        LOGGER.warning("WARNING ⚠ī¸ --rect is incompatible with DataLoader shuffle, setting shuffle=False")
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabels(
+            path,
+            imgsz,
+            batch_size,
+            augment=augment,  # augmentation
+            hyp=hyp,  # hyperparameters
+            rect=rect,  # rectangular batches
+            cache_images=cache,
+            single_cls=single_cls,
+            stride=int(stride),
+            pad=pad,
+            image_weights=image_weights,
+            prefix=prefix,
+            rank=rank,
+        )
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + seed + RANK)
+    return loader(
+        dataset,
+        batch_size=batch_size,
+        shuffle=shuffle and sampler is None,
+        num_workers=nw,
+        sampler=sampler,
+        pin_memory=PIN_MEMORY,
+        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
+        worker_init_fn=seed_worker,
+        generator=generator,
+    ), dataset
+
+
+class InfiniteDataLoader(dataloader.DataLoader):
+    """
+    Dataloader that reuses workers.
+
+    Uses same syntax as vanilla DataLoader
+    """
+
+    def __init__(self, *args, **kwargs):
+        """Initializes an InfiniteDataLoader that reuses workers with standard DataLoader syntax, augmenting with a
+        repeating sampler.
+        """
+        super().__init__(*args, **kwargs)
+        object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
+        self.iterator = super().__iter__()
+
+    def __len__(self):
+        """Returns the length of the batch sampler's sampler in the InfiniteDataLoader."""
+        return len(self.batch_sampler.sampler)
+
+    def __iter__(self):
+        """Yields batches of data indefinitely in a loop by resetting the sampler when exhausted."""
+        for _ in range(len(self)):
+            yield next(self.iterator)
+
+
+class _RepeatSampler:
+    """
+    Sampler that repeats forever.
+
+    Args:
+        sampler (Sampler)
+    """
+
+    def __init__(self, sampler):
+        """Initializes a perpetual sampler wrapping a provided `Sampler` instance for endless data iteration."""
+        self.sampler = sampler
+
+    def __iter__(self):
+        """Returns an infinite iterator over the dataset by repeatedly yielding from the given sampler."""
+        while True:
+            yield from iter(self.sampler)
+
+
+class LoadScreenshots:
+    # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
+    def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
+        """
+        Initializes a screenshot dataloader for YOLOv5 with specified source region, image size, stride, auto, and
+        transforms.
+
+        Source = [screen_number left top width height] (pixels)
+        """
+        check_requirements("mss")
+        import mss
+
+        source, *params = source.split()
+        self.screen, left, top, width, height = 0, None, None, None, None  # default to full screen 0
+        if len(params) == 1:
+            self.screen = int(params[0])
+        elif len(params) == 4:
+            left, top, width, height = (int(x) for x in params)
+        elif len(params) == 5:
+            self.screen, left, top, width, height = (int(x) for x in params)
+        self.img_size = img_size
+        self.stride = stride
+        self.transforms = transforms
+        self.auto = auto
+        self.mode = "stream"
+        self.frame = 0
+        self.sct = mss.mss()
+
+        # Parse monitor shape
+        monitor = self.sct.monitors[self.screen]
+        self.top = monitor["top"] if top is None else (monitor["top"] + top)
+        self.left = monitor["left"] if left is None else (monitor["left"] + left)
+        self.width = width or monitor["width"]
+        self.height = height or monitor["height"]
+        self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
+
+    def __iter__(self):
+        """Iterates over itself, enabling use in loops and iterable contexts."""
+        return self
+
+    def __next__(self):
+        """Captures and returns the next screen frame as a BGR numpy array, cropping to only the first three channels
+        from BGRA.
+        """
+        im0 = np.array(self.sct.grab(self.monitor))[:, :, :3]  # [:, :, :3] BGRA to BGR
+        s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
+
+        if self.transforms:
+            im = self.transforms(im0)  # transforms
+        else:
+            im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0]  # padded resize
+            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+            im = np.ascontiguousarray(im)  # contiguous
+        self.frame += 1
+        return str(self.screen), im, im0, None, s  # screen, img, original img, im0s, s
+
+
+class LoadImages:
+    """YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`"""
+
+    def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+        """Initializes YOLOv5 loader for images/videos, supporting glob patterns, directories, and lists of paths."""
+        if isinstance(path, str) and Path(path).suffix == ".txt":  # *.txt file with img/vid/dir on each line
+            path = Path(path).read_text().rsplit()
+        files = []
+        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
+            p = str(Path(p).resolve())
+            if "*" in p:
+                files.extend(sorted(glob.glob(p, recursive=True)))  # glob
+            elif os.path.isdir(p):
+                files.extend(sorted(glob.glob(os.path.join(p, "*.*"))))  # dir
+            elif os.path.isfile(p):
+                files.append(p)  # files
+            else:
+                raise FileNotFoundError(f"{p} does not exist")
+
+        images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS]
+        videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS]
+        ni, nv = len(images), len(videos)
+
+        self.img_size = img_size
+        self.stride = stride
+        self.files = images + videos
+        self.nf = ni + nv  # number of files
+        self.video_flag = [False] * ni + [True] * nv
+        self.mode = "image"
+        self.auto = auto
+        self.transforms = transforms  # optional
+        self.vid_stride = vid_stride  # video frame-rate stride
+        if any(videos):
+            self._new_video(videos[0])  # new video
+        else:
+            self.cap = None
+        assert self.nf > 0, (
+            f"No images or videos found in {p}. "
+            f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}"
+        )
+
+    def __iter__(self):
+        """Initializes iterator by resetting count and returns the iterator object itself."""
+        self.count = 0
+        return self
+
+    def __next__(self):
+        """Advances to the next file in the dataset, raising StopIteration if at the end."""
+        if self.count == self.nf:
+            raise StopIteration
+        path = self.files[self.count]
+
+        if self.video_flag[self.count]:
+            # Read video
+            self.mode = "video"
+            for _ in range(self.vid_stride):
+                self.cap.grab()
+            ret_val, im0 = self.cap.retrieve()
+            while not ret_val:
+                self.count += 1
+                self.cap.release()
+                if self.count == self.nf:  # last video
+                    raise StopIteration
+                path = self.files[self.count]
+                self._new_video(path)
+                ret_val, im0 = self.cap.read()
+
+            self.frame += 1
+            # im0 = self._cv2_rotate(im0)  # for use if cv2 autorotation is False
+            s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: "
+
+        else:
+            # Read image
+            self.count += 1
+            im0 = cv2.imread(path)  # BGR
+            assert im0 is not None, f"Image Not Found {path}"
+            s = f"image {self.count}/{self.nf} {path}: "
+
+        if self.transforms:
+            im = self.transforms(im0)  # transforms
+        else:
+            im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0]  # padded resize
+            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+            im = np.ascontiguousarray(im)  # contiguous
+
+        return path, im, im0, self.cap, s
+
+    def _new_video(self, path):
+        """Initializes a new video capture object with path, frame count adjusted by stride, and orientation
+        metadata.
+        """
+        self.frame = 0
+        self.cap = cv2.VideoCapture(path)
+        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
+        self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META))  # rotation degrees
+        # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)  # disable https://github.com/ultralytics/yolov5/issues/8493
+
+    def _cv2_rotate(self, im):
+        """Rotates a cv2 image based on its orientation; supports 0, 90, and 180 degrees rotations."""
+        if self.orientation == 0:
+            return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
+        elif self.orientation == 180:
+            return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
+        elif self.orientation == 90:
+            return cv2.rotate(im, cv2.ROTATE_180)
+        return im
+
+    def __len__(self):
+        """Returns the number of files in the dataset."""
+        return self.nf  # number of files
+
+
+class LoadStreams:
+    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
+    def __init__(self, sources="file.streams", img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+        """Initializes a stream loader for processing video streams with YOLOv5, supporting various sources including
+        YouTube.
+        """
+        torch.backends.cudnn.benchmark = True  # faster for fixed-size inference
+        self.mode = "stream"
+        self.img_size = img_size
+        self.stride = stride
+        self.vid_stride = vid_stride  # video frame-rate stride
+        sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
+        n = len(sources)
+        self.sources = [clean_str(x) for x in sources]  # clean source names for later
+        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+        for i, s in enumerate(sources):  # index, source
+            # Start thread to read frames from video stream
+            st = f"{i + 1}/{n}: {s}... "
+            if urlparse(s).hostname in ("www.youtube.com", "youtube.com", "youtu.be"):  # if source is YouTube video
+                # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
+                check_requirements(("pafy", "youtube_dl==2020.12.2"))
+                import pafy
+
+                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
+            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
+            if s == 0:
+                assert not is_colab(), "--source 0 webcam unsupported on Colab. Rerun command in a local environment."
+                assert not is_kaggle(), "--source 0 webcam unsupported on Kaggle. Rerun command in a local environment."
+            cap = cv2.VideoCapture(s)
+            assert cap.isOpened(), f"{st}Failed to open {s}"
+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
+            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float("inf")  # infinite stream fallback
+            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback
+
+            _, self.imgs[i] = cap.read()  # guarantee first frame
+            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
+            LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
+            self.threads[i].start()
+        LOGGER.info("")  # newline
+
+        # check for common shapes
+        s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
+        self.auto = auto and self.rect
+        self.transforms = transforms  # optional
+        if not self.rect:
+            LOGGER.warning("WARNING ⚠ī¸ Stream shapes differ. For optimal performance supply similarly-shaped streams.")
+
+    def update(self, i, cap, stream):
+        """Reads frames from stream `i`, updating imgs array; handles stream reopening on signal loss."""
+        n, f = 0, self.frames[i]  # frame number, frame array
+        while cap.isOpened() and n < f:
+            n += 1
+            cap.grab()  # .read() = .grab() followed by .retrieve()
+            if n % self.vid_stride == 0:
+                success, im = cap.retrieve()
+                if success:
+                    self.imgs[i] = im
+                else:
+                    LOGGER.warning("WARNING ⚠ī¸ Video stream unresponsive, please check your IP camera connection.")
+                    self.imgs[i] = np.zeros_like(self.imgs[i])
+                    cap.open(stream)  # re-open stream if signal was lost
+            time.sleep(0.0)  # wait time
+
+    def __iter__(self):
+        """Resets and returns the iterator for iterating over video frames or images in a dataset."""
+        self.count = -1
+        return self
+
+    def __next__(self):
+        """Iterates over video frames or images, halting on thread stop or 'q' key press, raising `StopIteration` when
+        done.
+        """
+        self.count += 1
+        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord("q"):  # q to quit
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        im0 = self.imgs.copy()
+        if self.transforms:
+            im = np.stack([self.transforms(x) for x in im0])  # transforms
+        else:
+            im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0])  # resize
+            im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
+            im = np.ascontiguousarray(im)  # contiguous
+
+        return self.sources, im, im0, None, ""
+
+    def __len__(self):
+        """Returns the number of sources in the dataset, supporting up to 32 streams at 30 FPS over 30 years."""
+        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+    """Generates label file paths from corresponding image file paths by replacing `/images/` with `/labels/` and
+    extension with `.txt`.
+    """
+    sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}"  # /images/, /labels/ substrings
+    return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):
+    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
+    cache_version = 0.6  # dataset labels *.cache version
+    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
+
+    def __init__(
+        self,
+        path,
+        img_size=640,
+        batch_size=16,
+        augment=False,
+        hyp=None,
+        rect=False,
+        image_weights=False,
+        cache_images=False,
+        single_cls=False,
+        stride=32,
+        pad=0.0,
+        min_items=0,
+        prefix="",
+        rank=-1,
+        seed=0,
+    ):
+        self.img_size = img_size
+        self.augment = augment
+        self.hyp = hyp
+        self.image_weights = image_weights
+        self.rect = False if image_weights else rect
+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
+        self.mosaic_border = [-img_size // 2, -img_size // 2]
+        self.stride = stride
+        self.path = path
+        self.albumentations = Albumentations(size=img_size) if augment else None
+
+        try:
+            f = []  # image files
+            for p in path if isinstance(path, list) else [path]:
+                p = Path(p)  # os-agnostic
+                if p.is_dir():  # dir
+                    f += glob.glob(str(p / "**" / "*.*"), recursive=True)
+                    # f = list(p.rglob('*.*'))  # pathlib
+                elif p.is_file():  # file
+                    with open(p) as t:
+                        t = t.read().strip().splitlines()
+                        parent = str(p.parent) + os.sep
+                        f += [x.replace("./", parent, 1) if x.startswith("./") else x for x in t]  # to global path
+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # to global path (pathlib)
+                else:
+                    raise FileNotFoundError(f"{prefix}{p} does not exist")
+            self.im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
+            assert self.im_files, f"{prefix}No images found"
+        except Exception as e:
+            raise Exception(f"{prefix}Error loading data from {path}: {e}\n{HELP_URL}") from e
+
+        # Check cache
+        self.label_files = img2label_paths(self.im_files)  # labels
+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix(".cache")
+        try:
+            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
+            assert cache["version"] == self.cache_version  # matches current version
+            assert cache["hash"] == get_hash(self.label_files + self.im_files)  # identical hash
+        except Exception:
+            cache, exists = self.cache_labels(cache_path, prefix), False  # run cache ops
+
+        # Display cache
+        nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupt, total
+        if exists and LOCAL_RANK in {-1, 0}:
+            d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
+            tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT)  # display cache results
+            if cache["msgs"]:
+                LOGGER.info("\n".join(cache["msgs"]))  # display warnings
+        assert nf > 0 or not augment, f"{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}"
+
+        # Read cache
+        [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
+        labels, shapes, self.segments = zip(*cache.values())
+        nl = len(np.concatenate(labels, 0))  # number of labels
+        assert nl > 0 or not augment, f"{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}"
+        self.labels = list(labels)
+        self.shapes = np.array(shapes)
+        self.im_files = list(cache.keys())  # update
+        self.label_files = img2label_paths(cache.keys())  # update
+
+        # Filter images
+        if min_items:
+            include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
+            LOGGER.info(f"{prefix}{n - len(include)}/{n} images filtered from dataset")
+            self.im_files = [self.im_files[i] for i in include]
+            self.label_files = [self.label_files[i] for i in include]
+            self.labels = [self.labels[i] for i in include]
+            self.segments = [self.segments[i] for i in include]
+            self.shapes = self.shapes[include]  # wh
+
+        # Create indices
+        n = len(self.shapes)  # number of images
+        bi = np.floor(np.arange(n) / batch_size).astype(int)  # batch index
+        nb = bi[-1] + 1  # number of batches
+        self.batch = bi  # batch index of image
+        self.n = n
+        self.indices = np.arange(n)
+        if rank > -1:  # DDP indices (see: SmartDistributedSampler)
+            # force each rank (i.e. GPU process) to sample the same subset of data on every epoch
+            self.indices = self.indices[np.random.RandomState(seed=seed).permutation(n) % WORLD_SIZE == RANK]
+
+        # Update labels
+        include_class = []  # filter labels to include only these classes (optional)
+        self.segments = list(self.segments)
+        include_class_array = np.array(include_class).reshape(1, -1)
+        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
+            if include_class:
+                j = (label[:, 0:1] == include_class_array).any(1)
+                self.labels[i] = label[j]
+                if segment:
+                    self.segments[i] = [segment[idx] for idx, elem in enumerate(j) if elem]
+            if single_cls:  # single-class training, merge all classes into 0
+                self.labels[i][:, 0] = 0
+
+        # Rectangular Training
+        if self.rect:
+            # Sort by aspect ratio
+            s = self.shapes  # wh
+            ar = s[:, 1] / s[:, 0]  # aspect ratio
+            irect = ar.argsort()
+            self.im_files = [self.im_files[i] for i in irect]
+            self.label_files = [self.label_files[i] for i in irect]
+            self.labels = [self.labels[i] for i in irect]
+            self.segments = [self.segments[i] for i in irect]
+            self.shapes = s[irect]  # wh
+            ar = ar[irect]
+
+            # Set training image shapes
+            shapes = [[1, 1]] * nb
+            for i in range(nb):
+                ari = ar[bi == i]
+                mini, maxi = ari.min(), ari.max()
+                if maxi < 1:
+                    shapes[i] = [maxi, 1]
+                elif mini > 1:
+                    shapes[i] = [1, 1 / mini]
+
+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
+
+        # Cache images into RAM/disk for faster training
+        if cache_images == "ram" and not self.check_cache_ram(prefix=prefix):
+            cache_images = False
+        self.ims = [None] * n
+        self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
+        if cache_images:
+            b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
+            self.im_hw0, self.im_hw = [None] * n, [None] * n
+            fcn = self.cache_images_to_disk if cache_images == "disk" else self.load_image
+            results = ThreadPool(NUM_THREADS).imap(lambda i: (i, fcn(i)), self.indices)
+            pbar = tqdm(results, total=len(self.indices), bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
+            for i, x in pbar:
+                if cache_images == "disk":
+                    b += self.npy_files[i].stat().st_size
+                else:  # 'ram'
+                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
+                    b += self.ims[i].nbytes * WORLD_SIZE
+                pbar.desc = f"{prefix}Caching images ({b / gb:.1f}GB {cache_images})"
+            pbar.close()
+
+    def check_cache_ram(self, safety_margin=0.1, prefix=""):
+        """Checks if available RAM is sufficient for caching images, adjusting for a safety margin."""
+        b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
+        n = min(self.n, 30)  # extrapolate from 30 random images
+        for _ in range(n):
+            im = cv2.imread(random.choice(self.im_files))  # sample image
+            ratio = self.img_size / max(im.shape[0], im.shape[1])  # max(h, w)  # ratio
+            b += im.nbytes * ratio**2
+        mem_required = b * self.n / n  # GB required to cache dataset into RAM
+        mem = psutil.virtual_memory()
+        cache = mem_required * (1 + safety_margin) < mem.available  # to cache or not to cache, that is the question
+        if not cache:
+            LOGGER.info(
+                f'{prefix}{mem_required / gb:.1f}GB RAM required, '
+                f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
+                f"{'caching images ✅' if cache else 'not caching images ⚠ī¸'}"
+            )
+        return cache
+
+    def cache_labels(self, path=Path("./labels.cache"), prefix=""):
+        """Caches dataset labels, verifies images, reads shapes, and tracks dataset integrity."""
+        x = {}  # dict
+        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
+        desc = f"{prefix}Scanning {path.parent / path.stem}..."
+        with Pool(NUM_THREADS) as pool:
+            pbar = tqdm(
+                pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
+                desc=desc,
+                total=len(self.im_files),
+                bar_format=TQDM_BAR_FORMAT,
+            )
+            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+                nm += nm_f
+                nf += nf_f
+                ne += ne_f
+                nc += nc_f
+                if im_file:
+                    x[im_file] = [lb, shape, segments]
+                if msg:
+                    msgs.append(msg)
+                pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
+
+        pbar.close()
+        if msgs:
+            LOGGER.info("\n".join(msgs))
+        if nf == 0:
+            LOGGER.warning(f"{prefix}WARNING ⚠ī¸ No labels found in {path}. {HELP_URL}")
+        x["hash"] = get_hash(self.label_files + self.im_files)
+        x["results"] = nf, nm, ne, nc, len(self.im_files)
+        x["msgs"] = msgs  # warnings
+        x["version"] = self.cache_version  # cache version
+        try:
+            np.save(path, x)  # save cache for next time
+            path.with_suffix(".cache.npy").rename(path)  # remove .npy suffix
+            LOGGER.info(f"{prefix}New cache created: {path}")
+        except Exception as e:
+            LOGGER.warning(f"{prefix}WARNING ⚠ī¸ Cache directory {path.parent} is not writeable: {e}")  # not writeable
+        return x
+
+    def __len__(self):
+        """Returns the number of images in the dataset."""
+        return len(self.im_files)
+
+    # def __iter__(self):
+    #     self.count = -1
+    #     print('ran dataset iter')
+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+    #     return self
+
+    def __getitem__(self, index):
+        """Fetches the dataset item at the given index, considering linear, shuffled, or weighted sampling."""
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp["mosaic"]
+        if mosaic:
+            # Load mosaic
+            img, labels = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp["mixup"]:
+                img, labels = mixup(img, labels, *self.load_mosaic(random.choice(self.indices)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels = random_perspective(
+                    img,
+                    labels,
+                    degrees=hyp["degrees"],
+                    translate=hyp["translate"],
+                    scale=hyp["scale"],
+                    shear=hyp["shear"],
+                    perspective=hyp["perspective"],
+                )
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
+
+        if self.augment:
+            # Albumentations
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
+
+            # Flip up-down
+            if random.random() < hyp["flipud"]:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+
+            # Flip left-right
+            if random.random() < hyp["fliplr"]:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+
+            # Cutouts
+            # labels = cutout(img, labels, p=0.5)
+            # nl = len(labels)  # update after cutout
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return torch.from_numpy(img), labels_out, self.im_files[index], shapes
+
+    def load_image(self, i):
+        """
+        Loads an image by index, returning the image, its original dimensions, and resized dimensions.
+
+        Returns (im, original hw, resized hw)
+        """
+        im, f, fn = (
+            self.ims[i],
+            self.im_files[i],
+            self.npy_files[i],
+        )
+        if im is None:  # not cached in RAM
+            if fn.exists():  # load npy
+                im = np.load(fn)
+            else:  # read image
+                im = cv2.imread(f)  # BGR
+                assert im is not None, f"Image Not Found {f}"
+            h0, w0 = im.shape[:2]  # orig hw
+            r = self.img_size / max(h0, w0)  # ratio
+            if r != 1:  # if sizes are not equal
+                interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
+                im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp)
+            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
+        return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized
+
+    def cache_images_to_disk(self, i):
+        """Saves an image to disk as an *.npy file for quicker loading, identified by index `i`."""
+        f = self.npy_files[i]
+        if not f.exists():
+            np.save(f.as_posix(), cv2.imread(self.im_files[i]))
+
+    def load_mosaic(self, index):
+        """Loads a 4-image mosaic for YOLOv5, combining 1 selected and 3 random images, with labels and segments."""
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        random.shuffle(indices)
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
+        img4, labels4 = random_perspective(
+            img4,
+            labels4,
+            segments4,
+            degrees=self.hyp["degrees"],
+            translate=self.hyp["translate"],
+            scale=self.hyp["scale"],
+            shear=self.hyp["shear"],
+            perspective=self.hyp["perspective"],
+            border=self.mosaic_border,
+        )  # border to remove
+
+        return img4, labels4
+
+    def load_mosaic9(self, index):
+        """Loads 1 image + 8 random images into a 9-image mosaic for augmented YOLOv5 training, returning labels and
+        segments.
+        """
+        labels9, segments9 = [], []
+        s = self.img_size
+        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
+        random.shuffle(indices)
+        hp, wp = -1, -1  # height, width previous
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img9
+            if i == 0:  # center
+                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                h0, w0 = h, w
+                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
+            elif i == 1:  # top
+                c = s, s - h, s + w, s
+            elif i == 2:  # top right
+                c = s + wp, s - h, s + wp + w, s
+            elif i == 3:  # right
+                c = s + w0, s, s + w0 + w, s + h
+            elif i == 4:  # bottom right
+                c = s + w0, s + hp, s + w0 + w, s + hp + h
+            elif i == 5:  # bottom
+                c = s + w0 - w, s + h0, s + w0, s + h0 + h
+            elif i == 6:  # bottom left
+                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+            elif i == 7:  # left
+                c = s - w, s + h0 - h, s, s + h0
+            elif i == 8:  # top left
+                c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+            padx, pady = c[:2]
+            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+            labels9.append(labels)
+            segments9.extend(segments)
+
+            # Image
+            img9[y1:y2, x1:x2] = img[y1 - pady :, x1 - padx :]  # img9[ymin:ymax, xmin:xmax]
+            hp, wp = h, w  # height, width previous
+
+        # Offset
+        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
+        img9 = img9[yc : yc + 2 * s, xc : xc + 2 * s]
+
+        # Concat/clip labels
+        labels9 = np.concatenate(labels9, 0)
+        labels9[:, [1, 3]] -= xc
+        labels9[:, [2, 4]] -= yc
+        c = np.array([xc, yc])  # centers
+        segments9 = [x - c for x in segments9]
+
+        for x in (labels9[:, 1:], *segments9):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img9, labels9 = replicate(img9, labels9)  # replicate
+
+        # Augment
+        img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp["copy_paste"])
+        img9, labels9 = random_perspective(
+            img9,
+            labels9,
+            segments9,
+            degrees=self.hyp["degrees"],
+            translate=self.hyp["translate"],
+            scale=self.hyp["scale"],
+            shear=self.hyp["shear"],
+            perspective=self.hyp["perspective"],
+            border=self.mosaic_border,
+        )  # border to remove
+
+        return img9, labels9
+
+    @staticmethod
+    def collate_fn(batch):
+        """Batches images, labels, paths, and shapes, assigning unique indices to targets in merged label tensor."""
+        im, label, path, shapes = zip(*batch)  # transposed
+        for i, lb in enumerate(label):
+            lb[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(im, 0), torch.cat(label, 0), path, shapes
+
+    @staticmethod
+    def collate_fn4(batch):
+        """Bundles a batch's data by quartering the number of shapes and paths, preparing it for model input."""
+        im, label, path, shapes = zip(*batch)  # transposed
+        n = len(shapes) // 4
+        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
+        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
+        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
+            i *= 4
+            if random.random() < 0.5:
+                im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode="bilinear", align_corners=False)[
+                    0
+                ].type(im[i].type())
+                lb = label[i]
+            else:
+                im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
+                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+            im4.append(im1)
+            label4.append(lb)
+
+        for i, lb in enumerate(label4):
+            lb[:, 0] = i  # add target image index for build_targets()
+
+        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def flatten_recursive(path=DATASETS_DIR / "coco128"):
+    """Flattens a directory by copying all files from subdirectories to a new top-level directory, preserving
+    filenames.
+    """
+    new_path = Path(f"{str(path)}_flat")
+    if os.path.exists(new_path):
+        shutil.rmtree(new_path)  # delete output folder
+    os.makedirs(new_path)  # make new output folder
+    for file in tqdm(glob.glob(f"{str(Path(path))}/**/*.*", recursive=True)):
+        shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path=DATASETS_DIR / "coco128"):
+    """
+    Converts a detection dataset to a classification dataset, creating a directory for each class and extracting
+    bounding boxes.
+
+    Example: from utils.dataloaders import *; extract_boxes()
+    """
+    path = Path(path)  # images dir
+    shutil.rmtree(path / "classification") if (path / "classification").is_dir() else None  # remove existing
+    files = list(path.rglob("*.*"))
+    n = len(files)  # number of files
+    for im_file in tqdm(files, total=n):
+        if im_file.suffix[1:] in IMG_FORMATS:
+            # image
+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
+            h, w = im.shape[:2]
+
+            # labels
+            lb_file = Path(img2label_paths([str(im_file)])[0])
+            if Path(lb_file).exists():
+                with open(lb_file) as f:
+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
+
+                for j, x in enumerate(lb):
+                    c = int(x[0])  # class
+                    f = (path / "classification") / f"{c}" / f"{path.stem}_{im_file.stem}_{j}.jpg"  # new filename
+                    if not f.parent.is_dir():
+                        f.parent.mkdir(parents=True)
+
+                    b = x[1:] * [w, h, w, h]  # box
+                    # b[2:] = b[2:].max()  # rectangle to square
+                    b[2:] = b[2:] * 1.2 + 3  # pad
+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
+
+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+                    assert cv2.imwrite(str(f), im[b[1] : b[3], b[0] : b[2]]), f"box failure in {f}"
+
+
+def autosplit(path=DATASETS_DIR / "coco128/images", weights=(0.9, 0.1, 0.0), annotated_only=False):
+    """Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+    Usage: from utils.dataloaders import *; autosplit()
+    Arguments
+        path:            Path to images directory
+        weights:         Train, val, test weights (list, tuple)
+        annotated_only:  Only use images with an annotated txt file
+    """
+    path = Path(path)  # images dir
+    files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
+    n = len(files)  # number of files
+    random.seed(0)  # for reproducibility
+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
+
+    txt = ["autosplit_train.txt", "autosplit_val.txt", "autosplit_test.txt"]  # 3 txt files
+    for x in txt:
+        if (path.parent / x).exists():
+            (path.parent / x).unlink()  # remove existing
+
+    print(f"Autosplitting images from {path}" + ", using *.txt labeled images only" * annotated_only)
+    for i, img in tqdm(zip(indices, files), total=n):
+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
+            with open(path.parent / txt[i], "a") as f:
+                f.write(f"./{img.relative_to(path.parent).as_posix()}" + "\n")  # add image to txt file
+
+
+def verify_image_label(args):
+    """Verifies a single image-label pair, ensuring image format, size, and legal label values."""
+    im_file, lb_file, prefix = args
+    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, "", []  # number (missing, found, empty, corrupt), message, segments
+    try:
+        # verify images
+        im = Image.open(im_file)
+        im.verify()  # PIL verify
+        shape = exif_size(im)  # image size
+        assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
+        assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}"
+        if im.format.lower() in ("jpg", "jpeg"):
+            with open(im_file, "rb") as f:
+                f.seek(-2, 2)
+                if f.read() != b"\xff\xd9":  # corrupt JPEG
+                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100)
+                    msg = f"{prefix}WARNING ⚠ī¸ {im_file}: corrupt JPEG restored and saved"
+
+        # verify labels
+        if os.path.isfile(lb_file):
+            nf = 1  # label found
+            with open(lb_file) as f:
+                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
+                if any(len(x) > 6 for x in lb):  # is segment
+                    classes = np.array([x[0] for x in lb], dtype=np.float32)
+                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
+                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
+                lb = np.array(lb, dtype=np.float32)
+            nl = len(lb)
+            if nl:
+                assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected"
+                assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}"
+                assert (lb[:, 1:] <= 1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
+                _, i = np.unique(lb, axis=0, return_index=True)
+                if len(i) < nl:  # duplicate row check
+                    lb = lb[i]  # remove duplicates
+                    if segments:
+                        segments = [segments[x] for x in i]
+                    msg = f"{prefix}WARNING ⚠ī¸ {im_file}: {nl - len(i)} duplicate labels removed"
+            else:
+                ne = 1  # label empty
+                lb = np.zeros((0, 5), dtype=np.float32)
+        else:
+            nm = 1  # label missing
+            lb = np.zeros((0, 5), dtype=np.float32)
+        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
+    except Exception as e:
+        nc = 1
+        msg = f"{prefix}WARNING ⚠ī¸ {im_file}: ignoring corrupt image/label: {e}"
+        return [None, None, None, None, nm, nf, ne, nc, msg]
+
+
+class HUBDatasetStats:
+    """
+    Class for generating HUB dataset JSON and `-hub` dataset directory.
+
+    Arguments
+        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
+        autodownload:   Attempt to download dataset if not found locally
+
+    Usage
+        from utils.dataloaders import HUBDatasetStats
+        stats = HUBDatasetStats('coco128.yaml', autodownload=True)  # usage 1
+        stats = HUBDatasetStats('path/to/coco128.zip')  # usage 2
+        stats.get_json(save=False)
+        stats.process_images()
+    """
+
+    def __init__(self, path="coco128.yaml", autodownload=False):
+        """Initializes HUBDatasetStats with optional auto-download for datasets, given a path to dataset YAML or ZIP
+        file.
+        """
+        zipped, data_dir, yaml_path = self._unzip(Path(path))
+        try:
+            with open(check_yaml(yaml_path), errors="ignore") as f:
+                data = yaml.safe_load(f)  # data dict
+                if zipped:
+                    data["path"] = data_dir
+        except Exception as e:
+            raise Exception("error/HUB/dataset_stats/yaml_load") from e
+
+        check_dataset(data, autodownload)  # download dataset if missing
+        self.hub_dir = Path(data["path"] + "-hub")
+        self.im_dir = self.hub_dir / "images"
+        self.im_dir.mkdir(parents=True, exist_ok=True)  # makes /images
+        self.stats = {"nc": data["nc"], "names": list(data["names"].values())}  # statistics dictionary
+        self.data = data
+
+    @staticmethod
+    def _find_yaml(dir):
+        """Finds and returns the path to a single '.yaml' file in the specified directory, preferring files that match
+        the directory name.
+        """
+        files = list(dir.glob("*.yaml")) or list(dir.rglob("*.yaml"))  # try root level first and then recursive
+        assert files, f"No *.yaml file found in {dir}"
+        if len(files) > 1:
+            files = [f for f in files if f.stem == dir.stem]  # prefer *.yaml files that match dir name
+            assert files, f"Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed"
+        assert len(files) == 1, f"Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}"
+        return files[0]
+
+    def _unzip(self, path):
+        """Unzips a .zip file at 'path', returning success status, unzipped directory, and path to YAML file within."""
+        if not str(path).endswith(".zip"):  # path is data.yaml
+            return False, None, path
+        assert Path(path).is_file(), f"Error unzipping {path}, file not found"
+        unzip_file(path, path=path.parent)
+        dir = path.with_suffix("")  # dataset directory == zip name
+        assert dir.is_dir(), f"Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/"
+        return True, str(dir), self._find_yaml(dir)  # zipped, data_dir, yaml_path
+
+    def _hub_ops(self, f, max_dim=1920):
+        """Resizes and saves an image at reduced quality for web/app viewing, supporting both PIL and OpenCV."""
+        f_new = self.im_dir / Path(f).name  # dataset-hub image filename
+        try:  # use PIL
+            im = Image.open(f)
+            r = max_dim / max(im.height, im.width)  # ratio
+            if r < 1.0:  # image too large
+                im = im.resize((int(im.width * r), int(im.height * r)))
+            im.save(f_new, "JPEG", quality=50, optimize=True)  # save
+        except Exception as e:  # use OpenCV
+            LOGGER.info(f"WARNING ⚠ī¸ HUB ops PIL failure {f}: {e}")
+            im = cv2.imread(f)
+            im_height, im_width = im.shape[:2]
+            r = max_dim / max(im_height, im_width)  # ratio
+            if r < 1.0:  # image too large
+                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
+            cv2.imwrite(str(f_new), im)
+
+    def get_json(self, save=False, verbose=False):
+        """Generates dataset JSON for Ultralytics HUB, optionally saves or prints it; save=bool, verbose=bool."""
+
+        def _round(labels):
+            """Rounds class labels to integers and coordinates to 4 decimal places for improved label accuracy."""
+            return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
+
+        for split in "train", "val", "test":
+            if self.data.get(split) is None:
+                self.stats[split] = None  # i.e. no test set
+                continue
+            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
+            x = np.array(
+                [
+                    np.bincount(label[:, 0].astype(int), minlength=self.data["nc"])
+                    for label in tqdm(dataset.labels, total=dataset.n, desc="Statistics")
+                ]
+            )  # shape(128x80)
+            self.stats[split] = {
+                "instance_stats": {"total": int(x.sum()), "per_class": x.sum(0).tolist()},
+                "image_stats": {
+                    "total": dataset.n,
+                    "unlabelled": int(np.all(x == 0, 1).sum()),
+                    "per_class": (x > 0).sum(0).tolist(),
+                },
+                "labels": [{str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)],
+            }
+
+        # Save, print and return
+        if save:
+            stats_path = self.hub_dir / "stats.json"
+            print(f"Saving {stats_path.resolve()}...")
+            with open(stats_path, "w") as f:
+                json.dump(self.stats, f)  # save stats.json
+        if verbose:
+            print(json.dumps(self.stats, indent=2, sort_keys=False))
+        return self.stats
+
+    def process_images(self):
+        """Compresses images for Ultralytics HUB across 'train', 'val', 'test' splits and saves to specified
+        directory.
+        """
+        for split in "train", "val", "test":
+            if self.data.get(split) is None:
+                continue
+            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
+            desc = f"{split} images"
+            for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
+                pass
+        print(f"Done. All images saved to {self.im_dir}")
+        return self.im_dir
+
+
+# Classification dataloaders -------------------------------------------------------------------------------------------
+class ClassificationDataset(torchvision.datasets.ImageFolder):
+    """
+    YOLOv5 Classification Dataset.
+
+    Arguments
+        root:  Dataset path
+        transform:  torchvision transforms, used by default
+        album_transform: Albumentations transforms, used if installed
+    """
+
+    def __init__(self, root, augment, imgsz, cache=False):
+        """Initializes YOLOv5 Classification Dataset with optional caching, augmentations, and transforms for image
+        classification.
+        """
+        super().__init__(root=root)
+        self.torch_transforms = classify_transforms(imgsz)
+        self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
+        self.cache_ram = cache is True or cache == "ram"
+        self.cache_disk = cache == "disk"
+        self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples]  # file, index, npy, im
+
+    def __getitem__(self, i):
+        """Fetches and transforms an image sample by index, supporting RAM/disk caching and Augmentations."""
+        f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
+        if self.cache_ram and im is None:
+            im = self.samples[i][3] = cv2.imread(f)
+        elif self.cache_disk:
+            if not fn.exists():  # load npy
+                np.save(fn.as_posix(), cv2.imread(f))
+            im = np.load(fn)
+        else:  # read image
+            im = cv2.imread(f)  # BGR
+        if self.album_transforms:
+            sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
+        else:
+            sample = self.torch_transforms(im)
+        return sample, j
+
+
+def create_classification_dataloader(
+    path, imgsz=224, batch_size=16, augment=True, cache=False, rank=-1, workers=8, shuffle=True
+):
+    # Returns Dataloader object to be used with YOLOv5 Classifier
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + RANK)
+    return InfiniteDataLoader(
+        dataset,
+        batch_size=batch_size,
+        shuffle=shuffle and sampler is None,
+        num_workers=nw,
+        sampler=sampler,
+        pin_memory=PIN_MEMORY,
+        worker_init_fn=seed_worker,
+        generator=generator,
+    )  # or DataLoader(persistent_workers=True)
diff --git a/yolov5/utils/docker/Dockerfile b/yolov5/utils/docker/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..f4727162065a1b1b1fd2b54cc1eac4bfb4a62289
--- /dev/null
+++ b/yolov5/utils/docker/Dockerfile
@@ -0,0 +1,73 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
+
+# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch
+FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
+
+# Install linux packages
+ENV DEBIAN_FRONTEND noninteractive
+RUN apt update
+RUN TZ=Etc/UTC apt install -y tzdata
+RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg
+# RUN alias python=python3
+
+# Security updates
+# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
+RUN apt upgrade --no-install-recommends -y openssl
+
+# Create working directory
+RUN rm -rf /usr/src/app && mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+COPY . /usr/src/app
+
+# Install pip packages
+COPY requirements.txt .
+RUN python3 -m pip install --upgrade pip wheel
+RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook \
+    coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2023.0'
+    # tensorflow tensorflowjs \
+
+# Set environment variables
+ENV OMP_NUM_THREADS=1
+
+# Cleanup
+ENV DEBIAN_FRONTEND teletype
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
+
+# Pull and Run with local directory access
+# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
+
+# Kill all
+# sudo docker kill $(sudo docker ps -q)
+
+# Kill all image-based
+# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
+
+# DockerHub tag update
+# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
+
+# Clean up
+# sudo docker system prune -a --volumes
+
+# Update Ubuntu drivers
+# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
+
+# DDP test
+# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
+
+# GCP VM from Image
+# docker.io/ultralytics/yolov5:latest
diff --git a/yolov5/utils/docker/Dockerfile-arm64 b/yolov5/utils/docker/Dockerfile-arm64
new file mode 100644
index 0000000000000000000000000000000000000000..0de85bf8d6098812fea0c3db1e5a14aa65b3a2cd
--- /dev/null
+++ b/yolov5/utils/docker/Dockerfile-arm64
@@ -0,0 +1,40 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
+
+# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
+FROM arm64v8/ubuntu:22.10
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
+
+# Install linux packages
+ENV DEBIAN_FRONTEND noninteractive
+RUN apt update
+RUN TZ=Etc/UTC apt install -y tzdata
+RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1 libglib2.0-0 libpython3-dev
+# RUN alias python=python3
+
+# Install pip packages
+COPY requirements.txt .
+RUN python3 -m pip install --upgrade pip wheel
+RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
+    coremltools onnx onnxruntime
+    # tensorflow-aarch64 tensorflowjs \
+
+# Create working directory
+RUN mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+COPY . /usr/src/app
+ENV DEBIAN_FRONTEND teletype
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest-arm64 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
diff --git a/yolov5/utils/docker/Dockerfile-cpu b/yolov5/utils/docker/Dockerfile-cpu
new file mode 100644
index 0000000000000000000000000000000000000000..573ad3276e731ba08ef84ef747a7ae326367c94d
--- /dev/null
+++ b/yolov5/utils/docker/Dockerfile-cpu
@@ -0,0 +1,42 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
+
+# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
+FROM ubuntu:23.10
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
+
+# Install linux packages
+# g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
+RUN apt update \
+    && apt install --no-install-recommends -y python3-pip git zip curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0
+# RUN alias python=python3
+
+# Remove python3.11/EXTERNALLY-MANAGED or use 'pip install --break-system-packages' avoid 'externally-managed-environment' Ubuntu nightly error
+RUN rm -rf /usr/lib/python3.11/EXTERNALLY-MANAGED
+
+# Install pip packages
+COPY requirements.txt .
+RUN python3 -m pip install --upgrade pip wheel
+RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
+    coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2023.0' \
+    # tensorflow tensorflowjs \
+    --extra-index-url https://download.pytorch.org/whl/cpu
+
+# Create working directory
+RUN mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+COPY . /usr/src/app
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
diff --git a/yolov5/utils/downloads.py b/yolov5/utils/downloads.py
new file mode 100644
index 0000000000000000000000000000000000000000..071e1b077bf69c894659bff74d9f42def84d6d5f
--- /dev/null
+++ b/yolov5/utils/downloads.py
@@ -0,0 +1,136 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Download utils."""
+
+import logging
+import subprocess
+import urllib
+from pathlib import Path
+
+import requests
+import torch
+
+
+def is_url(url, check=True):
+    """Determines if a string is a URL and optionally checks its existence online, returning a boolean."""
+    try:
+        url = str(url)
+        result = urllib.parse.urlparse(url)
+        assert all([result.scheme, result.netloc])  # check if is url
+        return (urllib.request.urlopen(url).getcode() == 200) if check else True  # check if exists online
+    except (AssertionError, urllib.request.HTTPError):
+        return False
+
+
+def gsutil_getsize(url=""):
+    """
+    Returns the size in bytes of a file at a Google Cloud Storage URL using `gsutil du`.
+
+    Returns 0 if the command fails or output is empty.
+    """
+    output = subprocess.check_output(["gsutil", "du", url], shell=True, encoding="utf-8")
+    return int(output.split()[0]) if output else 0
+
+
+def url_getsize(url="https://ultralytics.com/images/bus.jpg"):
+    """Returns the size in bytes of a downloadable file at a given URL; defaults to -1 if not found."""
+    response = requests.head(url, allow_redirects=True)
+    return int(response.headers.get("content-length", -1))
+
+
+def curl_download(url, filename, *, silent: bool = False) -> bool:
+    """Download a file from a url to a filename using curl."""
+    silent_option = "sS" if silent else ""  # silent
+    proc = subprocess.run(
+        [
+            "curl",
+            "-#",
+            f"-{silent_option}L",
+            url,
+            "--output",
+            filename,
+            "--retry",
+            "9",
+            "-C",
+            "-",
+        ]
+    )
+    return proc.returncode == 0
+
+
+def safe_download(file, url, url2=None, min_bytes=1e0, error_msg=""):
+    """
+    Downloads a file from a URL (or alternate URL) to a specified path if file is above a minimum size.
+
+    Removes incomplete downloads.
+    """
+    from utils.general import LOGGER
+
+    file = Path(file)
+    assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
+    try:  # url1
+        LOGGER.info(f"Downloading {url} to {file}...")
+        torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
+        assert file.exists() and file.stat().st_size > min_bytes, assert_msg  # check
+    except Exception as e:  # url2
+        if file.exists():
+            file.unlink()  # remove partial downloads
+        LOGGER.info(f"ERROR: {e}\nRe-attempting {url2 or url} to {file}...")
+        # curl download, retry and resume on fail
+        curl_download(url2 or url, file)
+    finally:
+        if not file.exists() or file.stat().st_size < min_bytes:  # check
+            if file.exists():
+                file.unlink()  # remove partial downloads
+            LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
+        LOGGER.info("")
+
+
+def attempt_download(file, repo="ultralytics/yolov5", release="v7.0"):
+    """Downloads a file from GitHub release assets or via direct URL if not found locally, supporting backup
+    versions.
+    """
+    from utils.general import LOGGER
+
+    def github_assets(repository, version="latest"):
+        # Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
+        if version != "latest":
+            version = f"tags/{version}"  # i.e. tags/v7.0
+        response = requests.get(f"https://api.github.com/repos/{repository}/releases/{version}").json()  # github api
+        return response["tag_name"], [x["name"] for x in response["assets"]]  # tag, assets
+
+    file = Path(str(file).strip().replace("'", ""))
+    if not file.exists():
+        # URL specified
+        name = Path(urllib.parse.unquote(str(file))).name  # decode '%2F' to '/' etc.
+        if str(file).startswith(("http:/", "https:/")):  # download
+            url = str(file).replace(":/", "://")  # Pathlib turns :// -> :/
+            file = name.split("?")[0]  # parse authentication https://url.com/file.txt?auth...
+            if Path(file).is_file():
+                LOGGER.info(f"Found {url} locally at {file}")  # file already exists
+            else:
+                safe_download(file=file, url=url, min_bytes=1e5)
+            return file
+
+        # GitHub assets
+        assets = [f"yolov5{size}{suffix}.pt" for size in "nsmlx" for suffix in ("", "6", "-cls", "-seg")]  # default
+        try:
+            tag, assets = github_assets(repo, release)
+        except Exception:
+            try:
+                tag, assets = github_assets(repo)  # latest release
+            except Exception:
+                try:
+                    tag = subprocess.check_output("git tag", shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
+                except Exception:
+                    tag = release
+
+        if name in assets:
+            file.parent.mkdir(parents=True, exist_ok=True)  # make parent dir (if required)
+            safe_download(
+                file,
+                url=f"https://github.com/{repo}/releases/download/{tag}/{name}",
+                min_bytes=1e5,
+                error_msg=f"{file} missing, try downloading from https://github.com/{repo}/releases/{tag}",
+            )
+
+    return str(file)
diff --git a/yolov5/utils/flask_rest_api/README.md b/yolov5/utils/flask_rest_api/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b18a3011cf32d792e5447fca10d3278617732ab4
--- /dev/null
+++ b/yolov5/utils/flask_rest_api/README.md
@@ -0,0 +1,70 @@
+# Flask REST API
+
+[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
+
+## Requirements
+
+[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
+
+```shell
+$ pip install Flask
+```
+
+## Run
+
+After Flask installation run:
+
+```shell
+$ python3 restapi.py --port 5000
+```
+
+Then use [curl](https://curl.se/) to perform a request:
+
+```shell
+$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
+```
+
+The model inference results are returned as a JSON response:
+
+```json
+[
+  {
+    "class": 0,
+    "confidence": 0.8900438547,
+    "height": 0.9318675399,
+    "name": "person",
+    "width": 0.3264600933,
+    "xcenter": 0.7438579798,
+    "ycenter": 0.5207948685
+  },
+  {
+    "class": 0,
+    "confidence": 0.8440024257,
+    "height": 0.7155083418,
+    "name": "person",
+    "width": 0.6546785235,
+    "xcenter": 0.427829951,
+    "ycenter": 0.6334488392
+  },
+  {
+    "class": 27,
+    "confidence": 0.3771208823,
+    "height": 0.3902671337,
+    "name": "tie",
+    "width": 0.0696444362,
+    "xcenter": 0.3675483763,
+    "ycenter": 0.7991207838
+  },
+  {
+    "class": 27,
+    "confidence": 0.3527112305,
+    "height": 0.1540903747,
+    "name": "tie",
+    "width": 0.0336618312,
+    "xcenter": 0.7814827561,
+    "ycenter": 0.5065554976
+  }
+]
+```
+
+An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`
diff --git a/yolov5/utils/flask_rest_api/example_request.py b/yolov5/utils/flask_rest_api/example_request.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b850051cca02fbefdd315d9c6ed3f6302464f39
--- /dev/null
+++ b/yolov5/utils/flask_rest_api/example_request.py
@@ -0,0 +1,17 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Perform test request."""
+
+import pprint
+
+import requests
+
+DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
+IMAGE = "zidane.jpg"
+
+# Read image
+with open(IMAGE, "rb") as f:
+    image_data = f.read()
+
+response = requests.post(DETECTION_URL, files={"image": image_data}).json()
+
+pprint.pprint(response)
diff --git a/yolov5/utils/flask_rest_api/restapi.py b/yolov5/utils/flask_rest_api/restapi.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9bd16f1a63e54f0125478ed69efae79e4f58a06
--- /dev/null
+++ b/yolov5/utils/flask_rest_api/restapi.py
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Run a Flask REST API exposing one or more YOLOv5s models."""
+
+import argparse
+import io
+
+import torch
+from flask import Flask, request
+from PIL import Image
+
+app = Flask(__name__)
+models = {}
+
+DETECTION_URL = "/v1/object-detection/<model>"
+
+
+@app.route(DETECTION_URL, methods=["POST"])
+def predict(model):
+    """Predict and return object detections in JSON format given an image and model name via a Flask REST API POST
+    request.
+    """
+    if request.method != "POST":
+        return
+
+    if request.files.get("image"):
+        # Method 1
+        # with request.files["image"] as f:
+        #     im = Image.open(io.BytesIO(f.read()))
+
+        # Method 2
+        im_file = request.files["image"]
+        im_bytes = im_file.read()
+        im = Image.open(io.BytesIO(im_bytes))
+
+        if model in models:
+            results = models[model](im, size=640)  # reduce size=320 for faster inference
+            return results.pandas().xyxy[0].to_json(orient="records")
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
+    parser.add_argument("--port", default=5000, type=int, help="port number")
+    parser.add_argument("--model", nargs="+", default=["yolov5s"], help="model(s) to run, i.e. --model yolov5n yolov5s")
+    opt = parser.parse_args()
+
+    for m in opt.model:
+        models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True)
+
+    app.run(host="0.0.0.0", port=opt.port)  # debug=True causes Restarting with stat
diff --git a/yolov5/utils/general.py b/yolov5/utils/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..5a9325eec757840bf54f15ef978d02a466c7d7bb
--- /dev/null
+++ b/yolov5/utils/general.py
@@ -0,0 +1,1289 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""General utils."""
+
+import contextlib
+import glob
+import inspect
+import logging
+import logging.config
+import math
+import os
+import platform
+import random
+import re
+import signal
+import subprocess
+import sys
+import time
+import urllib
+from copy import deepcopy
+from datetime import datetime
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from subprocess import check_output
+from tarfile import is_tarfile
+from typing import Optional
+from zipfile import ZipFile, is_zipfile
+
+import cv2
+import numpy as np
+import pandas as pd
+import pkg_resources as pkg
+import torch
+import torchvision
+import yaml
+
+# Import 'ultralytics' package or install if missing
+try:
+    import ultralytics
+
+    assert hasattr(ultralytics, "__version__")  # verify package is not directory
+except (ImportError, AssertionError):
+    os.system("pip install -U ultralytics")
+    import ultralytics
+
+from ultralytics.utils.checks import check_requirements
+
+from utils import TryExcept, emojis
+from utils.downloads import curl_download, gsutil_getsize
+from utils.metrics import box_iou, fitness
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+RANK = int(os.getenv("RANK", -1))
+
+# Settings
+NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
+DATASETS_DIR = Path(os.getenv("YOLOv5_DATASETS_DIR", ROOT.parent / "datasets"))  # global datasets directory
+AUTOINSTALL = str(os.getenv("YOLOv5_AUTOINSTALL", True)).lower() == "true"  # global auto-install mode
+VERBOSE = str(os.getenv("YOLOv5_VERBOSE", True)).lower() == "true"  # global verbose mode
+TQDM_BAR_FORMAT = "{l_bar}{bar:10}{r_bar}"  # tqdm bar format
+FONT = "Arial.ttf"  # https://ultralytics.com/assets/Arial.ttf
+
+torch.set_printoptions(linewidth=320, precision=5, profile="long")
+np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format})  # format short g, %precision=5
+pd.options.display.max_columns = 10
+cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
+os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS)  # NumExpr max threads
+os.environ["OMP_NUM_THREADS"] = "1" if platform.system() == "darwin" else str(NUM_THREADS)  # OpenMP (PyTorch and SciPy)
+os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  # suppress verbose TF compiler warnings in Colab
+
+
+def is_ascii(s=""):
+    """Checks if input string `s` contains only ASCII characters; returns `True` if so, otherwise `False`."""
+    s = str(s)  # convert list, tuple, None, etc. to str
+    return len(s.encode().decode("ascii", "ignore")) == len(s)
+
+
+def is_chinese(s="äēēåˇĨæ™ēčƒŊ"):
+    """Determines if a string `s` contains any Chinese characters; returns `True` if so, otherwise `False`."""
+    return bool(re.search("[\u4e00-\u9fff]", str(s)))
+
+
+def is_colab():
+    """Checks if the current environment is a Google Colab instance; returns `True` for Colab, otherwise `False`."""
+    return "google.colab" in sys.modules
+
+
+def is_jupyter():
+    """
+    Check if the current script is running inside a Jupyter Notebook. Verified on Colab, Jupyterlab, Kaggle, Paperspace.
+
+    Returns:
+        bool: True if running inside a Jupyter Notebook, False otherwise.
+    """
+    with contextlib.suppress(Exception):
+        from IPython import get_ipython
+
+        return get_ipython() is not None
+    return False
+
+
+def is_kaggle():
+    """Checks if the current environment is a Kaggle Notebook by validating environment variables."""
+    return os.environ.get("PWD") == "/kaggle/working" and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com"
+
+
+def is_docker() -> bool:
+    """Check if the process runs inside a docker container."""
+    if Path("/.dockerenv").exists():
+        return True
+    try:  # check if docker is in control groups
+        with open("/proc/self/cgroup") as file:
+            return any("docker" in line for line in file)
+    except OSError:
+        return False
+
+
+def is_writeable(dir, test=False):
+    """Checks if a directory is writable, optionally testing by creating a temporary file if `test=True`."""
+    if not test:
+        return os.access(dir, os.W_OK)  # possible issues on Windows
+    file = Path(dir) / "tmp.txt"
+    try:
+        with open(file, "w"):  # open file with write permissions
+            pass
+        file.unlink()  # remove file
+        return True
+    except OSError:
+        return False
+
+
+LOGGING_NAME = "yolov5"
+
+
+def set_logging(name=LOGGING_NAME, verbose=True):
+    """Configures logging with specified verbosity; `name` sets the logger's name, `verbose` controls logging level."""
+    rank = int(os.getenv("RANK", -1))  # rank in world for Multi-GPU trainings
+    level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
+    logging.config.dictConfig(
+        {
+            "version": 1,
+            "disable_existing_loggers": False,
+            "formatters": {name: {"format": "%(message)s"}},
+            "handlers": {
+                name: {
+                    "class": "logging.StreamHandler",
+                    "formatter": name,
+                    "level": level,
+                }
+            },
+            "loggers": {
+                name: {
+                    "level": level,
+                    "handlers": [name],
+                    "propagate": False,
+                }
+            },
+        }
+    )
+
+
+set_logging(LOGGING_NAME)  # run before defining LOGGER
+LOGGER = logging.getLogger(LOGGING_NAME)  # define globally (used in train.py, val.py, detect.py, etc.)
+if platform.system() == "Windows":
+    for fn in LOGGER.info, LOGGER.warning:
+        setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x)))  # emoji safe logging
+
+
+def user_config_dir(dir="Ultralytics", env_var="YOLOV5_CONFIG_DIR"):
+    """Returns user configuration directory path, preferring environment variable `YOLOV5_CONFIG_DIR` if set, else OS-
+    specific.
+    """
+    env = os.getenv(env_var)
+    if env:
+        path = Path(env)  # use environment variable
+    else:
+        cfg = {"Windows": "AppData/Roaming", "Linux": ".config", "Darwin": "Library/Application Support"}  # 3 OS dirs
+        path = Path.home() / cfg.get(platform.system(), "")  # OS-specific config dir
+        path = (path if is_writeable(path) else Path("/tmp")) / dir  # GCP and AWS lambda fix, only /tmp is writeable
+    path.mkdir(exist_ok=True)  # make if required
+    return path
+
+
+CONFIG_DIR = user_config_dir()  # Ultralytics settings dir
+
+
+class Profile(contextlib.ContextDecorator):
+    # YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
+    def __init__(self, t=0.0, device: torch.device = None):
+        """Initializes a profiling context for YOLOv5 with optional timing threshold and device specification."""
+        self.t = t
+        self.device = device
+        self.cuda = bool(device and str(device).startswith("cuda"))
+
+    def __enter__(self):
+        """Initializes timing at the start of a profiling context block for performance measurement."""
+        self.start = self.time()
+        return self
+
+    def __exit__(self, type, value, traceback):
+        """Concludes timing, updating duration for profiling upon exiting a context block."""
+        self.dt = self.time() - self.start  # delta-time
+        self.t += self.dt  # accumulate dt
+
+    def time(self):
+        """Measures and returns the current time, synchronizing CUDA operations if `cuda` is True."""
+        if self.cuda:
+            torch.cuda.synchronize(self.device)
+        return time.time()
+
+
+class Timeout(contextlib.ContextDecorator):
+    # YOLOv5 Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
+    def __init__(self, seconds, *, timeout_msg="", suppress_timeout_errors=True):
+        """Initializes a timeout context/decorator with defined seconds, optional message, and error suppression."""
+        self.seconds = int(seconds)
+        self.timeout_message = timeout_msg
+        self.suppress = bool(suppress_timeout_errors)
+
+    def _timeout_handler(self, signum, frame):
+        """Raises a TimeoutError with a custom message when a timeout event occurs."""
+        raise TimeoutError(self.timeout_message)
+
+    def __enter__(self):
+        """Initializes timeout mechanism on non-Windows platforms, starting a countdown to raise TimeoutError."""
+        if platform.system() != "Windows":  # not supported on Windows
+            signal.signal(signal.SIGALRM, self._timeout_handler)  # Set handler for SIGALRM
+            signal.alarm(self.seconds)  # start countdown for SIGALRM to be raised
+
+    def __exit__(self, exc_type, exc_val, exc_tb):
+        """Disables active alarm on non-Windows systems and optionally suppresses TimeoutError if set."""
+        if platform.system() != "Windows":
+            signal.alarm(0)  # Cancel SIGALRM if it's scheduled
+            if self.suppress and exc_type is TimeoutError:  # Suppress TimeoutError
+                return True
+
+
+class WorkingDirectory(contextlib.ContextDecorator):
+    # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
+    def __init__(self, new_dir):
+        """Initializes a context manager/decorator to temporarily change the working directory."""
+        self.dir = new_dir  # new dir
+        self.cwd = Path.cwd().resolve()  # current dir
+
+    def __enter__(self):
+        """Temporarily changes the working directory within a 'with' statement context."""
+        os.chdir(self.dir)
+
+    def __exit__(self, exc_type, exc_val, exc_tb):
+        """Restores the original working directory upon exiting a 'with' statement context."""
+        os.chdir(self.cwd)
+
+
+def methods(instance):
+    """Returns list of method names for a class/instance excluding dunder methods."""
+    return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
+
+
+def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
+    """Logs the arguments of the calling function, with options to include the filename and function name."""
+    x = inspect.currentframe().f_back  # previous frame
+    file, _, func, _, _ = inspect.getframeinfo(x)
+    if args is None:  # get args automatically
+        args, _, _, frm = inspect.getargvalues(x)
+        args = {k: v for k, v in frm.items() if k in args}
+    try:
+        file = Path(file).resolve().relative_to(ROOT).with_suffix("")
+    except ValueError:
+        file = Path(file).stem
+    s = (f"{file}: " if show_file else "") + (f"{func}: " if show_func else "")
+    LOGGER.info(colorstr(s) + ", ".join(f"{k}={v}" for k, v in args.items()))
+
+
+def init_seeds(seed=0, deterministic=False):
+    """
+    Initializes RNG seeds and sets deterministic options if specified.
+
+    See https://pytorch.org/docs/stable/notes/randomness.html
+    """
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed(seed)
+    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
+    # torch.backends.cudnn.benchmark = True  # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
+    if deterministic and check_version(torch.__version__, "1.12.0"):  # https://github.com/ultralytics/yolov5/pull/8213
+        torch.use_deterministic_algorithms(True)
+        torch.backends.cudnn.deterministic = True
+        os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
+        os.environ["PYTHONHASHSEED"] = str(seed)
+
+
+def intersect_dicts(da, db, exclude=()):
+    """Returns intersection of `da` and `db` dicts with matching keys and shapes, excluding `exclude` keys; uses `da`
+    values.
+    """
+    return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
+
+
+def get_default_args(func):
+    """Returns a dict of `func` default arguments by inspecting its signature."""
+    signature = inspect.signature(func)
+    return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
+
+
+def get_latest_run(search_dir="."):
+    """Returns the path to the most recent 'last.pt' file in /runs to resume from, searches in `search_dir`."""
+    last_list = glob.glob(f"{search_dir}/**/last*.pt", recursive=True)
+    return max(last_list, key=os.path.getctime) if last_list else ""
+
+
+def file_age(path=__file__):
+    """Calculates and returns the age of a file in days based on its last modification time."""
+    dt = datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)  # delta
+    return dt.days  # + dt.seconds / 86400  # fractional days
+
+
+def file_date(path=__file__):
+    """Returns a human-readable file modification date in 'YYYY-M-D' format, given a file path."""
+    t = datetime.fromtimestamp(Path(path).stat().st_mtime)
+    return f"{t.year}-{t.month}-{t.day}"
+
+
+def file_size(path):
+    """Returns file or directory size in megabytes (MB) for a given path, where directories are recursively summed."""
+    mb = 1 << 20  # bytes to MiB (1024 ** 2)
+    path = Path(path)
+    if path.is_file():
+        return path.stat().st_size / mb
+    elif path.is_dir():
+        return sum(f.stat().st_size for f in path.glob("**/*") if f.is_file()) / mb
+    else:
+        return 0.0
+
+
+def check_online():
+    """Checks internet connectivity by attempting to create a connection to "1.1.1.1" on port 443, retries once if the
+    first attempt fails.
+    """
+    import socket
+
+    def run_once():
+        # Check once
+        try:
+            socket.create_connection(("1.1.1.1", 443), 5)  # check host accessibility
+            return True
+        except OSError:
+            return False
+
+    return run_once() or run_once()  # check twice to increase robustness to intermittent connectivity issues
+
+
+def git_describe(path=ROOT):
+    """
+    Returns a human-readable git description of the repository at `path`, or an empty string on failure.
+
+    Example output is 'fv5.0-5-g3e25f1e'. See https://git-scm.com/docs/git-describe.
+    """
+    try:
+        assert (Path(path) / ".git").is_dir()
+        return check_output(f"git -C {path} describe --tags --long --always", shell=True).decode()[:-1]
+    except Exception:
+        return ""
+
+
+@TryExcept()
+@WorkingDirectory(ROOT)
+def check_git_status(repo="ultralytics/yolov5", branch="master"):
+    """Checks if YOLOv5 code is up-to-date with the repository, advising 'git pull' if behind; errors return informative
+    messages.
+    """
+    url = f"https://github.com/{repo}"
+    msg = f", for updates see {url}"
+    s = colorstr("github: ")  # string
+    assert Path(".git").exists(), s + "skipping check (not a git repository)" + msg
+    assert check_online(), s + "skipping check (offline)" + msg
+
+    splits = re.split(pattern=r"\s", string=check_output("git remote -v", shell=True).decode())
+    matches = [repo in s for s in splits]
+    if any(matches):
+        remote = splits[matches.index(True) - 1]
+    else:
+        remote = "ultralytics"
+        check_output(f"git remote add {remote} {url}", shell=True)
+    check_output(f"git fetch {remote}", shell=True, timeout=5)  # git fetch
+    local_branch = check_output("git rev-parse --abbrev-ref HEAD", shell=True).decode().strip()  # checked out
+    n = int(check_output(f"git rev-list {local_branch}..{remote}/{branch} --count", shell=True))  # commits behind
+    if n > 0:
+        pull = "git pull" if remote == "origin" else f"git pull {remote} {branch}"
+        s += f"⚠ī¸ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use '{pull}' or 'git clone {url}' to update."
+    else:
+        s += f"up to date with {url} ✅"
+    LOGGER.info(s)
+
+
+@WorkingDirectory(ROOT)
+def check_git_info(path="."):
+    """Checks YOLOv5 git info, returning a dict with remote URL, branch name, and commit hash."""
+    check_requirements("gitpython")
+    import git
+
+    try:
+        repo = git.Repo(path)
+        remote = repo.remotes.origin.url.replace(".git", "")  # i.e. 'https://github.com/ultralytics/yolov5'
+        commit = repo.head.commit.hexsha  # i.e. '3134699c73af83aac2a481435550b968d5792c0d'
+        try:
+            branch = repo.active_branch.name  # i.e. 'main'
+        except TypeError:  # not on any branch
+            branch = None  # i.e. 'detached HEAD' state
+        return {"remote": remote, "branch": branch, "commit": commit}
+    except git.exc.InvalidGitRepositoryError:  # path is not a git dir
+        return {"remote": None, "branch": None, "commit": None}
+
+
+def check_python(minimum="3.8.0"):
+    """Checks if current Python version meets the minimum required version, exits if not."""
+    check_version(platform.python_version(), minimum, name="Python ", hard=True)
+
+
+def check_version(current="0.0.0", minimum="0.0.0", name="version ", pinned=False, hard=False, verbose=False):
+    """Checks if the current version meets the minimum required version, exits or warns based on parameters."""
+    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
+    result = (current == minimum) if pinned else (current >= minimum)  # bool
+    s = f"WARNING ⚠ī¸ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed"  # string
+    if hard:
+        assert result, emojis(s)  # assert min requirements met
+    if verbose and not result:
+        LOGGER.warning(s)
+    return result
+
+
+def check_img_size(imgsz, s=32, floor=0):
+    """Adjusts image size to be divisible by stride `s`, supports int or list/tuple input, returns adjusted size."""
+    if isinstance(imgsz, int):  # integer i.e. img_size=640
+        new_size = max(make_divisible(imgsz, int(s)), floor)
+    else:  # list i.e. img_size=[640, 480]
+        imgsz = list(imgsz)  # convert to list if tuple
+        new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
+    if new_size != imgsz:
+        LOGGER.warning(f"WARNING ⚠ī¸ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}")
+    return new_size
+
+
+def check_imshow(warn=False):
+    """Checks environment support for image display; warns on failure if `warn=True`."""
+    try:
+        assert not is_jupyter()
+        assert not is_docker()
+        cv2.imshow("test", np.zeros((1, 1, 3)))
+        cv2.waitKey(1)
+        cv2.destroyAllWindows()
+        cv2.waitKey(1)
+        return True
+    except Exception as e:
+        if warn:
+            LOGGER.warning(f"WARNING ⚠ī¸ Environment does not support cv2.imshow() or PIL Image.show()\n{e}")
+        return False
+
+
+def check_suffix(file="yolov5s.pt", suffix=(".pt",), msg=""):
+    """Validates if a file or files have an acceptable suffix, raising an error if not."""
+    if file and suffix:
+        if isinstance(suffix, str):
+            suffix = [suffix]
+        for f in file if isinstance(file, (list, tuple)) else [file]:
+            s = Path(f).suffix.lower()  # file suffix
+            if len(s):
+                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
+
+
+def check_yaml(file, suffix=(".yaml", ".yml")):
+    """Searches/downloads a YAML file, verifies its suffix (.yaml or .yml), and returns the file path."""
+    return check_file(file, suffix)
+
+
+def check_file(file, suffix=""):
+    """Searches/downloads a file, checks its suffix (if provided), and returns the file path."""
+    check_suffix(file, suffix)  # optional
+    file = str(file)  # convert to str()
+    if os.path.isfile(file) or not file:  # exists
+        return file
+    elif file.startswith(("http:/", "https:/")):  # download
+        url = file  # warning: Pathlib turns :// -> :/
+        file = Path(urllib.parse.unquote(file).split("?")[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
+        if os.path.isfile(file):
+            LOGGER.info(f"Found {url} locally at {file}")  # file already exists
+        else:
+            LOGGER.info(f"Downloading {url} to {file}...")
+            torch.hub.download_url_to_file(url, file)
+            assert Path(file).exists() and Path(file).stat().st_size > 0, f"File download failed: {url}"  # check
+        return file
+    elif file.startswith("clearml://"):  # ClearML Dataset ID
+        assert (
+            "clearml" in sys.modules
+        ), "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
+        return file
+    else:  # search
+        files = []
+        for d in "data", "models", "utils":  # search directories
+            files.extend(glob.glob(str(ROOT / d / "**" / file), recursive=True))  # find file
+        assert len(files), f"File not found: {file}"  # assert file was found
+        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
+        return files[0]  # return file
+
+
+def check_font(font=FONT, progress=False):
+    """Ensures specified font exists or downloads it from Ultralytics assets, optionally displaying progress."""
+    font = Path(font)
+    file = CONFIG_DIR / font.name
+    if not font.exists() and not file.exists():
+        url = f"https://ultralytics.com/assets/{font.name}"
+        LOGGER.info(f"Downloading {url} to {file}...")
+        torch.hub.download_url_to_file(url, str(file), progress=progress)
+
+
+def check_dataset(data, autodownload=True):
+    """Validates and/or auto-downloads a dataset, returning its configuration as a dictionary."""
+
+    # Download (optional)
+    extract_dir = ""
+    if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
+        download(data, dir=f"{DATASETS_DIR}/{Path(data).stem}", unzip=True, delete=False, curl=False, threads=1)
+        data = next((DATASETS_DIR / Path(data).stem).rglob("*.yaml"))
+        extract_dir, autodownload = data.parent, False
+
+    # Read yaml (optional)
+    if isinstance(data, (str, Path)):
+        data = yaml_load(data)  # dictionary
+
+    # Checks
+    for k in "train", "val", "names":
+        assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
+    if isinstance(data["names"], (list, tuple)):  # old array format
+        data["names"] = dict(enumerate(data["names"]))  # convert to dict
+    assert all(isinstance(k, int) for k in data["names"].keys()), "data.yaml names keys must be integers, i.e. 2: car"
+    data["nc"] = len(data["names"])
+
+    # Resolve paths
+    path = Path(extract_dir or data.get("path") or "")  # optional 'path' default to '.'
+    if not path.is_absolute():
+        path = (ROOT / path).resolve()
+        data["path"] = path  # download scripts
+    for k in "train", "val", "test":
+        if data.get(k):  # prepend path
+            if isinstance(data[k], str):
+                x = (path / data[k]).resolve()
+                if not x.exists() and data[k].startswith("../"):
+                    x = (path / data[k][3:]).resolve()
+                data[k] = str(x)
+            else:
+                data[k] = [str((path / x).resolve()) for x in data[k]]
+
+    # Parse yaml
+    train, val, test, s = (data.get(x) for x in ("train", "val", "test", "download"))
+    if val:
+        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
+        if not all(x.exists() for x in val):
+            LOGGER.info("\nDataset not found ⚠ī¸, missing paths %s" % [str(x) for x in val if not x.exists()])
+            if not s or not autodownload:
+                raise Exception("Dataset not found ❌")
+            t = time.time()
+            if s.startswith("http") and s.endswith(".zip"):  # URL
+                f = Path(s).name  # filename
+                LOGGER.info(f"Downloading {s} to {f}...")
+                torch.hub.download_url_to_file(s, f)
+                Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True)  # create root
+                unzip_file(f, path=DATASETS_DIR)  # unzip
+                Path(f).unlink()  # remove zip
+                r = None  # success
+            elif s.startswith("bash "):  # bash script
+                LOGGER.info(f"Running {s} ...")
+                r = subprocess.run(s, shell=True)
+            else:  # python script
+                r = exec(s, {"yaml": data})  # return None
+            dt = f"({round(time.time() - t, 1)}s)"
+            s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
+            LOGGER.info(f"Dataset download {s}")
+    check_font("Arial.ttf" if is_ascii(data["names"]) else "Arial.Unicode.ttf", progress=True)  # download fonts
+    return data  # dictionary
+
+
+def check_amp(model):
+    """Checks PyTorch AMP functionality for a model, returns True if AMP operates correctly, otherwise False."""
+    from models.common import AutoShape, DetectMultiBackend
+
+    def amp_allclose(model, im):
+        # All close FP32 vs AMP results
+        m = AutoShape(model, verbose=False)  # model
+        a = m(im).xywhn[0]  # FP32 inference
+        m.amp = True
+        b = m(im).xywhn[0]  # AMP inference
+        return a.shape == b.shape and torch.allclose(a, b, atol=0.1)  # close to 10% absolute tolerance
+
+    prefix = colorstr("AMP: ")
+    device = next(model.parameters()).device  # get model device
+    if device.type in ("cpu", "mps"):
+        return False  # AMP only used on CUDA devices
+    f = ROOT / "data" / "images" / "bus.jpg"  # image to check
+    im = f if f.exists() else "https://ultralytics.com/images/bus.jpg" if check_online() else np.ones((640, 640, 3))
+    try:
+        assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend("yolov5n.pt", device), im)
+        LOGGER.info(f"{prefix}checks passed ✅")
+        return True
+    except Exception:
+        help_url = "https://github.com/ultralytics/yolov5/issues/7908"
+        LOGGER.warning(f"{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}")
+        return False
+
+
+def yaml_load(file="data.yaml"):
+    """Safely loads and returns the contents of a YAML file specified by `file` argument."""
+    with open(file, errors="ignore") as f:
+        return yaml.safe_load(f)
+
+
+def yaml_save(file="data.yaml", data={}):
+    """Safely saves `data` to a YAML file specified by `file`, converting `Path` objects to strings; `data` is a
+    dictionary.
+    """
+    with open(file, "w") as f:
+        yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
+
+
+def unzip_file(file, path=None, exclude=(".DS_Store", "__MACOSX")):
+    """Unzips `file` to `path` (default: file's parent), excluding filenames containing any in `exclude` (`.DS_Store`,
+    `__MACOSX`).
+    """
+    if path is None:
+        path = Path(file).parent  # default path
+    with ZipFile(file) as zipObj:
+        for f in zipObj.namelist():  # list all archived filenames in the zip
+            if all(x not in f for x in exclude):
+                zipObj.extract(f, path=path)
+
+
+def url2file(url):
+    """
+    Converts a URL string to a valid filename by stripping protocol, domain, and any query parameters.
+
+    Example https://url.com/file.txt?auth -> file.txt
+    """
+    url = str(Path(url)).replace(":/", "://")  # Pathlib turns :// -> :/
+    return Path(urllib.parse.unquote(url)).name.split("?")[0]  # '%2F' to '/', split https://url.com/file.txt?auth
+
+
+def download(url, dir=".", unzip=True, delete=True, curl=False, threads=1, retry=3):
+    """Downloads and optionally unzips files concurrently, supporting retries and curl fallback."""
+
+    def download_one(url, dir):
+        # Download 1 file
+        success = True
+        if os.path.isfile(url):
+            f = Path(url)  # filename
+        else:  # does not exist
+            f = dir / Path(url).name
+            LOGGER.info(f"Downloading {url} to {f}...")
+            for i in range(retry + 1):
+                if curl:
+                    success = curl_download(url, f, silent=(threads > 1))
+                else:
+                    torch.hub.download_url_to_file(url, f, progress=threads == 1)  # torch download
+                    success = f.is_file()
+                if success:
+                    break
+                elif i < retry:
+                    LOGGER.warning(f"⚠ī¸ Download failure, retrying {i + 1}/{retry} {url}...")
+                else:
+                    LOGGER.warning(f"❌ Failed to download {url}...")
+
+        if unzip and success and (f.suffix == ".gz" or is_zipfile(f) or is_tarfile(f)):
+            LOGGER.info(f"Unzipping {f}...")
+            if is_zipfile(f):
+                unzip_file(f, dir)  # unzip
+            elif is_tarfile(f):
+                subprocess.run(["tar", "xf", f, "--directory", f.parent], check=True)  # unzip
+            elif f.suffix == ".gz":
+                subprocess.run(["tar", "xfz", f, "--directory", f.parent], check=True)  # unzip
+            if delete:
+                f.unlink()  # remove zip
+
+    dir = Path(dir)
+    dir.mkdir(parents=True, exist_ok=True)  # make directory
+    if threads > 1:
+        pool = ThreadPool(threads)
+        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multithreaded
+        pool.close()
+        pool.join()
+    else:
+        for u in [url] if isinstance(url, (str, Path)) else url:
+            download_one(u, dir)
+
+
+def make_divisible(x, divisor):
+    """Adjusts `x` to be divisible by `divisor`, returning the nearest greater or equal value."""
+    if isinstance(divisor, torch.Tensor):
+        divisor = int(divisor.max())  # to int
+    return math.ceil(x / divisor) * divisor
+
+
+def clean_str(s):
+    """Cleans a string by replacing special characters with underscore, e.g., `clean_str('#example!')` returns
+    '_example_'.
+    """
+    return re.sub(pattern="[|@#!¥¡$â‚Ŧ%&()=?Âŋ^*;:,¨´><+]", repl="_", string=s)
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+    """
+    Generates a lambda for a sinusoidal ramp from y1 to y2 over 'steps'.
+
+    See https://arxiv.org/pdf/1812.01187.pdf for details.
+    """
+    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+def colorstr(*input):
+    """
+    Colors a string using ANSI escape codes, e.g., colorstr('blue', 'hello world').
+
+    See https://en.wikipedia.org/wiki/ANSI_escape_code.
+    """
+    *args, string = input if len(input) > 1 else ("blue", "bold", input[0])  # color arguments, string
+    colors = {
+        "black": "\033[30m",  # basic colors
+        "red": "\033[31m",
+        "green": "\033[32m",
+        "yellow": "\033[33m",
+        "blue": "\033[34m",
+        "magenta": "\033[35m",
+        "cyan": "\033[36m",
+        "white": "\033[37m",
+        "bright_black": "\033[90m",  # bright colors
+        "bright_red": "\033[91m",
+        "bright_green": "\033[92m",
+        "bright_yellow": "\033[93m",
+        "bright_blue": "\033[94m",
+        "bright_magenta": "\033[95m",
+        "bright_cyan": "\033[96m",
+        "bright_white": "\033[97m",
+        "end": "\033[0m",  # misc
+        "bold": "\033[1m",
+        "underline": "\033[4m",
+    }
+    return "".join(colors[x] for x in args) + f"{string}" + colors["end"]
+
+
+def labels_to_class_weights(labels, nc=80):
+    """Calculates class weights from labels to handle class imbalance in training; input shape: (n, 5)."""
+    if labels[0] is None:  # no labels loaded
+        return torch.Tensor()
+
+    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
+    classes = labels[:, 0].astype(int)  # labels = [class xywh]
+    weights = np.bincount(classes, minlength=nc)  # occurrences per class
+
+    # Prepend gridpoint count (for uCE training)
+    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
+    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start
+
+    weights[weights == 0] = 1  # replace empty bins with 1
+    weights = 1 / weights  # number of targets per class
+    weights /= weights.sum()  # normalize
+    return torch.from_numpy(weights).float()
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+    """Calculates image weights from labels using class weights for weighted sampling."""
+    # Usage: index = random.choices(range(n), weights=image_weights, k=1)  # weighted image sample
+    class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
+    return (class_weights.reshape(1, nc) * class_counts).sum(1)
+
+
+def coco80_to_coco91_class():
+    """
+    Converts COCO 80-class index to COCO 91-class index used in the paper.
+
+    Reference: https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+    """
+    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
+    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
+    return [
+        1,
+        2,
+        3,
+        4,
+        5,
+        6,
+        7,
+        8,
+        9,
+        10,
+        11,
+        13,
+        14,
+        15,
+        16,
+        17,
+        18,
+        19,
+        20,
+        21,
+        22,
+        23,
+        24,
+        25,
+        27,
+        28,
+        31,
+        32,
+        33,
+        34,
+        35,
+        36,
+        37,
+        38,
+        39,
+        40,
+        41,
+        42,
+        43,
+        44,
+        46,
+        47,
+        48,
+        49,
+        50,
+        51,
+        52,
+        53,
+        54,
+        55,
+        56,
+        57,
+        58,
+        59,
+        60,
+        61,
+        62,
+        63,
+        64,
+        65,
+        67,
+        70,
+        72,
+        73,
+        74,
+        75,
+        76,
+        77,
+        78,
+        79,
+        80,
+        81,
+        82,
+        84,
+        85,
+        86,
+        87,
+        88,
+        89,
+        90,
+    ]
+
+
+def xyxy2xywh(x):
+    """Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right."""
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x center
+    y[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y center
+    y[..., 2] = x[..., 2] - x[..., 0]  # width
+    y[..., 3] = x[..., 3] - x[..., 1]  # height
+    return y
+
+
+def xywh2xyxy(x):
+    """Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right."""
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
+    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
+    y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
+    y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
+    return y
+
+
+def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
+    """Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right."""
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw  # top left x
+    y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh  # top left y
+    y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw  # bottom right x
+    y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh  # bottom right y
+    return y
+
+
+def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
+    """Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right."""
+    if clip:
+        clip_boxes(x, (h - eps, w - eps))  # warning: inplace clip
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w  # x center
+    y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h  # y center
+    y[..., 2] = (x[..., 2] - x[..., 0]) / w  # width
+    y[..., 3] = (x[..., 3] - x[..., 1]) / h  # height
+    return y
+
+
+def xyn2xy(x, w=640, h=640, padw=0, padh=0):
+    """Convert normalized segments into pixel segments, shape (n,2)."""
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = w * x[..., 0] + padw  # top left x
+    y[..., 1] = h * x[..., 1] + padh  # top left y
+    return y
+
+
+def segment2box(segment, width=640, height=640):
+    """Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)."""
+    x, y = segment.T  # segment xy
+    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
+    (
+        x,
+        y,
+    ) = x[inside], y[inside]
+    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy
+
+
+def segments2boxes(segments):
+    """Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)."""
+    boxes = []
+    for s in segments:
+        x, y = s.T  # segment xy
+        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
+    return xyxy2xywh(np.array(boxes))  # cls, xywh
+
+
+def resample_segments(segments, n=1000):
+    """Resamples an (n,2) segment to a fixed number of points for consistent representation."""
+    for i, s in enumerate(segments):
+        s = np.concatenate((s, s[0:1, :]), axis=0)
+        x = np.linspace(0, len(s) - 1, n)
+        xp = np.arange(len(s))
+        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
+    return segments
+
+
+def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
+    """Rescales (xyxy) bounding boxes from img1_shape to img0_shape, optionally using provided `ratio_pad`."""
+    if ratio_pad is None:  # calculate from img0_shape
+        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
+        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
+    else:
+        gain = ratio_pad[0][0]
+        pad = ratio_pad[1]
+
+    boxes[..., [0, 2]] -= pad[0]  # x padding
+    boxes[..., [1, 3]] -= pad[1]  # y padding
+    boxes[..., :4] /= gain
+    clip_boxes(boxes, img0_shape)
+    return boxes
+
+
+def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
+    """Rescales segment coordinates from img1_shape to img0_shape, optionally normalizing them with custom padding."""
+    if ratio_pad is None:  # calculate from img0_shape
+        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
+        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
+    else:
+        gain = ratio_pad[0][0]
+        pad = ratio_pad[1]
+
+    segments[:, 0] -= pad[0]  # x padding
+    segments[:, 1] -= pad[1]  # y padding
+    segments /= gain
+    clip_segments(segments, img0_shape)
+    if normalize:
+        segments[:, 0] /= img0_shape[1]  # width
+        segments[:, 1] /= img0_shape[0]  # height
+    return segments
+
+
+def clip_boxes(boxes, shape):
+    """Clips bounding box coordinates (xyxy) to fit within the specified image shape (height, width)."""
+    if isinstance(boxes, torch.Tensor):  # faster individually
+        boxes[..., 0].clamp_(0, shape[1])  # x1
+        boxes[..., 1].clamp_(0, shape[0])  # y1
+        boxes[..., 2].clamp_(0, shape[1])  # x2
+        boxes[..., 3].clamp_(0, shape[0])  # y2
+    else:  # np.array (faster grouped)
+        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
+        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
+
+
+def clip_segments(segments, shape):
+    """Clips segment coordinates (xy1, xy2, ...) to an image's boundaries given its shape (height, width)."""
+    if isinstance(segments, torch.Tensor):  # faster individually
+        segments[:, 0].clamp_(0, shape[1])  # x
+        segments[:, 1].clamp_(0, shape[0])  # y
+    else:  # np.array (faster grouped)
+        segments[:, 0] = segments[:, 0].clip(0, shape[1])  # x
+        segments[:, 1] = segments[:, 1].clip(0, shape[0])  # y
+
+
+def non_max_suppression(
+    prediction,
+    conf_thres=0.25,
+    iou_thres=0.45,
+    classes=None,
+    agnostic=False,
+    multi_label=False,
+    labels=(),
+    max_det=300,
+    nm=0,  # number of masks
+):
+    """
+    Non-Maximum Suppression (NMS) on inference results to reject overlapping detections.
+
+    Returns:
+         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
+    """
+
+    # Checks
+    assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
+    assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
+    if isinstance(prediction, (list, tuple)):  # YOLOv5 model in validation model, output = (inference_out, loss_out)
+        prediction = prediction[0]  # select only inference output
+
+    device = prediction.device
+    mps = "mps" in device.type  # Apple MPS
+    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
+        prediction = prediction.cpu()
+    bs = prediction.shape[0]  # batch size
+    nc = prediction.shape[2] - nm - 5  # number of classes
+    xc = prediction[..., 4] > conf_thres  # candidates
+
+    # Settings
+    # min_wh = 2  # (pixels) minimum box width and height
+    max_wh = 7680  # (pixels) maximum box width and height
+    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
+    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
+    redundant = True  # require redundant detections
+    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
+    merge = False  # use merge-NMS
+
+    t = time.time()
+    mi = 5 + nc  # mask start index
+    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
+    for xi, x in enumerate(prediction):  # image index, image inference
+        # Apply constraints
+        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
+        x = x[xc[xi]]  # confidence
+
+        # Cat apriori labels if autolabelling
+        if labels and len(labels[xi]):
+            lb = labels[xi]
+            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
+            v[:, :4] = lb[:, 1:5]  # box
+            v[:, 4] = 1.0  # conf
+            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
+            x = torch.cat((x, v), 0)
+
+        # If none remain process next image
+        if not x.shape[0]:
+            continue
+
+        # Compute conf
+        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
+
+        # Box/Mask
+        box = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)
+        mask = x[:, mi:]  # zero columns if no masks
+
+        # Detections matrix nx6 (xyxy, conf, cls)
+        if multi_label:
+            i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
+            x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
+        else:  # best class only
+            conf, j = x[:, 5:mi].max(1, keepdim=True)
+            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
+
+        # Filter by class
+        if classes is not None:
+            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+        # Apply finite constraint
+        # if not torch.isfinite(x).all():
+        #     x = x[torch.isfinite(x).all(1)]
+
+        # Check shape
+        n = x.shape[0]  # number of boxes
+        if not n:  # no boxes
+            continue
+        x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes
+
+        # Batched NMS
+        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
+        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
+        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
+        i = i[:max_det]  # limit detections
+        if merge and (1 < n < 3e3):  # Merge NMS (boxes merged using weighted mean)
+            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
+            weights = iou * scores[None]  # box weights
+            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
+            if redundant:
+                i = i[iou.sum(1) > 1]  # require redundancy
+
+        output[xi] = x[i]
+        if mps:
+            output[xi] = output[xi].to(device)
+        if (time.time() - t) > time_limit:
+            LOGGER.warning(f"WARNING ⚠ī¸ NMS time limit {time_limit:.3f}s exceeded")
+            break  # time limit exceeded
+
+    return output
+
+
+def strip_optimizer(f="best.pt", s=""):
+    """
+    Strips optimizer and optionally saves checkpoint to finalize training; arguments are file path 'f' and save path
+    's'.
+
+    Example: from utils.general import *; strip_optimizer()
+    """
+    x = torch.load(f, map_location=torch.device("cpu"))
+    if x.get("ema"):
+        x["model"] = x["ema"]  # replace model with ema
+    for k in "optimizer", "best_fitness", "ema", "updates":  # keys
+        x[k] = None
+    x["epoch"] = -1
+    x["model"].half()  # to FP16
+    for p in x["model"].parameters():
+        p.requires_grad = False
+    torch.save(x, s or f)
+    mb = os.path.getsize(s or f) / 1e6  # filesize
+    LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
+
+
+def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr("evolve: ")):
+    """Logs evolution results and saves to CSV and YAML in `save_dir`, optionally syncs with `bucket`."""
+    evolve_csv = save_dir / "evolve.csv"
+    evolve_yaml = save_dir / "hyp_evolve.yaml"
+    keys = tuple(keys) + tuple(hyp.keys())  # [results + hyps]
+    keys = tuple(x.strip() for x in keys)
+    vals = results + tuple(hyp.values())
+    n = len(keys)
+
+    # Download (optional)
+    if bucket:
+        url = f"gs://{bucket}/evolve.csv"
+        if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
+            subprocess.run(["gsutil", "cp", f"{url}", f"{save_dir}"])  # download evolve.csv if larger than local
+
+    # Log to evolve.csv
+    s = "" if evolve_csv.exists() else (("%20s," * n % keys).rstrip(",") + "\n")  # add header
+    with open(evolve_csv, "a") as f:
+        f.write(s + ("%20.5g," * n % vals).rstrip(",") + "\n")
+
+    # Save yaml
+    with open(evolve_yaml, "w") as f:
+        data = pd.read_csv(evolve_csv, skipinitialspace=True)
+        data = data.rename(columns=lambda x: x.strip())  # strip keys
+        i = np.argmax(fitness(data.values[:, :4]))  #
+        generations = len(data)
+        f.write(
+            "# YOLOv5 Hyperparameter Evolution Results\n"
+            + f"# Best generation: {i}\n"
+            + f"# Last generation: {generations - 1}\n"
+            + "# "
+            + ", ".join(f"{x.strip():>20s}" for x in keys[:7])
+            + "\n"
+            + "# "
+            + ", ".join(f"{x:>20.5g}" for x in data.values[i, :7])
+            + "\n\n"
+        )
+        yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
+
+    # Print to screen
+    LOGGER.info(
+        prefix
+        + f"{generations} generations finished, current result:\n"
+        + prefix
+        + ", ".join(f"{x.strip():>20s}" for x in keys)
+        + "\n"
+        + prefix
+        + ", ".join(f"{x:20.5g}" for x in vals)
+        + "\n\n"
+    )
+
+    if bucket:
+        subprocess.run(["gsutil", "cp", f"{evolve_csv}", f"{evolve_yaml}", f"gs://{bucket}"])  # upload
+
+
+def apply_classifier(x, model, img, im0):
+    """Applies second-stage classifier to YOLO outputs, filtering detections by class match."""
+    # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
+    im0 = [im0] if isinstance(im0, np.ndarray) else im0
+    for i, d in enumerate(x):  # per image
+        if d is not None and len(d):
+            d = d.clone()
+
+            # Reshape and pad cutouts
+            b = xyxy2xywh(d[:, :4])  # boxes
+            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
+            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
+            d[:, :4] = xywh2xyxy(b).long()
+
+            # Rescale boxes from img_size to im0 size
+            scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
+
+            # Classes
+            pred_cls1 = d[:, 5].long()
+            ims = []
+            for a in d:
+                cutout = im0[i][int(a[1]) : int(a[3]), int(a[0]) : int(a[2])]
+                im = cv2.resize(cutout, (224, 224))  # BGR
+
+                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
+                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
+                im /= 255  # 0 - 255 to 0.0 - 1.0
+                ims.append(im)
+
+            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
+            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections
+
+    return x
+
+
+def increment_path(path, exist_ok=False, sep="", mkdir=False):
+    """
+    Generates an incremented file or directory path if it exists, with optional mkdir; args: path, exist_ok=False,
+    sep="", mkdir=False.
+
+    Example: runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc
+    """
+    path = Path(path)  # os-agnostic
+    if path.exists() and not exist_ok:
+        path, suffix = (path.with_suffix(""), path.suffix) if path.is_file() else (path, "")
+
+        # Method 1
+        for n in range(2, 9999):
+            p = f"{path}{sep}{n}{suffix}"  # increment path
+            if not os.path.exists(p):  #
+                break
+        path = Path(p)
+
+        # Method 2 (deprecated)
+        # dirs = glob.glob(f"{path}{sep}*")  # similar paths
+        # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
+        # i = [int(m.groups()[0]) for m in matches if m]  # indices
+        # n = max(i) + 1 if i else 2  # increment number
+        # path = Path(f"{path}{sep}{n}{suffix}")  # increment path
+
+    if mkdir:
+        path.mkdir(parents=True, exist_ok=True)  # make directory
+
+    return path
+
+
+# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------------
+imshow_ = cv2.imshow  # copy to avoid recursion errors
+
+
+def imread(filename, flags=cv2.IMREAD_COLOR):
+    """Reads an image from a file and returns it as a numpy array, using OpenCV's imdecode to support multilanguage
+    paths.
+    """
+    return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
+
+
+def imwrite(filename, img):
+    """Writes an image to a file, returns True on success and False on failure, supports multilanguage paths."""
+    try:
+        cv2.imencode(Path(filename).suffix, img)[1].tofile(filename)
+        return True
+    except Exception:
+        return False
+
+
+def imshow(path, im):
+    """Displays an image using Unicode path, requires encoded path and image matrix as input."""
+    imshow_(path.encode("unicode_escape").decode(), im)
+
+
+if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename:
+    cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow  # redefine
+
+# Variables ------------------------------------------------------------------------------------------------------------
diff --git a/yolov5/utils/google_app_engine/Dockerfile b/yolov5/utils/google_app_engine/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..0155618f475104e9858b81470339558156c94e13
--- /dev/null
+++ b/yolov5/utils/google_app_engine/Dockerfile
@@ -0,0 +1,25 @@
+FROM gcr.io/google-appengine/python
+
+# Create a virtualenv for dependencies. This isolates these packages from
+# system-level packages.
+# Use -p python3 or -p python3.7 to select python version. Default is version 2.
+RUN virtualenv /env -p python3
+
+# Setting these environment variables are the same as running
+# source /env/bin/activate.
+ENV VIRTUAL_ENV /env
+ENV PATH /env/bin:$PATH
+
+RUN apt-get update && apt-get install -y python-opencv
+
+# Copy the application's requirements.txt and run pip to install all
+# dependencies into the virtualenv.
+ADD requirements.txt /app/requirements.txt
+RUN pip install -r /app/requirements.txt
+
+# Add the application source code.
+ADD . /app
+
+# Run a WSGI server to serve the application. gunicorn must be declared as
+# a dependency in requirements.txt.
+CMD gunicorn -b :$PORT main:app
diff --git a/yolov5/utils/google_app_engine/additional_requirements.txt b/yolov5/utils/google_app_engine/additional_requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..821c3caf3cbf70b63882d3e2e304dc8b54713224
--- /dev/null
+++ b/yolov5/utils/google_app_engine/additional_requirements.txt
@@ -0,0 +1,5 @@
+# add these requirements in your app on top of the existing ones
+pip==23.3
+Flask==2.3.2
+gunicorn==22.0.0
+werkzeug>=3.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
diff --git a/yolov5/utils/google_app_engine/app.yaml b/yolov5/utils/google_app_engine/app.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5056b7c1186d6ad278957bbd6e976c3a0f169a30
--- /dev/null
+++ b/yolov5/utils/google_app_engine/app.yaml
@@ -0,0 +1,14 @@
+runtime: custom
+env: flex
+
+service: yolov5app
+
+liveness_check:
+  initial_delay_sec: 600
+
+manual_scaling:
+  instances: 1
+resources:
+  cpu: 1
+  memory_gb: 4
+  disk_size_gb: 20
diff --git a/yolov5/utils/loggers/__init__.py b/yolov5/utils/loggers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..011ec7c8915b2be8ffe9071e52b6515e91e35b25
--- /dev/null
+++ b/yolov5/utils/loggers/__init__.py
@@ -0,0 +1,470 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Logging utils."""
+
+import json
+import os
+import warnings
+from pathlib import Path
+
+import pkg_resources as pkg
+import torch
+
+from utils.general import LOGGER, colorstr, cv2
+from utils.loggers.clearml.clearml_utils import ClearmlLogger
+from utils.loggers.wandb.wandb_utils import WandbLogger
+from utils.plots import plot_images, plot_labels, plot_results
+from utils.torch_utils import de_parallel
+
+LOGGERS = ("csv", "tb", "wandb", "clearml", "comet")  # *.csv, TensorBoard, Weights & Biases, ClearML
+RANK = int(os.getenv("RANK", -1))
+
+try:
+    from torch.utils.tensorboard import SummaryWriter
+except ImportError:
+    SummaryWriter = lambda *args: None  # None = SummaryWriter(str)
+
+try:
+    import wandb
+
+    assert hasattr(wandb, "__version__")  # verify package import not local dir
+    if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}:
+        try:
+            wandb_login_success = wandb.login(timeout=30)
+        except wandb.errors.UsageError:  # known non-TTY terminal issue
+            wandb_login_success = False
+        if not wandb_login_success:
+            wandb = None
+except (ImportError, AssertionError):
+    wandb = None
+
+try:
+    import clearml
+
+    assert hasattr(clearml, "__version__")  # verify package import not local dir
+except (ImportError, AssertionError):
+    clearml = None
+
+try:
+    if RANK in {0, -1}:
+        import comet_ml
+
+        assert hasattr(comet_ml, "__version__")  # verify package import not local dir
+        from utils.loggers.comet import CometLogger
+
+    else:
+        comet_ml = None
+except (ImportError, AssertionError):
+    comet_ml = None
+
+
+def _json_default(value):
+    """
+    Format `value` for JSON serialization (e.g. unwrap tensors).
+
+    Fall back to strings.
+    """
+    if isinstance(value, torch.Tensor):
+        try:
+            value = value.item()
+        except ValueError:  # "only one element tensors can be converted to Python scalars"
+            pass
+    return value if isinstance(value, float) else str(value)
+
+
+class Loggers:
+    # YOLOv5 Loggers class
+    def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
+        """Initializes loggers for YOLOv5 training and validation metrics, paths, and options."""
+        self.save_dir = save_dir
+        self.weights = weights
+        self.opt = opt
+        self.hyp = hyp
+        self.plots = not opt.noplots  # plot results
+        self.logger = logger  # for printing results to console
+        self.include = include
+        self.keys = [
+            "train/box_loss",
+            "train/obj_loss",
+            "train/cls_loss",  # train loss
+            "metrics/precision",
+            "metrics/recall",
+            "metrics/mAP_0.5",
+            "metrics/mAP_0.5:0.95",  # metrics
+            "val/box_loss",
+            "val/obj_loss",
+            "val/cls_loss",  # val loss
+            "x/lr0",
+            "x/lr1",
+            "x/lr2",
+        ]  # params
+        self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"]
+        for k in LOGGERS:
+            setattr(self, k, None)  # init empty logger dictionary
+        self.csv = True  # always log to csv
+        self.ndjson_console = "ndjson_console" in self.include  # log ndjson to console
+        self.ndjson_file = "ndjson_file" in self.include  # log ndjson to file
+
+        # Messages
+        if not comet_ml:
+            prefix = colorstr("Comet: ")
+            s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
+            self.logger.info(s)
+        # TensorBoard
+        s = self.save_dir
+        if "tb" in self.include and not self.opt.evolve:
+            prefix = colorstr("TensorBoard: ")
+            self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
+            self.tb = SummaryWriter(str(s))
+
+        # W&B
+        if wandb and "wandb" in self.include:
+            self.opt.hyp = self.hyp  # add hyperparameters
+            self.wandb = WandbLogger(self.opt)
+        else:
+            self.wandb = None
+
+        # ClearML
+        if clearml and "clearml" in self.include:
+            try:
+                self.clearml = ClearmlLogger(self.opt, self.hyp)
+            except Exception:
+                self.clearml = None
+                prefix = colorstr("ClearML: ")
+                LOGGER.warning(
+                    f"{prefix}WARNING ⚠ī¸ ClearML is installed but not configured, skipping ClearML logging."
+                    f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme"
+                )
+
+        else:
+            self.clearml = None
+
+        # Comet
+        if comet_ml and "comet" in self.include:
+            if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
+                run_id = self.opt.resume.split("/")[-1]
+                self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
+
+            else:
+                self.comet_logger = CometLogger(self.opt, self.hyp)
+
+        else:
+            self.comet_logger = None
+
+    @property
+    def remote_dataset(self):
+        """Fetches dataset dictionary from remote logging services like ClearML, Weights & Biases, or Comet ML."""
+        data_dict = None
+        if self.clearml:
+            data_dict = self.clearml.data_dict
+        if self.wandb:
+            data_dict = self.wandb.data_dict
+        if self.comet_logger:
+            data_dict = self.comet_logger.data_dict
+
+        return data_dict
+
+    def on_train_start(self):
+        """Initializes the training process for Comet ML logger if it's configured."""
+        if self.comet_logger:
+            self.comet_logger.on_train_start()
+
+    def on_pretrain_routine_start(self):
+        """Invokes pre-training routine start hook for Comet ML logger if available."""
+        if self.comet_logger:
+            self.comet_logger.on_pretrain_routine_start()
+
+    def on_pretrain_routine_end(self, labels, names):
+        """Callback that runs at the end of pre-training routine, logging label plots if enabled."""
+        if self.plots:
+            plot_labels(labels, names, self.save_dir)
+            paths = self.save_dir.glob("*labels*.jpg")  # training labels
+            if self.wandb:
+                self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
+            if self.comet_logger:
+                self.comet_logger.on_pretrain_routine_end(paths)
+            if self.clearml:
+                for path in paths:
+                    self.clearml.log_plot(title=path.stem, plot_path=path)
+
+    def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
+        """Logs training batch end events, plots images, and updates external loggers with batch-end data."""
+        log_dict = dict(zip(self.keys[:3], vals))
+        # Callback runs on train batch end
+        # ni: number integrated batches (since train start)
+        if self.plots:
+            if ni < 3:
+                f = self.save_dir / f"train_batch{ni}.jpg"  # filename
+                plot_images(imgs, targets, paths, f)
+                if ni == 0 and self.tb and not self.opt.sync_bn:
+                    log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
+            if ni == 10 and (self.wandb or self.clearml):
+                files = sorted(self.save_dir.glob("train*.jpg"))
+                if self.wandb:
+                    self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
+                if self.clearml:
+                    self.clearml.log_debug_samples(files, title="Mosaics")
+
+        if self.comet_logger:
+            self.comet_logger.on_train_batch_end(log_dict, step=ni)
+
+    def on_train_epoch_end(self, epoch):
+        """Callback that updates the current epoch in Weights & Biases at the end of a training epoch."""
+        if self.wandb:
+            self.wandb.current_epoch = epoch + 1
+
+        if self.comet_logger:
+            self.comet_logger.on_train_epoch_end(epoch)
+
+    def on_val_start(self):
+        """Callback that signals the start of a validation phase to the Comet logger."""
+        if self.comet_logger:
+            self.comet_logger.on_val_start()
+
+    def on_val_image_end(self, pred, predn, path, names, im):
+        """Callback that logs a validation image and its predictions to WandB or ClearML."""
+        if self.wandb:
+            self.wandb.val_one_image(pred, predn, path, names, im)
+        if self.clearml:
+            self.clearml.log_image_with_boxes(path, pred, names, im)
+
+    def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
+        """Logs validation batch results to Comet ML during training at the end of each validation batch."""
+        if self.comet_logger:
+            self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
+
+    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
+        """Logs validation results to WandB or ClearML at the end of the validation process."""
+        if self.wandb or self.clearml:
+            files = sorted(self.save_dir.glob("val*.jpg"))
+        if self.wandb:
+            self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
+        if self.clearml:
+            self.clearml.log_debug_samples(files, title="Validation")
+
+        if self.comet_logger:
+            self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+    def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
+        """Callback that logs metrics and saves them to CSV or NDJSON at the end of each fit (train+val) epoch."""
+        x = dict(zip(self.keys, vals))
+        if self.csv:
+            file = self.save_dir / "results.csv"
+            n = len(x) + 1  # number of cols
+            s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n")  # add header
+            with open(file, "a") as f:
+                f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
+        if self.ndjson_console or self.ndjson_file:
+            json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default)
+        if self.ndjson_console:
+            print(json_data)
+        if self.ndjson_file:
+            file = self.save_dir / "results.ndjson"
+            with open(file, "a") as f:
+                print(json_data, file=f)
+
+        if self.tb:
+            for k, v in x.items():
+                self.tb.add_scalar(k, v, epoch)
+        elif self.clearml:  # log to ClearML if TensorBoard not used
+            self.clearml.log_scalars(x, epoch)
+
+        if self.wandb:
+            if best_fitness == fi:
+                best_results = [epoch] + vals[3:7]
+                for i, name in enumerate(self.best_keys):
+                    self.wandb.wandb_run.summary[name] = best_results[i]  # log best results in the summary
+            self.wandb.log(x)
+            self.wandb.end_epoch()
+
+        if self.clearml:
+            self.clearml.current_epoch_logged_images = set()  # reset epoch image limit
+            self.clearml.current_epoch += 1
+
+        if self.comet_logger:
+            self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
+
+    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+        """Callback that handles model saving events, logging to Weights & Biases or ClearML if enabled."""
+        if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
+            if self.wandb:
+                self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+            if self.clearml:
+                self.clearml.task.update_output_model(
+                    model_path=str(last), model_name="Latest Model", auto_delete_file=False
+                )
+
+        if self.comet_logger:
+            self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
+
+    def on_train_end(self, last, best, epoch, results):
+        """Callback that runs at the end of training to save plots and log results."""
+        if self.plots:
+            plot_results(file=self.save_dir / "results.csv")  # save results.png
+        files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
+        files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()]  # filter
+        self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
+
+        if self.tb and not self.clearml:  # These images are already captured by ClearML by now, we don't want doubles
+            for f in files:
+                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
+
+        if self.wandb:
+            self.wandb.log(dict(zip(self.keys[3:10], results)))
+            self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
+            # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
+            if not self.opt.evolve:
+                wandb.log_artifact(
+                    str(best if best.exists() else last),
+                    type="model",
+                    name=f"run_{self.wandb.wandb_run.id}_model",
+                    aliases=["latest", "best", "stripped"],
+                )
+            self.wandb.finish_run()
+
+        if self.clearml and not self.opt.evolve:
+            self.clearml.log_summary(dict(zip(self.keys[3:10], results)))
+            [self.clearml.log_plot(title=f.stem, plot_path=f) for f in files]
+            self.clearml.log_model(
+                str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch
+            )
+
+        if self.comet_logger:
+            final_results = dict(zip(self.keys[3:10], results))
+            self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
+
+    def on_params_update(self, params: dict):
+        """Updates experiment hyperparameters or configurations in WandB, Comet, or ClearML."""
+        if self.wandb:
+            self.wandb.wandb_run.config.update(params, allow_val_change=True)
+        if self.comet_logger:
+            self.comet_logger.on_params_update(params)
+        if self.clearml:
+            self.clearml.task.connect(params)
+
+
+class GenericLogger:
+    """
+    YOLOv5 General purpose logger for non-task specific logging
+    Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
+    Arguments
+        opt:             Run arguments
+        console_logger:  Console logger
+        include:         loggers to include
+    """
+
+    def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")):
+        """Initializes a generic logger with optional TensorBoard, W&B, and ClearML support."""
+        self.save_dir = Path(opt.save_dir)
+        self.include = include
+        self.console_logger = console_logger
+        self.csv = self.save_dir / "results.csv"  # CSV logger
+        if "tb" in self.include:
+            prefix = colorstr("TensorBoard: ")
+            self.console_logger.info(
+                f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/"
+            )
+            self.tb = SummaryWriter(str(self.save_dir))
+
+        if wandb and "wandb" in self.include:
+            self.wandb = wandb.init(
+                project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt
+            )
+        else:
+            self.wandb = None
+
+        if clearml and "clearml" in self.include:
+            try:
+                # Hyp is not available in classification mode
+                hyp = {} if "hyp" not in opt else opt.hyp
+                self.clearml = ClearmlLogger(opt, hyp)
+            except Exception:
+                self.clearml = None
+                prefix = colorstr("ClearML: ")
+                LOGGER.warning(
+                    f"{prefix}WARNING ⚠ī¸ ClearML is installed but not configured, skipping ClearML logging."
+                    f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration"
+                )
+        else:
+            self.clearml = None
+
+    def log_metrics(self, metrics, epoch):
+        """Logs metrics to CSV, TensorBoard, W&B, and ClearML; `metrics` is a dict, `epoch` is an int."""
+        if self.csv:
+            keys, vals = list(metrics.keys()), list(metrics.values())
+            n = len(metrics) + 1  # number of cols
+            s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n")  # header
+            with open(self.csv, "a") as f:
+                f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
+
+        if self.tb:
+            for k, v in metrics.items():
+                self.tb.add_scalar(k, v, epoch)
+
+        if self.wandb:
+            self.wandb.log(metrics, step=epoch)
+
+        if self.clearml:
+            self.clearml.log_scalars(metrics, epoch)
+
+    def log_images(self, files, name="Images", epoch=0):
+        """Logs images to all loggers with optional naming and epoch specification."""
+        files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])]  # to Path
+        files = [f for f in files if f.exists()]  # filter by exists
+
+        if self.tb:
+            for f in files:
+                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
+
+        if self.wandb:
+            self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
+
+        if self.clearml:
+            if name == "Results":
+                [self.clearml.log_plot(f.stem, f) for f in files]
+            else:
+                self.clearml.log_debug_samples(files, title=name)
+
+    def log_graph(self, model, imgsz=(640, 640)):
+        """Logs model graph to all configured loggers with specified input image size."""
+        if self.tb:
+            log_tensorboard_graph(self.tb, model, imgsz)
+
+    def log_model(self, model_path, epoch=0, metadata=None):
+        """Logs the model to all configured loggers with optional epoch and metadata."""
+        if metadata is None:
+            metadata = {}
+        # Log model to all loggers
+        if self.wandb:
+            art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
+            art.add_file(str(model_path))
+            wandb.log_artifact(art)
+        if self.clearml:
+            self.clearml.log_model(model_path=model_path, model_name=model_path.stem)
+
+    def update_params(self, params):
+        """Updates logged parameters in WandB and/or ClearML if enabled."""
+        if self.wandb:
+            wandb.run.config.update(params, allow_val_change=True)
+        if self.clearml:
+            self.clearml.task.connect(params)
+
+
+def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
+    """Logs the model graph to TensorBoard with specified image size and model."""
+    try:
+        p = next(model.parameters())  # for device, type
+        imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz  # expand
+        im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p)  # input image (WARNING: must be zeros, not empty)
+        with warnings.catch_warnings():
+            warnings.simplefilter("ignore")  # suppress jit trace warning
+            tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
+    except Exception as e:
+        LOGGER.warning(f"WARNING ⚠ī¸ TensorBoard graph visualization failure {e}")
+
+
+def web_project_name(project):
+    """Converts a local project name to a standardized web project name with optional suffixes."""
+    if not project.startswith("runs/train"):
+        return project
+    suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else ""
+    return f"YOLOv5{suffix}"
diff --git a/yolov5/utils/loggers/clearml/README.md b/yolov5/utils/loggers/clearml/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..bc40919ab0ea1152e18db4bc041b638629b15b27
--- /dev/null
+++ b/yolov5/utils/loggers/clearml/README.md
@@ -0,0 +1,234 @@
+# ClearML Integration
+
+<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
+
+## About ClearML
+
+[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱ī¸.
+
+🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
+
+🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
+
+đŸ”Ļ <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
+
+đŸ”Ŧ Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
+
+🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
+
+<br />
+And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
+<br />
+<br />
+
+![ClearML scalars dashboard](https://github.com/thepycoder/clearml_screenshots/raw/main/experiment_manager_with_compare.gif)
+
+<br />
+<br />
+
+## đŸĻž Setting Things Up
+
+To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
+
+Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
+
+1. Install the `clearml` python package:
+
+    ```bash
+    pip install clearml
+    ```
+
+2. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
+
+    ```bash
+    clearml-init
+    ```
+
+That's it! You're done 😎
+
+<br />
+
+## 🚀 Training YOLOv5 With ClearML
+
+To enable ClearML experiment tracking, simply install the ClearML pip package.
+
+```bash
+pip install clearml>=1.2.0
+```
+
+This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
+
+If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`. PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
+
+```bash
+python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
+```
+
+or with custom project and task name:
+
+```bash
+python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
+```
+
+This will capture:
+
+- Source code + uncommitted changes
+- Installed packages
+- (Hyper)parameters
+- Model files (use `--save-period n` to save a checkpoint every n epochs)
+- Console output
+- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
+- General info such as machine details, runtime, creation date etc.
+- All produced plots such as label correlogram and confusion matrix
+- Images with bounding boxes per epoch
+- Mosaic per epoch
+- Validation images per epoch
+- ...
+
+That's a lot right? đŸ¤¯ Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
+
+There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
+
+<br />
+
+## 🔗 Dataset Version Management
+
+Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
+
+![ClearML Dataset Interface](https://github.com/thepycoder/clearml_screenshots/raw/main/clearml_data.gif)
+
+### Prepare Your Dataset
+
+The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
+
+```
+..
+|_ yolov5
+|_ datasets
+    |_ coco128
+        |_ images
+        |_ labels
+        |_ LICENSE
+        |_ README.txt
+```
+
+But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
+
+Next, ⚠ī¸**copy the corresponding yaml file to the root of the dataset folder**⚠ī¸. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
+
+Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
+
+```
+..
+|_ yolov5
+|_ datasets
+    |_ coco128
+        |_ images
+        |_ labels
+        |_ coco128.yaml  # <---- HERE!
+        |_ LICENSE
+        |_ README.txt
+```
+
+### Upload Your Dataset
+
+To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
+
+```bash
+cd coco128
+clearml-data sync --project YOLOv5 --name coco128 --folder .
+```
+
+The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
+
+```bash
+# Optionally add --parent <parent_dataset_id> if you want to base
+# this version on another dataset version, so no duplicate files are uploaded!
+clearml-data create --name coco128 --project YOLOv5
+clearml-data add --files .
+clearml-data close
+```
+
+### Run Training Using A ClearML Dataset
+
+Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
+
+```bash
+python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
+```
+
+<br />
+
+## 👀 Hyperparameter Optimization
+
+Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
+
+Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
+
+To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
+
+You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
+
+```bash
+# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
+pip install optuna
+python utils/loggers/clearml/hpo.py
+```
+
+![HPO](https://github.com/thepycoder/clearml_screenshots/raw/main/hpo.png)
+
+## đŸ¤¯ Remote Execution (advanced)
+
+Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site, or you have some budget to use cloud GPUs. This is where the ClearML Agent comes into play. Check out what the agent can do here:
+
+- [YouTube video](https://youtu.be/MX3BrXnaULs)
+- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
+
+In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
+
+You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
+
+```bash
+clearml-agent daemon --queue <queues_to_listen_to> [--docker]
+```
+
+### Cloning, Editing And Enqueuing
+
+With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
+
+đŸĒ„ Clone the experiment by right-clicking it
+
+đŸŽ¯ Edit the hyperparameters to what you wish them to be
+
+âŗ Enqueue the task to any of the queues by right-clicking it
+
+![Enqueue a task from the UI](https://github.com/thepycoder/clearml_screenshots/raw/main/enqueue.gif)
+
+### Executing A Task Remotely
+
+Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
+
+To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instantiated:
+
+```python
+# ...
+# Loggers
+data_dict = None
+if RANK in {-1, 0}:
+    loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
+    if loggers.clearml:
+        loggers.clearml.task.execute_remotely(queue="my_queue")  # <------ ADD THIS LINE
+        # Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
+        data_dict = loggers.clearml.data_dict
+# ...
+```
+
+When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
+
+### Autoscaling workers
+
+ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines, and you stop paying!
+
+Check out the autoscalers getting started video below.
+
+[![Watch the video](https://img.youtube.com/vi/j4XVMAaUt3E/0.jpg)](https://youtu.be/j4XVMAaUt3E)
diff --git a/yolov5/utils/loggers/clearml/__init__.py b/yolov5/utils/loggers/clearml/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5/utils/loggers/clearml/clearml_utils.py b/yolov5/utils/loggers/clearml/clearml_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a6ed7636c88e0cbb5207eb908682774e1d7bee0
--- /dev/null
+++ b/yolov5/utils/loggers/clearml/clearml_utils.py
@@ -0,0 +1,228 @@
+"""Main Logger class for ClearML experiment tracking."""
+
+import glob
+import re
+from pathlib import Path
+
+import matplotlib.image as mpimg
+import matplotlib.pyplot as plt
+import numpy as np
+import yaml
+from ultralytics.utils.plotting import Annotator, colors
+
+try:
+    import clearml
+    from clearml import Dataset, Task
+
+    assert hasattr(clearml, "__version__")  # verify package import not local dir
+except (ImportError, AssertionError):
+    clearml = None
+
+
+def construct_dataset(clearml_info_string):
+    """Load in a clearml dataset and fill the internal data_dict with its contents."""
+    dataset_id = clearml_info_string.replace("clearml://", "")
+    dataset = Dataset.get(dataset_id=dataset_id)
+    dataset_root_path = Path(dataset.get_local_copy())
+
+    # We'll search for the yaml file definition in the dataset
+    yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
+    if len(yaml_filenames) > 1:
+        raise ValueError(
+            "More than one yaml file was found in the dataset root, cannot determine which one contains "
+            "the dataset definition this way."
+        )
+    elif not yaml_filenames:
+        raise ValueError(
+            "No yaml definition found in dataset root path, check that there is a correct yaml file "
+            "inside the dataset root path."
+        )
+    with open(yaml_filenames[0]) as f:
+        dataset_definition = yaml.safe_load(f)
+
+    assert set(
+        dataset_definition.keys()
+    ).issuperset(
+        {"train", "test", "val", "nc", "names"}
+    ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
+
+    data_dict = {}
+    data_dict["train"] = (
+        str((dataset_root_path / dataset_definition["train"]).resolve()) if dataset_definition["train"] else None
+    )
+    data_dict["test"] = (
+        str((dataset_root_path / dataset_definition["test"]).resolve()) if dataset_definition["test"] else None
+    )
+    data_dict["val"] = (
+        str((dataset_root_path / dataset_definition["val"]).resolve()) if dataset_definition["val"] else None
+    )
+    data_dict["nc"] = dataset_definition["nc"]
+    data_dict["names"] = dataset_definition["names"]
+
+    return data_dict
+
+
+class ClearmlLogger:
+    """
+    Log training runs, datasets, models, and predictions to ClearML.
+
+    This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default, this information
+    includes hyperparameters, system configuration and metrics, model metrics, code information and basic data metrics
+    and analyses.
+
+    By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
+    """
+
+    def __init__(self, opt, hyp):
+        """
+        - Initialize ClearML Task, this object will capture the experiment
+        - Upload dataset version to ClearML Data if opt.upload_dataset is True
+
+        arguments:
+        opt (namespace) -- Commandline arguments for this run
+        hyp (dict) -- Hyperparameters for this run
+
+        """
+        self.current_epoch = 0
+        # Keep tracked of amount of logged images to enforce a limit
+        self.current_epoch_logged_images = set()
+        # Maximum number of images to log to clearML per epoch
+        self.max_imgs_to_log_per_epoch = 16
+        # Get the interval of epochs when bounding box images should be logged
+        # Only for detection task though!
+        if "bbox_interval" in opt:
+            self.bbox_interval = opt.bbox_interval
+        self.clearml = clearml
+        self.task = None
+        self.data_dict = None
+        if self.clearml:
+            self.task = Task.init(
+                project_name="YOLOv5" if str(opt.project).startswith("runs/") else opt.project,
+                task_name=opt.name if opt.name != "exp" else "Training",
+                tags=["YOLOv5"],
+                output_uri=True,
+                reuse_last_task_id=opt.exist_ok,
+                auto_connect_frameworks={"pytorch": False, "matplotlib": False},
+                # We disconnect pytorch auto-detection, because we added manual model save points in the code
+            )
+            # ClearML's hooks will already grab all general parameters
+            # Only the hyperparameters coming from the yaml config file
+            # will have to be added manually!
+            self.task.connect(hyp, name="Hyperparameters")
+            self.task.connect(opt, name="Args")
+
+            # Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
+            self.task.set_base_docker(
+                "ultralytics/yolov5:latest",
+                docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
+                docker_setup_bash_script="pip install clearml",
+            )
+
+            # Get ClearML Dataset Version if requested
+            if opt.data.startswith("clearml://"):
+                # data_dict should have the following keys:
+                # names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
+                self.data_dict = construct_dataset(opt.data)
+                # Set data to data_dict because wandb will crash without this information and opt is the best way
+                # to give it to them
+                opt.data = self.data_dict
+
+    def log_scalars(self, metrics, epoch):
+        """
+        Log scalars/metrics to ClearML.
+
+        arguments:
+        metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
+        epoch (int) iteration number for the current set of metrics
+        """
+        for k, v in metrics.items():
+            title, series = k.split("/")
+            self.task.get_logger().report_scalar(title, series, v, epoch)
+
+    def log_model(self, model_path, model_name, epoch=0):
+        """
+        Log model weights to ClearML.
+
+        arguments:
+        model_path (PosixPath or str) Path to the model weights
+        model_name (str) Name of the model visible in ClearML
+        epoch (int) Iteration / epoch of the model weights
+        """
+        self.task.update_output_model(
+            model_path=str(model_path), name=model_name, iteration=epoch, auto_delete_file=False
+        )
+
+    def log_summary(self, metrics):
+        """
+        Log final metrics to a summary table.
+
+        arguments:
+        metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
+        """
+        for k, v in metrics.items():
+            self.task.get_logger().report_single_value(k, v)
+
+    def log_plot(self, title, plot_path):
+        """
+        Log image as plot in the plot section of ClearML.
+
+        arguments:
+        title (str) Title of the plot
+        plot_path (PosixPath or str) Path to the saved image file
+        """
+        img = mpimg.imread(plot_path)
+        fig = plt.figure()
+        ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[])  # no ticks
+        ax.imshow(img)
+
+        self.task.get_logger().report_matplotlib_figure(title, "", figure=fig, report_interactive=False)
+
+    def log_debug_samples(self, files, title="Debug Samples"):
+        """
+        Log files (images) as debug samples in the ClearML task.
+
+        arguments:
+        files (List(PosixPath)) a list of file paths in PosixPath format
+        title (str) A title that groups together images with the same values
+        """
+        for f in files:
+            if f.exists():
+                it = re.search(r"_batch(\d+)", f.name)
+                iteration = int(it.groups()[0]) if it else 0
+                self.task.get_logger().report_image(
+                    title=title, series=f.name.replace(f"_batch{iteration}", ""), local_path=str(f), iteration=iteration
+                )
+
+    def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
+        """
+        Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
+
+        arguments:
+        image_path (PosixPath) the path the original image file
+        boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
+        class_names (dict): dict containing mapping of class int to class name
+        image (Tensor): A torch tensor containing the actual image data
+        """
+        if (
+            len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch
+            and self.current_epoch >= 0
+            and (self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images)
+        ):
+            im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
+            annotator = Annotator(im=im, pil=True)
+            for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
+                color = colors(i)
+
+                class_name = class_names[int(class_nr)]
+                confidence_percentage = round(float(conf) * 100, 2)
+                label = f"{class_name}: {confidence_percentage}%"
+
+                if conf > conf_threshold:
+                    annotator.rectangle(box.cpu().numpy(), outline=color)
+                    annotator.box_label(box.cpu().numpy(), label=label, color=color)
+
+            annotated_image = annotator.result()
+            self.task.get_logger().report_image(
+                title="Bounding Boxes", series=image_path.name, iteration=self.current_epoch, image=annotated_image
+            )
+            self.current_epoch_logged_images.add(image_path)
diff --git a/yolov5/utils/loggers/clearml/hpo.py b/yolov5/utils/loggers/clearml/hpo.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e314ea868df092f4312fada2f790c4907ce8886
--- /dev/null
+++ b/yolov5/utils/loggers/clearml/hpo.py
@@ -0,0 +1,88 @@
+from clearml import Task
+
+# Connecting ClearML with the current process,
+# from here on everything is logged automatically
+from clearml.automation import HyperParameterOptimizer, UniformParameterRange
+from clearml.automation.optuna import OptimizerOptuna
+
+task = Task.init(
+    project_name="Hyper-Parameter Optimization",
+    task_name="YOLOv5",
+    task_type=Task.TaskTypes.optimizer,
+    reuse_last_task_id=False,
+)
+
+# Example use case:
+optimizer = HyperParameterOptimizer(
+    # This is the experiment we want to optimize
+    base_task_id="<your_template_task_id>",
+    # here we define the hyper-parameters to optimize
+    # Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
+    # For Example, here we see in the base experiment a section Named: "General"
+    # under it a parameter named "batch_size", this becomes "General/batch_size"
+    # If you have `argparse` for example, then arguments will appear under the "Args" section,
+    # and you should instead pass "Args/batch_size"
+    hyper_parameters=[
+        UniformParameterRange("Hyperparameters/lr0", min_value=1e-5, max_value=1e-1),
+        UniformParameterRange("Hyperparameters/lrf", min_value=0.01, max_value=1.0),
+        UniformParameterRange("Hyperparameters/momentum", min_value=0.6, max_value=0.98),
+        UniformParameterRange("Hyperparameters/weight_decay", min_value=0.0, max_value=0.001),
+        UniformParameterRange("Hyperparameters/warmup_epochs", min_value=0.0, max_value=5.0),
+        UniformParameterRange("Hyperparameters/warmup_momentum", min_value=0.0, max_value=0.95),
+        UniformParameterRange("Hyperparameters/warmup_bias_lr", min_value=0.0, max_value=0.2),
+        UniformParameterRange("Hyperparameters/box", min_value=0.02, max_value=0.2),
+        UniformParameterRange("Hyperparameters/cls", min_value=0.2, max_value=4.0),
+        UniformParameterRange("Hyperparameters/cls_pw", min_value=0.5, max_value=2.0),
+        UniformParameterRange("Hyperparameters/obj", min_value=0.2, max_value=4.0),
+        UniformParameterRange("Hyperparameters/obj_pw", min_value=0.5, max_value=2.0),
+        UniformParameterRange("Hyperparameters/iou_t", min_value=0.1, max_value=0.7),
+        UniformParameterRange("Hyperparameters/anchor_t", min_value=2.0, max_value=8.0),
+        UniformParameterRange("Hyperparameters/fl_gamma", min_value=0.0, max_value=4.0),
+        UniformParameterRange("Hyperparameters/hsv_h", min_value=0.0, max_value=0.1),
+        UniformParameterRange("Hyperparameters/hsv_s", min_value=0.0, max_value=0.9),
+        UniformParameterRange("Hyperparameters/hsv_v", min_value=0.0, max_value=0.9),
+        UniformParameterRange("Hyperparameters/degrees", min_value=0.0, max_value=45.0),
+        UniformParameterRange("Hyperparameters/translate", min_value=0.0, max_value=0.9),
+        UniformParameterRange("Hyperparameters/scale", min_value=0.0, max_value=0.9),
+        UniformParameterRange("Hyperparameters/shear", min_value=0.0, max_value=10.0),
+        UniformParameterRange("Hyperparameters/perspective", min_value=0.0, max_value=0.001),
+        UniformParameterRange("Hyperparameters/flipud", min_value=0.0, max_value=1.0),
+        UniformParameterRange("Hyperparameters/fliplr", min_value=0.0, max_value=1.0),
+        UniformParameterRange("Hyperparameters/mosaic", min_value=0.0, max_value=1.0),
+        UniformParameterRange("Hyperparameters/mixup", min_value=0.0, max_value=1.0),
+        UniformParameterRange("Hyperparameters/copy_paste", min_value=0.0, max_value=1.0),
+    ],
+    # this is the objective metric we want to maximize/minimize
+    objective_metric_title="metrics",
+    objective_metric_series="mAP_0.5",
+    # now we decide if we want to maximize it or minimize it (accuracy we maximize)
+    objective_metric_sign="max",
+    # let us limit the number of concurrent experiments,
+    # this in turn will make sure we do dont bombard the scheduler with experiments.
+    # if we have an auto-scaler connected, this, by proxy, will limit the number of machine
+    max_number_of_concurrent_tasks=1,
+    # this is the optimizer class (actually doing the optimization)
+    # Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
+    optimizer_class=OptimizerOptuna,
+    # If specified only the top K performing Tasks will be kept, the others will be automatically archived
+    save_top_k_tasks_only=5,  # 5,
+    compute_time_limit=None,
+    total_max_jobs=20,
+    min_iteration_per_job=None,
+    max_iteration_per_job=None,
+)
+
+# report every 10 seconds, this is way too often, but we are testing here
+optimizer.set_report_period(10 / 60)
+# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
+# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
+# set the time limit for the optimization process (2 hours)
+optimizer.set_time_limit(in_minutes=120.0)
+# Start the optimization process in the local environment
+optimizer.start_locally()
+# wait until process is done (notice we are controlling the optimization process in the background)
+optimizer.wait()
+# make sure background optimization stopped
+optimizer.stop()
+
+print("We are done, good bye")
diff --git a/yolov5/utils/loggers/comet/README.md b/yolov5/utils/loggers/comet/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..52f344dba6847b57a31afb40a89217301e213afc
--- /dev/null
+++ b/yolov5/utils/loggers/comet/README.md
@@ -0,0 +1,250 @@
+<img src="https://cdn.comet.ml/img/notebook_logo.png">
+
+# YOLOv5 with Comet
+
+This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet2)
+
+# About Comet
+
+Comet builds tools that help data scientists, engineers, and team leaders accelerate and optimize machine learning and deep learning models.
+
+Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!
+
+# Getting Started
+
+## Install Comet
+
+```shell
+pip install comet_ml
+```
+
+## Configure Comet Credentials
+
+There are two ways to configure Comet with YOLOv5.
+
+You can either set your credentials through environment variables
+
+**Environment Variables**
+
+```shell
+export COMET_API_KEY=<Your Comet API Key>
+export COMET_PROJECT_NAME=<Your Comet Project Name> # This will default to 'yolov5'
+```
+
+Or create a `.comet.config` file in your working directory and set your credentials there.
+
+**Comet Configuration File**
+
+```
+[comet]
+api_key=<Your Comet API Key>
+project_name=<Your Comet Project Name> # This will default to 'yolov5'
+```
+
+## Run the Training Script
+
+```shell
+# Train YOLOv5s on COCO128 for 5 epochs
+python train.py --img 640 --batch 16 --epochs 5 --data coco128.yaml --weights yolov5s.pt
+```
+
+That's it! Comet will automatically log your hyperparameters, command line arguments, training and validation metrics. You can visualize and analyze your runs in the Comet UI
+
+<img width="1920" alt="yolo-ui" src="https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png">
+
+# Try out an Example!
+
+Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
+
+Or better yet, try it out yourself in this Colab Notebook
+
+[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/comet-examples/blob/master/integrations/model-training/yolov5/notebooks/Comet_and_YOLOv5.ipynb)
+
+# Log automatically
+
+By default, Comet will log the following items
+
+## Metrics
+
+- Box Loss, Object Loss, Classification Loss for the training and validation data
+- mAP_0.5, mAP_0.5:0.95 metrics for the validation data.
+- Precision and Recall for the validation data
+
+## Parameters
+
+- Model Hyperparameters
+- All parameters passed through the command line options
+
+## Visualizations
+
+- Confusion Matrix of the model predictions on the validation data
+- Plots for the PR and F1 curves across all classes
+- Correlogram of the Class Labels
+
+# Configure Comet Logging
+
+Comet can be configured to log additional data either through command line flags passed to the training script or through environment variables.
+
+```shell
+export COMET_MODE=online # Set whether to run Comet in 'online' or 'offline' mode. Defaults to online
+export COMET_MODEL_NAME=<your model name> #Set the name for the saved model. Defaults to yolov5
+export COMET_LOG_CONFUSION_MATRIX=false # Set to disable logging a Comet Confusion Matrix. Defaults to true
+export COMET_MAX_IMAGE_UPLOADS=<number of allowed images to upload to Comet> # Controls how many total image predictions to log to Comet. Defaults to 100.
+export COMET_LOG_PER_CLASS_METRICS=true # Set to log evaluation metrics for each detected class at the end of training. Defaults to false
+export COMET_DEFAULT_CHECKPOINT_FILENAME=<your checkpoint filename> # Set this if you would like to resume training from a different checkpoint. Defaults to 'last.pt'
+export COMET_LOG_BATCH_LEVEL_METRICS=true # Set this if you would like to log training metrics at the batch level. Defaults to false.
+export COMET_LOG_PREDICTIONS=true # Set this to false to disable logging model predictions
+```
+
+## Logging Checkpoints with Comet
+
+Logging Models to Comet is disabled by default. To enable it, pass the `save-period` argument to the training script. This will save the logged checkpoints to Comet based on the interval value provided by `save-period`
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--save-period 1
+```
+
+## Logging Model Predictions
+
+By default, model predictions (images, ground truth labels and bounding boxes) will be logged to Comet.
+
+You can control the frequency of logged predictions and the associated images by passing the `bbox_interval` command line argument. Predictions can be visualized using Comet's Object Detection Custom Panel. This frequency corresponds to every Nth batch of data per epoch. In the example below, we are logging every 2nd batch of data for each epoch.
+
+**Note:** The YOLOv5 validation dataloader will default to a batch size of 32, so you will have to set the logging frequency accordingly.
+
+Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--bbox_interval 2
+```
+
+### Controlling the number of Prediction Images logged to Comet
+
+When logging predictions from YOLOv5, Comet will log the images associated with each set of predictions. By default a maximum of 100 validation images are logged. You can increase or decrease this number using the `COMET_MAX_IMAGE_UPLOADS` environment variable.
+
+```shell
+env COMET_MAX_IMAGE_UPLOADS=200 python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--bbox_interval 1
+```
+
+### Logging Class Level Metrics
+
+Use the `COMET_LOG_PER_CLASS_METRICS` environment variable to log mAP, precision, recall, f1 for each class.
+
+```shell
+env COMET_LOG_PER_CLASS_METRICS=true python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt
+```
+
+## Uploading a Dataset to Comet Artifacts
+
+If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github), you can do so using the `upload_dataset` flag.
+
+The dataset be organized in the way described in the [YOLOv5 documentation](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/). The dataset config `yaml` file must follow the same format as that of the `coco128.yaml` file.
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--upload_dataset
+```
+
+You can find the uploaded dataset in the Artifacts tab in your Comet Workspace <img width="1073" alt="artifact-1" src="https://user-images.githubusercontent.com/7529846/186929193-162718bf-ec7b-4eb9-8c3b-86b3763ef8ea.png">
+
+You can preview the data directly in the Comet UI. <img width="1082" alt="artifact-2" src="https://user-images.githubusercontent.com/7529846/186929215-432c36a9-c109-4eb0-944b-84c2786590d6.png">
+
+Artifacts are versioned and also support adding metadata about the dataset. Comet will automatically log the metadata from your dataset `yaml` file <img width="963" alt="artifact-3" src="https://user-images.githubusercontent.com/7529846/186929256-9d44d6eb-1a19-42de-889a-bcbca3018f2e.png">
+
+### Using a saved Artifact
+
+If you would like to use a dataset from Comet Artifacts, set the `path` variable in your dataset `yaml` file to point to the following Artifact resource URL.
+
+```
+# contents of artifact.yaml file
+path: "comet://<workspace name>/<artifact name>:<artifact version or alias>"
+```
+
+Then pass this file to your training script in the following way
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data artifact.yaml \
+--weights yolov5s.pt
+```
+
+Artifacts also allow you to track the lineage of data as it flows through your Experimentation workflow. Here you can see a graph that shows you all the experiments that have used your uploaded dataset. <img width="1391" alt="artifact-4" src="https://user-images.githubusercontent.com/7529846/186929264-4c4014fa-fe51-4f3c-a5c5-f6d24649b1b4.png">
+
+## Resuming a Training Run
+
+If your training run is interrupted for any reason, e.g. disrupted internet connection, you can resume the run using the `resume` flag and the Comet Run Path.
+
+The Run Path has the following format `comet://<your workspace name>/<your project name>/<experiment id>`.
+
+This will restore the run to its state before the interruption, which includes restoring the model from a checkpoint, restoring all hyperparameters and training arguments and downloading Comet dataset Artifacts if they were used in the original run. The resumed run will continue logging to the existing Experiment in the Comet UI
+
+```shell
+python train.py \
+--resume "comet://<your run path>"
+```
+
+## Hyperparameter Search with the Comet Optimizer
+
+YOLOv5 is also integrated with Comet's Optimizer, making is simple to visualize hyperparameter sweeps in the Comet UI.
+
+### Configuring an Optimizer Sweep
+
+To configure the Comet Optimizer, you will have to create a JSON file with the information about the sweep. An example file has been provided in `utils/loggers/comet/optimizer_config.json`
+
+```shell
+python utils/loggers/comet/hpo.py \
+  --comet_optimizer_config "utils/loggers/comet/optimizer_config.json"
+```
+
+The `hpo.py` script accepts the same arguments as `train.py`. If you wish to pass additional arguments to your sweep simply add them after the script.
+
+```shell
+python utils/loggers/comet/hpo.py \
+  --comet_optimizer_config "utils/loggers/comet/optimizer_config.json" \
+  --save-period 1 \
+  --bbox_interval 1
+```
+
+### Running a Sweep in Parallel
+
+```shell
+comet optimizer -j <set number of workers> utils/loggers/comet/hpo.py \
+  utils/loggers/comet/optimizer_config.json"
+```
+
+### Visualizing Results
+
+Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
+
+<img width="1626" alt="hyperparameter-yolo" src="https://user-images.githubusercontent.com/7529846/186914869-7dc1de14-583f-4323-967b-c9a66a29e495.png">
diff --git a/yolov5/utils/loggers/comet/__init__.py b/yolov5/utils/loggers/comet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..076eb3ccecabb2c81fc8f9fe712f431038550e85
--- /dev/null
+++ b/yolov5/utils/loggers/comet/__init__.py
@@ -0,0 +1,546 @@
+import glob
+import json
+import logging
+import os
+import sys
+from pathlib import Path
+
+logger = logging.getLogger(__name__)
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+try:
+    import comet_ml
+
+    # Project Configuration
+    config = comet_ml.config.get_config()
+    COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
+except ImportError:
+    comet_ml = None
+    COMET_PROJECT_NAME = None
+
+import PIL
+import torch
+import torchvision.transforms as T
+import yaml
+
+from utils.dataloaders import img2label_paths
+from utils.general import check_dataset, scale_boxes, xywh2xyxy
+from utils.metrics import box_iou
+
+COMET_PREFIX = "comet://"
+
+COMET_MODE = os.getenv("COMET_MODE", "online")
+
+# Model Saving Settings
+COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
+
+# Dataset Artifact Settings
+COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true"
+
+# Evaluation Settings
+COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true"
+COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true"
+COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100))
+
+# Confusion Matrix Settings
+CONF_THRES = float(os.getenv("CONF_THRES", 0.001))
+IOU_THRES = float(os.getenv("IOU_THRES", 0.6))
+
+# Batch Logging Settings
+COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true"
+COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1)
+COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1)
+COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true"
+
+RANK = int(os.getenv("RANK", -1))
+
+to_pil = T.ToPILImage()
+
+
+class CometLogger:
+    """Log metrics, parameters, source code, models and much more with Comet."""
+
+    def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None:
+        self.job_type = job_type
+        self.opt = opt
+        self.hyp = hyp
+
+        # Comet Flags
+        self.comet_mode = COMET_MODE
+
+        self.save_model = opt.save_period > -1
+        self.model_name = COMET_MODEL_NAME
+
+        # Batch Logging Settings
+        self.log_batch_metrics = COMET_LOG_BATCH_METRICS
+        self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
+
+        # Dataset Artifact Settings
+        self.upload_dataset = self.opt.upload_dataset or COMET_UPLOAD_DATASET
+        self.resume = self.opt.resume
+
+        # Default parameters to pass to Experiment objects
+        self.default_experiment_kwargs = {
+            "log_code": False,
+            "log_env_gpu": True,
+            "log_env_cpu": True,
+            "project_name": COMET_PROJECT_NAME,
+        }
+        self.default_experiment_kwargs.update(experiment_kwargs)
+        self.experiment = self._get_experiment(self.comet_mode, run_id)
+        self.experiment.set_name(self.opt.name)
+
+        self.data_dict = self.check_dataset(self.opt.data)
+        self.class_names = self.data_dict["names"]
+        self.num_classes = self.data_dict["nc"]
+
+        self.logged_images_count = 0
+        self.max_images = COMET_MAX_IMAGE_UPLOADS
+
+        if run_id is None:
+            self.experiment.log_other("Created from", "YOLOv5")
+            if not isinstance(self.experiment, comet_ml.OfflineExperiment):
+                workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:]
+                self.experiment.log_other(
+                    "Run Path",
+                    f"{workspace}/{project_name}/{experiment_id}",
+                )
+            self.log_parameters(vars(opt))
+            self.log_parameters(self.opt.hyp)
+            self.log_asset_data(
+                self.opt.hyp,
+                name="hyperparameters.json",
+                metadata={"type": "hyp-config-file"},
+            )
+            self.log_asset(
+                f"{self.opt.save_dir}/opt.yaml",
+                metadata={"type": "opt-config-file"},
+            )
+
+        self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
+
+        if hasattr(self.opt, "conf_thres"):
+            self.conf_thres = self.opt.conf_thres
+        else:
+            self.conf_thres = CONF_THRES
+        if hasattr(self.opt, "iou_thres"):
+            self.iou_thres = self.opt.iou_thres
+        else:
+            self.iou_thres = IOU_THRES
+
+        self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres})
+
+        self.comet_log_predictions = COMET_LOG_PREDICTIONS
+        if self.opt.bbox_interval == -1:
+            self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
+        else:
+            self.comet_log_prediction_interval = self.opt.bbox_interval
+
+        if self.comet_log_predictions:
+            self.metadata_dict = {}
+            self.logged_image_names = []
+
+        self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
+
+        self.experiment.log_others(
+            {
+                "comet_mode": COMET_MODE,
+                "comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS,
+                "comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS,
+                "comet_log_batch_metrics": COMET_LOG_BATCH_METRICS,
+                "comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX,
+                "comet_model_name": COMET_MODEL_NAME,
+            }
+        )
+
+        # Check if running the Experiment with the Comet Optimizer
+        if hasattr(self.opt, "comet_optimizer_id"):
+            self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id)
+            self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective)
+            self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric)
+            self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp))
+
+    def _get_experiment(self, mode, experiment_id=None):
+        """Returns a new or existing Comet.ml experiment based on mode and optional experiment_id."""
+        if mode == "offline":
+            return (
+                comet_ml.ExistingOfflineExperiment(
+                    previous_experiment=experiment_id,
+                    **self.default_experiment_kwargs,
+                )
+                if experiment_id is not None
+                else comet_ml.OfflineExperiment(
+                    **self.default_experiment_kwargs,
+                )
+            )
+        try:
+            if experiment_id is not None:
+                return comet_ml.ExistingExperiment(
+                    previous_experiment=experiment_id,
+                    **self.default_experiment_kwargs,
+                )
+
+            return comet_ml.Experiment(**self.default_experiment_kwargs)
+
+        except ValueError:
+            logger.warning(
+                "COMET WARNING: "
+                "Comet credentials have not been set. "
+                "Comet will default to offline logging. "
+                "Please set your credentials to enable online logging."
+            )
+            return self._get_experiment("offline", experiment_id)
+
+        return
+
+    def log_metrics(self, log_dict, **kwargs):
+        """Logs metrics to the current experiment, accepting a dictionary of metric names and values."""
+        self.experiment.log_metrics(log_dict, **kwargs)
+
+    def log_parameters(self, log_dict, **kwargs):
+        """Logs parameters to the current experiment, accepting a dictionary of parameter names and values."""
+        self.experiment.log_parameters(log_dict, **kwargs)
+
+    def log_asset(self, asset_path, **kwargs):
+        """Logs a file or directory as an asset to the current experiment."""
+        self.experiment.log_asset(asset_path, **kwargs)
+
+    def log_asset_data(self, asset, **kwargs):
+        """Logs in-memory data as an asset to the current experiment, with optional kwargs."""
+        self.experiment.log_asset_data(asset, **kwargs)
+
+    def log_image(self, img, **kwargs):
+        """Logs an image to the current experiment with optional kwargs."""
+        self.experiment.log_image(img, **kwargs)
+
+    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+        """Logs model checkpoint to experiment with path, options, epoch, fitness, and best model flag."""
+        if not self.save_model:
+            return
+
+        model_metadata = {
+            "fitness_score": fitness_score[-1],
+            "epochs_trained": epoch + 1,
+            "save_period": opt.save_period,
+            "total_epochs": opt.epochs,
+        }
+
+        model_files = glob.glob(f"{path}/*.pt")
+        for model_path in model_files:
+            name = Path(model_path).name
+
+            self.experiment.log_model(
+                self.model_name,
+                file_or_folder=model_path,
+                file_name=name,
+                metadata=model_metadata,
+                overwrite=True,
+            )
+
+    def check_dataset(self, data_file):
+        """Validates the dataset configuration by loading the YAML file specified in `data_file`."""
+        with open(data_file) as f:
+            data_config = yaml.safe_load(f)
+
+        path = data_config.get("path")
+        if path and path.startswith(COMET_PREFIX):
+            path = data_config["path"].replace(COMET_PREFIX, "")
+            return self.download_dataset_artifact(path)
+        self.log_asset(self.opt.data, metadata={"type": "data-config-file"})
+
+        return check_dataset(data_file)
+
+    def log_predictions(self, image, labelsn, path, shape, predn):
+        """Logs predictions with IOU filtering, given image, labels, path, shape, and predictions."""
+        if self.logged_images_count >= self.max_images:
+            return
+        detections = predn[predn[:, 4] > self.conf_thres]
+        iou = box_iou(labelsn[:, 1:], detections[:, :4])
+        mask, _ = torch.where(iou > self.iou_thres)
+        if len(mask) == 0:
+            return
+
+        filtered_detections = detections[mask]
+        filtered_labels = labelsn[mask]
+
+        image_id = path.split("/")[-1].split(".")[0]
+        image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}"
+        if image_name not in self.logged_image_names:
+            native_scale_image = PIL.Image.open(path)
+            self.log_image(native_scale_image, name=image_name)
+            self.logged_image_names.append(image_name)
+
+        metadata = [
+            {
+                "label": f"{self.class_names[int(cls)]}-gt",
+                "score": 100,
+                "box": {"x": xyxy[0], "y": xyxy[1], "x2": xyxy[2], "y2": xyxy[3]},
+            }
+            for cls, *xyxy in filtered_labels.tolist()
+        ]
+        metadata.extend(
+            {
+                "label": f"{self.class_names[int(cls)]}",
+                "score": conf * 100,
+                "box": {"x": xyxy[0], "y": xyxy[1], "x2": xyxy[2], "y2": xyxy[3]},
+            }
+            for *xyxy, conf, cls in filtered_detections.tolist()
+        )
+        self.metadata_dict[image_name] = metadata
+        self.logged_images_count += 1
+
+        return
+
+    def preprocess_prediction(self, image, labels, shape, pred):
+        """Processes prediction data, resizing labels and adding dataset metadata."""
+        nl, _ = labels.shape[0], pred.shape[0]
+
+        # Predictions
+        if self.opt.single_cls:
+            pred[:, 5] = 0
+
+        predn = pred.clone()
+        scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
+
+        labelsn = None
+        if nl:
+            tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+            scale_boxes(image.shape[1:], tbox, shape[0], shape[1])  # native-space labels
+            labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+            scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])  # native-space pred
+
+        return predn, labelsn
+
+    def add_assets_to_artifact(self, artifact, path, asset_path, split):
+        """Adds image and label assets to a wandb artifact given dataset split and paths."""
+        img_paths = sorted(glob.glob(f"{asset_path}/*"))
+        label_paths = img2label_paths(img_paths)
+
+        for image_file, label_file in zip(img_paths, label_paths):
+            image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
+
+            try:
+                artifact.add(
+                    image_file,
+                    logical_path=image_logical_path,
+                    metadata={"split": split},
+                )
+                artifact.add(
+                    label_file,
+                    logical_path=label_logical_path,
+                    metadata={"split": split},
+                )
+            except ValueError as e:
+                logger.error("COMET ERROR: Error adding file to Artifact. Skipping file.")
+                logger.error(f"COMET ERROR: {e}")
+                continue
+
+        return artifact
+
+    def upload_dataset_artifact(self):
+        """Uploads a YOLOv5 dataset as an artifact to the Comet.ml platform."""
+        dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset")
+        path = str((ROOT / Path(self.data_dict["path"])).resolve())
+
+        metadata = self.data_dict.copy()
+        for key in ["train", "val", "test"]:
+            split_path = metadata.get(key)
+            if split_path is not None:
+                metadata[key] = split_path.replace(path, "")
+
+        artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata)
+        for key in metadata.keys():
+            if key in ["train", "val", "test"]:
+                if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
+                    continue
+
+                asset_path = self.data_dict.get(key)
+                if asset_path is not None:
+                    artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
+
+        self.experiment.log_artifact(artifact)
+
+        return
+
+    def download_dataset_artifact(self, artifact_path):
+        """Downloads a dataset artifact to a specified directory using the experiment's logged artifact."""
+        logged_artifact = self.experiment.get_artifact(artifact_path)
+        artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
+        logged_artifact.download(artifact_save_dir)
+
+        metadata = logged_artifact.metadata
+        data_dict = metadata.copy()
+        data_dict["path"] = artifact_save_dir
+
+        metadata_names = metadata.get("names")
+        if isinstance(metadata_names, dict):
+            data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()}
+        elif isinstance(metadata_names, list):
+            data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
+        else:
+            raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
+
+        return self.update_data_paths(data_dict)
+
+    def update_data_paths(self, data_dict):
+        """Updates data paths in the dataset dictionary, defaulting 'path' to an empty string if not present."""
+        path = data_dict.get("path", "")
+
+        for split in ["train", "val", "test"]:
+            if data_dict.get(split):
+                split_path = data_dict.get(split)
+                data_dict[split] = (
+                    f"{path}/{split_path}" if isinstance(split, str) else [f"{path}/{x}" for x in split_path]
+                )
+
+        return data_dict
+
+    def on_pretrain_routine_end(self, paths):
+        """Called at the end of pretraining routine to handle paths if training is not being resumed."""
+        if self.opt.resume:
+            return
+
+        for path in paths:
+            self.log_asset(str(path))
+
+        if self.upload_dataset and not self.resume:
+            self.upload_dataset_artifact()
+
+        return
+
+    def on_train_start(self):
+        """Logs hyperparameters at the start of training."""
+        self.log_parameters(self.hyp)
+
+    def on_train_epoch_start(self):
+        """Called at the start of each training epoch."""
+        return
+
+    def on_train_epoch_end(self, epoch):
+        """Updates the current epoch in the experiment tracking at the end of each epoch."""
+        self.experiment.curr_epoch = epoch
+
+        return
+
+    def on_train_batch_start(self):
+        """Called at the start of each training batch."""
+        return
+
+    def on_train_batch_end(self, log_dict, step):
+        """Callback function that updates and logs metrics at the end of each training batch if conditions are met."""
+        self.experiment.curr_step = step
+        if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
+            self.log_metrics(log_dict, step=step)
+
+        return
+
+    def on_train_end(self, files, save_dir, last, best, epoch, results):
+        """Logs metadata and optionally saves model files at the end of training."""
+        if self.comet_log_predictions:
+            curr_epoch = self.experiment.curr_epoch
+            self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch)
+
+        for f in files:
+            self.log_asset(f, metadata={"epoch": epoch})
+        self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch})
+
+        if not self.opt.evolve:
+            model_path = str(best if best.exists() else last)
+            name = Path(model_path).name
+            if self.save_model:
+                self.experiment.log_model(
+                    self.model_name,
+                    file_or_folder=model_path,
+                    file_name=name,
+                    overwrite=True,
+                )
+
+        # Check if running Experiment with Comet Optimizer
+        if hasattr(self.opt, "comet_optimizer_id"):
+            metric = results.get(self.opt.comet_optimizer_metric)
+            self.experiment.log_other("optimizer_metric_value", metric)
+
+        self.finish_run()
+
+    def on_val_start(self):
+        """Called at the start of validation, currently a placeholder with no functionality."""
+        return
+
+    def on_val_batch_start(self):
+        """Placeholder called at the start of a validation batch with no current functionality."""
+        return
+
+    def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
+        """Callback executed at the end of a validation batch, conditionally logs predictions to Comet ML."""
+        if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
+            return
+
+        for si, pred in enumerate(outputs):
+            if len(pred) == 0:
+                continue
+
+            image = images[si]
+            labels = targets[targets[:, 0] == si, 1:]
+            shape = shapes[si]
+            path = paths[si]
+            predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
+            if labelsn is not None:
+                self.log_predictions(image, labelsn, path, shape, predn)
+
+        return
+
+    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
+        """Logs per-class metrics to Comet.ml after validation if enabled and more than one class exists."""
+        if self.comet_log_per_class_metrics and self.num_classes > 1:
+            for i, c in enumerate(ap_class):
+                class_name = self.class_names[c]
+                self.experiment.log_metrics(
+                    {
+                        "mAP@.5": ap50[i],
+                        "mAP@.5:.95": ap[i],
+                        "precision": p[i],
+                        "recall": r[i],
+                        "f1": f1[i],
+                        "true_positives": tp[i],
+                        "false_positives": fp[i],
+                        "support": nt[c],
+                    },
+                    prefix=class_name,
+                )
+
+        if self.comet_log_confusion_matrix:
+            epoch = self.experiment.curr_epoch
+            class_names = list(self.class_names.values())
+            class_names.append("background")
+            num_classes = len(class_names)
+
+            self.experiment.log_confusion_matrix(
+                matrix=confusion_matrix.matrix,
+                max_categories=num_classes,
+                labels=class_names,
+                epoch=epoch,
+                column_label="Actual Category",
+                row_label="Predicted Category",
+                file_name=f"confusion-matrix-epoch-{epoch}.json",
+            )
+
+    def on_fit_epoch_end(self, result, epoch):
+        """Logs metrics at the end of each training epoch."""
+        self.log_metrics(result, epoch=epoch)
+
+    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+        """Callback to save model checkpoints periodically if conditions are met."""
+        if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
+            self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+
+    def on_params_update(self, params):
+        """Logs updated parameters during training."""
+        self.log_parameters(params)
+
+    def finish_run(self):
+        """Ends the current experiment and logs its completion."""
+        self.experiment.end()
diff --git a/yolov5/utils/loggers/comet/comet_utils.py b/yolov5/utils/loggers/comet/comet_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..7eca1f504d690349986cb7e2c18d45d3c43906bd
--- /dev/null
+++ b/yolov5/utils/loggers/comet/comet_utils.py
@@ -0,0 +1,149 @@
+import logging
+import os
+from urllib.parse import urlparse
+
+try:
+    import comet_ml
+except ImportError:
+    comet_ml = None
+
+import yaml
+
+logger = logging.getLogger(__name__)
+
+COMET_PREFIX = "comet://"
+COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
+COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv("COMET_DEFAULT_CHECKPOINT_FILENAME", "last.pt")
+
+
+def download_model_checkpoint(opt, experiment):
+    """Downloads YOLOv5 model checkpoint from Comet ML experiment, updating `opt.weights` with download path."""
+    model_dir = f"{opt.project}/{experiment.name}"
+    os.makedirs(model_dir, exist_ok=True)
+
+    model_name = COMET_MODEL_NAME
+    model_asset_list = experiment.get_model_asset_list(model_name)
+
+    if len(model_asset_list) == 0:
+        logger.error(f"COMET ERROR: No checkpoints found for model name : {model_name}")
+        return
+
+    model_asset_list = sorted(
+        model_asset_list,
+        key=lambda x: x["step"],
+        reverse=True,
+    )
+    logged_checkpoint_map = {asset["fileName"]: asset["assetId"] for asset in model_asset_list}
+
+    resource_url = urlparse(opt.weights)
+    checkpoint_filename = resource_url.query
+
+    if checkpoint_filename:
+        asset_id = logged_checkpoint_map.get(checkpoint_filename)
+    else:
+        asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
+        checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
+
+    if asset_id is None:
+        logger.error(f"COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment")
+        return
+
+    try:
+        logger.info(f"COMET INFO: Downloading checkpoint {checkpoint_filename}")
+        asset_filename = checkpoint_filename
+
+        model_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
+        model_download_path = f"{model_dir}/{asset_filename}"
+        with open(model_download_path, "wb") as f:
+            f.write(model_binary)
+
+        opt.weights = model_download_path
+
+    except Exception as e:
+        logger.warning("COMET WARNING: Unable to download checkpoint from Comet")
+        logger.exception(e)
+
+
+def set_opt_parameters(opt, experiment):
+    """
+    Update the opts Namespace with parameters from Comet's ExistingExperiment when resuming a run.
+
+    Args:
+        opt (argparse.Namespace): Namespace of command line options
+        experiment (comet_ml.APIExperiment): Comet API Experiment object
+    """
+    asset_list = experiment.get_asset_list()
+    resume_string = opt.resume
+
+    for asset in asset_list:
+        if asset["fileName"] == "opt.yaml":
+            asset_id = asset["assetId"]
+            asset_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
+            opt_dict = yaml.safe_load(asset_binary)
+            for key, value in opt_dict.items():
+                setattr(opt, key, value)
+            opt.resume = resume_string
+
+    # Save hyperparameters to YAML file
+    # Necessary to pass checks in training script
+    save_dir = f"{opt.project}/{experiment.name}"
+    os.makedirs(save_dir, exist_ok=True)
+
+    hyp_yaml_path = f"{save_dir}/hyp.yaml"
+    with open(hyp_yaml_path, "w") as f:
+        yaml.dump(opt.hyp, f)
+    opt.hyp = hyp_yaml_path
+
+
+def check_comet_weights(opt):
+    """
+    Downloads model weights from Comet and updates the weights path to point to saved weights location.
+
+    Args:
+        opt (argparse.Namespace): Command Line arguments passed
+            to YOLOv5 training script
+
+    Returns:
+        None/bool: Return True if weights are successfully downloaded
+            else return None
+    """
+    if comet_ml is None:
+        return
+
+    if isinstance(opt.weights, str) and opt.weights.startswith(COMET_PREFIX):
+        api = comet_ml.API()
+        resource = urlparse(opt.weights)
+        experiment_path = f"{resource.netloc}{resource.path}"
+        experiment = api.get(experiment_path)
+        download_model_checkpoint(opt, experiment)
+        return True
+
+    return None
+
+
+def check_comet_resume(opt):
+    """
+    Restores run parameters to its original state based on the model checkpoint and logged Experiment parameters.
+
+    Args:
+        opt (argparse.Namespace): Command Line arguments passed
+            to YOLOv5 training script
+
+    Returns:
+        None/bool: Return True if the run is restored successfully
+            else return None
+    """
+    if comet_ml is None:
+        return
+
+    if isinstance(opt.resume, str) and opt.resume.startswith(COMET_PREFIX):
+        api = comet_ml.API()
+        resource = urlparse(opt.resume)
+        experiment_path = f"{resource.netloc}{resource.path}"
+        experiment = api.get(experiment_path)
+        set_opt_parameters(opt, experiment)
+        download_model_checkpoint(opt, experiment)
+
+        return True
+
+    return None
diff --git a/yolov5/utils/loggers/comet/hpo.py b/yolov5/utils/loggers/comet/hpo.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ca08ddc858a9aae0fe91e7fa40a577984a5e17d
--- /dev/null
+++ b/yolov5/utils/loggers/comet/hpo.py
@@ -0,0 +1,124 @@
+import argparse
+import json
+import logging
+import os
+import sys
+from pathlib import Path
+
+import comet_ml
+
+logger = logging.getLogger(__name__)
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+from train import train
+from utils.callbacks import Callbacks
+from utils.general import increment_path
+from utils.torch_utils import select_device
+
+# Project Configuration
+config = comet_ml.config.get_config()
+COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
+
+
+def get_args(known=False):
+    """Parses command-line arguments for YOLOv5 training, supporting configuration of weights, data paths,
+    hyperparameters, and more.
+    """
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
+    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
+    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
+    parser.add_argument("--epochs", type=int, default=300, help="total training epochs")
+    parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
+    parser.add_argument("--rect", action="store_true", help="rectangular training")
+    parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
+    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
+    parser.add_argument("--noval", action="store_true", help="only validate final epoch")
+    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
+    parser.add_argument("--noplots", action="store_true", help="save no plot files")
+    parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
+    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
+    parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
+    parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
+    parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
+    parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
+    parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--quad", action="store_true", help="quad dataloader")
+    parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
+    parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
+    parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
+    parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
+    parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
+    parser.add_argument("--seed", type=int, default=0, help="Global training seed")
+    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
+
+    # Weights & Biases arguments
+    parser.add_argument("--entity", default=None, help="W&B: Entity")
+    parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='W&B: Upload data, "val" option')
+    parser.add_argument("--bbox_interval", type=int, default=-1, help="W&B: Set bounding-box image logging interval")
+    parser.add_argument("--artifact_alias", type=str, default="latest", help="W&B: Version of dataset artifact to use")
+
+    # Comet Arguments
+    parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
+    parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
+    parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
+    parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
+    parser.add_argument(
+        "--comet_optimizer_workers",
+        type=int,
+        default=1,
+        help="Comet: Number of Parallel Workers to use with the Comet Optimizer.",
+    )
+
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def run(parameters, opt):
+    """Executes YOLOv5 training with given hyperparameters and options, setting up device and training directories."""
+    hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}
+
+    opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
+    opt.batch_size = parameters.get("batch_size")
+    opt.epochs = parameters.get("epochs")
+
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    train(hyp_dict, opt, device, callbacks=Callbacks())
+
+
+if __name__ == "__main__":
+    opt = get_args(known=True)
+
+    opt.weights = str(opt.weights)
+    opt.cfg = str(opt.cfg)
+    opt.data = str(opt.data)
+    opt.project = str(opt.project)
+
+    optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
+    if optimizer_id is None:
+        with open(opt.comet_optimizer_config) as f:
+            optimizer_config = json.load(f)
+        optimizer = comet_ml.Optimizer(optimizer_config)
+    else:
+        optimizer = comet_ml.Optimizer(optimizer_id)
+
+    opt.comet_optimizer_id = optimizer.id
+    status = optimizer.status()
+
+    opt.comet_optimizer_objective = status["spec"]["objective"]
+    opt.comet_optimizer_metric = status["spec"]["metric"]
+
+    logger.info("COMET INFO: Starting Hyperparameter Sweep")
+    for parameter in optimizer.get_parameters():
+        run(parameter["parameters"], opt)
diff --git a/yolov5/utils/loggers/comet/optimizer_config.json b/yolov5/utils/loggers/comet/optimizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..0218f162d9d693854b961564120d46580e4614d7
--- /dev/null
+++ b/yolov5/utils/loggers/comet/optimizer_config.json
@@ -0,0 +1,135 @@
+{
+  "algorithm": "random",
+  "parameters": {
+    "anchor_t": {
+      "type": "discrete",
+      "values": [2, 8]
+    },
+    "batch_size": {
+      "type": "discrete",
+      "values": [16, 32, 64]
+    },
+    "box": {
+      "type": "discrete",
+      "values": [0.02, 0.2]
+    },
+    "cls": {
+      "type": "discrete",
+      "values": [0.2]
+    },
+    "cls_pw": {
+      "type": "discrete",
+      "values": [0.5]
+    },
+    "copy_paste": {
+      "type": "discrete",
+      "values": [1]
+    },
+    "degrees": {
+      "type": "discrete",
+      "values": [0, 45]
+    },
+    "epochs": {
+      "type": "discrete",
+      "values": [5]
+    },
+    "fl_gamma": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "fliplr": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "flipud": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "hsv_h": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "hsv_s": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "hsv_v": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "iou_t": {
+      "type": "discrete",
+      "values": [0.7]
+    },
+    "lr0": {
+      "type": "discrete",
+      "values": [1e-5, 0.1]
+    },
+    "lrf": {
+      "type": "discrete",
+      "values": [0.01, 1]
+    },
+    "mixup": {
+      "type": "discrete",
+      "values": [1]
+    },
+    "momentum": {
+      "type": "discrete",
+      "values": [0.6]
+    },
+    "mosaic": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "obj": {
+      "type": "discrete",
+      "values": [0.2]
+    },
+    "obj_pw": {
+      "type": "discrete",
+      "values": [0.5]
+    },
+    "optimizer": {
+      "type": "categorical",
+      "values": ["SGD", "Adam", "AdamW"]
+    },
+    "perspective": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "scale": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "shear": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "translate": {
+      "type": "discrete",
+      "values": [0]
+    },
+    "warmup_bias_lr": {
+      "type": "discrete",
+      "values": [0, 0.2]
+    },
+    "warmup_epochs": {
+      "type": "discrete",
+      "values": [5]
+    },
+    "warmup_momentum": {
+      "type": "discrete",
+      "values": [0, 0.95]
+    },
+    "weight_decay": {
+      "type": "discrete",
+      "values": [0, 0.001]
+    }
+  },
+  "spec": {
+    "maxCombo": 0,
+    "metric": "metrics/mAP_0.5",
+    "objective": "maximize"
+  },
+  "trials": 1
+}
diff --git a/yolov5/utils/loggers/wandb/__init__.py b/yolov5/utils/loggers/wandb/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5/utils/loggers/wandb/wandb_utils.py b/yolov5/utils/loggers/wandb/wandb_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..4083312e6a590fd839973233b00015ce8d9f0634
--- /dev/null
+++ b/yolov5/utils/loggers/wandb/wandb_utils.py
@@ -0,0 +1,210 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+
+# WARNING ⚠ī¸ wandb is deprecated and will be removed in future release.
+# See supported integrations at https://github.com/ultralytics/yolov5#integrations
+
+import logging
+import os
+import sys
+from contextlib import contextmanager
+from pathlib import Path
+
+from utils.general import LOGGER, colorstr
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+RANK = int(os.getenv("RANK", -1))
+DEPRECATION_WARNING = (
+    f"{colorstr('wandb')}: WARNING ⚠ī¸ wandb is deprecated and will be removed in a future release. "
+    f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
+)
+
+try:
+    import wandb
+
+    assert hasattr(wandb, "__version__")  # verify package import not local dir
+    LOGGER.warning(DEPRECATION_WARNING)
+except (ImportError, AssertionError):
+    wandb = None
+
+
+class WandbLogger:
+    """
+    Log training runs, datasets, models, and predictions to Weights & Biases.
+
+    This logger sends information to W&B at wandb.ai. By default, this information includes hyperparameters, system
+    configuration and metrics, model metrics, and basic data metrics and analyses.
+
+    By providing additional command line arguments to train.py, datasets, models and predictions can also be logged.
+
+    For more on how this logger is used, see the Weights & Biases documentation:
+    https://docs.wandb.com/guides/integrations/yolov5
+    """
+
+    def __init__(self, opt, run_id=None, job_type="Training"):
+        """
+        - Initialize WandbLogger instance
+        - Upload dataset if opt.upload_dataset is True
+        - Setup training processes if job_type is 'Training'
+
+        arguments:
+        opt (namespace) -- Commandline arguments for this run
+        run_id (str) -- Run ID of W&B run to be resumed
+        job_type (str) -- To set the job_type for this run
+
+        """
+        # Pre-training routine --
+        self.job_type = job_type
+        self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
+        self.val_artifact, self.train_artifact = None, None
+        self.train_artifact_path, self.val_artifact_path = None, None
+        self.result_artifact = None
+        self.val_table, self.result_table = None, None
+        self.max_imgs_to_log = 16
+        self.data_dict = None
+        if self.wandb:
+            self.wandb_run = wandb.run or wandb.init(
+                config=opt,
+                resume="allow",
+                project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
+                entity=opt.entity,
+                name=opt.name if opt.name != "exp" else None,
+                job_type=job_type,
+                id=run_id,
+                allow_val_change=True,
+            )
+
+        if self.wandb_run and self.job_type == "Training":
+            if isinstance(opt.data, dict):
+                # This means another dataset manager has already processed the dataset info (e.g. ClearML)
+                # and they will have stored the already processed dict in opt.data
+                self.data_dict = opt.data
+            self.setup_training(opt)
+
+    def setup_training(self, opt):
+        """
+        Setup the necessary processes for training YOLO models:
+          - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
+          - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
+          - Setup log_dict, initialize bbox_interval
+
+        arguments:
+        opt (namespace) -- commandline arguments for this run
+
+        """
+        self.log_dict, self.current_epoch = {}, 0
+        self.bbox_interval = opt.bbox_interval
+        if isinstance(opt.resume, str):
+            model_dir, _ = self.download_model_artifact(opt)
+            if model_dir:
+                self.weights = Path(model_dir) / "last.pt"
+                config = self.wandb_run.config
+                opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = (
+                    str(self.weights),
+                    config.save_period,
+                    config.batch_size,
+                    config.bbox_interval,
+                    config.epochs,
+                    config.hyp,
+                    config.imgsz,
+                )
+
+        if opt.bbox_interval == -1:
+            self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
+            if opt.evolve or opt.noplots:
+                self.bbox_interval = opt.bbox_interval = opt.epochs + 1  # disable bbox_interval
+
+    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+        """
+        Log the model checkpoint as W&B artifact.
+
+        arguments:
+        path (Path)   -- Path of directory containing the checkpoints
+        opt (namespace) -- Command line arguments for this run
+        epoch (int)  -- Current epoch number
+        fitness_score (float) -- fitness score for current epoch
+        best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
+        """
+        model_artifact = wandb.Artifact(
+            f"run_{wandb.run.id}_model",
+            type="model",
+            metadata={
+                "original_url": str(path),
+                "epochs_trained": epoch + 1,
+                "save period": opt.save_period,
+                "project": opt.project,
+                "total_epochs": opt.epochs,
+                "fitness_score": fitness_score,
+            },
+        )
+        model_artifact.add_file(str(path / "last.pt"), name="last.pt")
+        wandb.log_artifact(
+            model_artifact,
+            aliases=[
+                "latest",
+                "last",
+                f"epoch {str(self.current_epoch)}",
+                "best" if best_model else "",
+            ],
+        )
+        LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
+
+    def val_one_image(self, pred, predn, path, names, im):
+        """Evaluates model prediction for a single image, returning metrics and visualizations."""
+        pass
+
+    def log(self, log_dict):
+        """
+        Save the metrics to the logging dictionary.
+
+        arguments:
+        log_dict (Dict) -- metrics/media to be logged in current step
+        """
+        if self.wandb_run:
+            for key, value in log_dict.items():
+                self.log_dict[key] = value
+
+    def end_epoch(self):
+        """
+        Commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
+
+        arguments:
+        best_result (boolean): Boolean representing if the result of this evaluation is best or not
+        """
+        if self.wandb_run:
+            with all_logging_disabled():
+                try:
+                    wandb.log(self.log_dict)
+                except BaseException as e:
+                    LOGGER.info(
+                        f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
+                    )
+                    self.wandb_run.finish()
+                    self.wandb_run = None
+                self.log_dict = {}
+
+    def finish_run(self):
+        """Log metrics if any and finish the current W&B run."""
+        if self.wandb_run:
+            if self.log_dict:
+                with all_logging_disabled():
+                    wandb.log(self.log_dict)
+            wandb.run.finish()
+            LOGGER.warning(DEPRECATION_WARNING)
+
+
+@contextmanager
+def all_logging_disabled(highest_level=logging.CRITICAL):
+    """source - https://gist.github.com/simon-weber/7853144
+    A context manager that will prevent any logging messages triggered during the body from being processed.
+    :param highest_level: the maximum logging level in use.
+      This would only need to be changed if a custom level greater than CRITICAL is defined.
+    """
+    previous_level = logging.root.manager.disable
+    logging.disable(highest_level)
+    try:
+        yield
+    finally:
+        logging.disable(previous_level)
diff --git a/yolov5/utils/loss.py b/yolov5/utils/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d09f9df026115833927e67ebf6a9b63d2f5f8eb
--- /dev/null
+++ b/yolov5/utils/loss.py
@@ -0,0 +1,254 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Loss functions."""
+
+import torch
+import torch.nn as nn
+
+from utils.metrics import bbox_iou
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1):
+    """Returns label smoothing BCE targets for reducing overfitting; pos: `1.0 - 0.5*eps`, neg: `0.5*eps`. For details see https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441"""
+    return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+    # BCEwithLogitLoss() with reduced missing label effects.
+    def __init__(self, alpha=0.05):
+        """Initializes a modified BCEWithLogitsLoss with reduced missing label effects, taking optional alpha smoothing
+        parameter.
+        """
+        super().__init__()
+        self.loss_fcn = nn.BCEWithLogitsLoss(reduction="none")  # must be nn.BCEWithLogitsLoss()
+        self.alpha = alpha
+
+    def forward(self, pred, true):
+        """Computes modified BCE loss for YOLOv5 with reduced missing label effects, taking pred and true tensors,
+        returns mean loss.
+        """
+        loss = self.loss_fcn(pred, true)
+        pred = torch.sigmoid(pred)  # prob from logits
+        dx = pred - true  # reduce only missing label effects
+        # dx = (pred - true).abs()  # reduce missing label and false label effects
+        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+        loss *= alpha_factor
+        return loss.mean()
+
+
+class FocalLoss(nn.Module):
+    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        """Initializes FocalLoss with specified loss function, gamma, and alpha values; modifies loss reduction to
+        'none'.
+        """
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = "none"  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        """Calculates the focal loss between predicted and true labels using a modified BCEWithLogitsLoss."""
+        loss = self.loss_fcn(pred, true)
+        # p_t = torch.exp(-loss)
+        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability
+
+        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = (1.0 - p_t) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == "mean":
+            return loss.mean()
+        elif self.reduction == "sum":
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class QFocalLoss(nn.Module):
+    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        """Initializes Quality Focal Loss with given loss function, gamma, alpha; modifies reduction to 'none'."""
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = "none"  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        """Computes the focal loss between `pred` and `true` using BCEWithLogitsLoss, adjusting for imbalance with
+        `gamma` and `alpha`.
+        """
+        loss = self.loss_fcn(pred, true)
+
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == "mean":
+            return loss.mean()
+        elif self.reduction == "sum":
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class ComputeLoss:
+    sort_obj_iou = False
+
+    # Compute losses
+    def __init__(self, model, autobalance=False):
+        """Initializes ComputeLoss with model and autobalance option, autobalances losses if True."""
+        device = next(model.parameters()).device  # get model device
+        h = model.hyp  # hyperparameters
+
+        # Define criteria
+        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device))
+        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["obj_pw"]], device=device))
+
+        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets
+
+        # Focal loss
+        g = h["fl_gamma"]  # focal loss gamma
+        if g > 0:
+            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+        m = de_parallel(model).model[-1]  # Detect() module
+        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
+        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
+        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+        self.na = m.na  # number of anchors
+        self.nc = m.nc  # number of classes
+        self.nl = m.nl  # number of layers
+        self.anchors = m.anchors
+        self.device = device
+
+    def __call__(self, p, targets):  # predictions, targets
+        """Performs forward pass, calculating class, box, and object loss for given predictions and targets."""
+        lcls = torch.zeros(1, device=self.device)  # class loss
+        lbox = torch.zeros(1, device=self.device)  # box loss
+        lobj = torch.zeros(1, device=self.device)  # object loss
+        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets
+
+        # Losses
+        for i, pi in enumerate(p):  # layer index, layer predictions
+            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
+            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj
+
+            n = b.shape[0]  # number of targets
+            if n:
+                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
+                pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions
+
+                # Regression
+                pxy = pxy.sigmoid() * 2 - 0.5
+                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+                pbox = torch.cat((pxy, pwh), 1)  # predicted box
+                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
+                lbox += (1.0 - iou).mean()  # iou loss
+
+                # Objectness
+                iou = iou.detach().clamp(0).type(tobj.dtype)
+                if self.sort_obj_iou:
+                    j = iou.argsort()
+                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+                if self.gr < 1:
+                    iou = (1.0 - self.gr) + self.gr * iou
+                tobj[b, a, gj, gi] = iou  # iou ratio
+
+                # Classification
+                if self.nc > 1:  # cls loss (only if multiple classes)
+                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
+                    t[range(n), tcls[i]] = self.cp
+                    lcls += self.BCEcls(pcls, t)  # BCE
+
+                # Append targets to text file
+                # with open('targets.txt', 'a') as file:
+                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+            obji = self.BCEobj(pi[..., 4], tobj)
+            lobj += obji * self.balance[i]  # obj loss
+            if self.autobalance:
+                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+        if self.autobalance:
+            self.balance = [x / self.balance[self.ssi] for x in self.balance]
+        lbox *= self.hyp["box"]
+        lobj *= self.hyp["obj"]
+        lcls *= self.hyp["cls"]
+        bs = tobj.shape[0]  # batch size
+
+        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
+
+    def build_targets(self, p, targets):
+        """Prepares model targets from input targets (image,class,x,y,w,h) for loss computation, returning class, box,
+        indices, and anchors.
+        """
+        na, nt = self.na, targets.shape[0]  # number of anchors, targets
+        tcls, tbox, indices, anch = [], [], [], []
+        gain = torch.ones(7, device=self.device)  # normalized to gridspace gain
+        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
+        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)  # append anchor indices
+
+        g = 0.5  # bias
+        off = (
+            torch.tensor(
+                [
+                    [0, 0],
+                    [1, 0],
+                    [0, 1],
+                    [-1, 0],
+                    [0, -1],  # j,k,l,m
+                    # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
+                ],
+                device=self.device,
+            ).float()
+            * g
+        )  # offsets
+
+        for i in range(self.nl):
+            anchors, shape = self.anchors[i], p[i].shape
+            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain
+
+            # Match targets to anchors
+            t = targets * gain  # shape(3,n,7)
+            if nt:
+                # Matches
+                r = t[..., 4:6] / anchors[:, None]  # wh ratio
+                j = torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"]  # compare
+                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+                t = t[j]  # filter
+
+                # Offsets
+                gxy = t[:, 2:4]  # grid xy
+                gxi = gain[[2, 3]] - gxy  # inverse
+                j, k = ((gxy % 1 < g) & (gxy > 1)).T
+                l, m = ((gxi % 1 < g) & (gxi > 1)).T
+                j = torch.stack((torch.ones_like(j), j, k, l, m))
+                t = t.repeat((5, 1, 1))[j]
+                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+            else:
+                t = targets[0]
+                offsets = 0
+
+            # Define
+            bc, gxy, gwh, a = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
+            a, (b, c) = a.long().view(-1), bc.long().T  # anchors, image, class
+            gij = (gxy - offsets).long()
+            gi, gj = gij.T  # grid indices
+
+            # Append
+            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
+            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
+            anch.append(anchors[a])  # anchors
+            tcls.append(c)  # class
+
+        return tcls, tbox, indices, anch
diff --git a/yolov5/utils/metrics.py b/yolov5/utils/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..e572355fec1e4cff9cd62d0e5db1da5d0f768298
--- /dev/null
+++ b/yolov5/utils/metrics.py
@@ -0,0 +1,382 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Model validation metrics."""
+
+import math
+import warnings
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+from utils import TryExcept, threaded
+
+
+def fitness(x):
+    """Calculates fitness of a model using weighted sum of metrics P, R, mAP@0.5, mAP@0.5:0.95."""
+    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+    return (x[:, :4] * w).sum(1)
+
+
+def smooth(y, f=0.05):
+    """Applies box filter smoothing to array `y` with fraction `f`, yielding a smoothed array."""
+    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
+    p = np.ones(nf // 2)  # ones padding
+    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
+    return np.convolve(yp, np.ones(nf) / nf, mode="valid")  # y-smoothed
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=".", names=(), eps=1e-16, prefix=""):
+    """
+    Compute the average precision, given the recall and precision curves.
+
+    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+    # Arguments
+        tp:  True positives (nparray, nx1 or nx10).
+        conf:  Objectness value from 0-1 (nparray).
+        pred_cls:  Predicted object classes (nparray).
+        target_cls:  True object classes (nparray).
+        plot:  Plot precision-recall curve at mAP@0.5
+        save_dir:  Plot save directory
+    # Returns
+        The average precision as computed in py-faster-rcnn.
+    """
+
+    # Sort by objectness
+    i = np.argsort(-conf)
+    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+    # Find unique classes
+    unique_classes, nt = np.unique(target_cls, return_counts=True)
+    nc = unique_classes.shape[0]  # number of classes, number of detections
+
+    # Create Precision-Recall curve and compute AP for each class
+    px, py = np.linspace(0, 1, 1000), []  # for plotting
+    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+    for ci, c in enumerate(unique_classes):
+        i = pred_cls == c
+        n_l = nt[ci]  # number of labels
+        n_p = i.sum()  # number of predictions
+        if n_p == 0 or n_l == 0:
+            continue
+
+        # Accumulate FPs and TPs
+        fpc = (1 - tp[i]).cumsum(0)
+        tpc = tp[i].cumsum(0)
+
+        # Recall
+        recall = tpc / (n_l + eps)  # recall curve
+        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases
+
+        # Precision
+        precision = tpc / (tpc + fpc)  # precision curve
+        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
+
+        # AP from recall-precision curve
+        for j in range(tp.shape[1]):
+            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+            if plot and j == 0:
+                py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5
+
+    # Compute F1 (harmonic mean of precision and recall)
+    f1 = 2 * p * r / (p + r + eps)
+    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
+    names = dict(enumerate(names))  # to dict
+    if plot:
+        plot_pr_curve(px, py, ap, Path(save_dir) / f"{prefix}PR_curve.png", names)
+        plot_mc_curve(px, f1, Path(save_dir) / f"{prefix}F1_curve.png", names, ylabel="F1")
+        plot_mc_curve(px, p, Path(save_dir) / f"{prefix}P_curve.png", names, ylabel="Precision")
+        plot_mc_curve(px, r, Path(save_dir) / f"{prefix}R_curve.png", names, ylabel="Recall")
+
+    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
+    p, r, f1 = p[:, i], r[:, i], f1[:, i]
+    tp = (r * nt).round()  # true positives
+    fp = (tp / (p + eps) - tp).round()  # false positives
+    return tp, fp, p, r, f1, ap, unique_classes.astype(int)
+
+
+def compute_ap(recall, precision):
+    """Compute the average precision, given the recall and precision curves
+    # Arguments
+        recall:    The recall curve (list)
+        precision: The precision curve (list)
+    # Returns
+        Average precision, precision curve, recall curve
+    """
+
+    # Append sentinel values to beginning and end
+    mrec = np.concatenate(([0.0], recall, [1.0]))
+    mpre = np.concatenate(([1.0], precision, [0.0]))
+
+    # Compute the precision envelope
+    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+    # Integrate area under curve
+    method = "interp"  # methods: 'continuous', 'interp'
+    if method == "interp":
+        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
+        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
+    else:  # 'continuous'
+        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
+        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve
+
+    return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+    def __init__(self, nc, conf=0.25, iou_thres=0.45):
+        """Initializes ConfusionMatrix with given number of classes, confidence, and IoU threshold."""
+        self.matrix = np.zeros((nc + 1, nc + 1))
+        self.nc = nc  # number of classes
+        self.conf = conf
+        self.iou_thres = iou_thres
+
+    def process_batch(self, detections, labels):
+        """
+        Return intersection-over-union (Jaccard index) of boxes.
+
+        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+        Arguments:
+            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+            labels (Array[M, 5]), class, x1, y1, x2, y2
+        Returns:
+            None, updates confusion matrix accordingly
+        """
+        if detections is None:
+            gt_classes = labels.int()
+            for gc in gt_classes:
+                self.matrix[self.nc, gc] += 1  # background FN
+            return
+
+        detections = detections[detections[:, 4] > self.conf]
+        gt_classes = labels[:, 0].int()
+        detection_classes = detections[:, 5].int()
+        iou = box_iou(labels[:, 1:], detections[:, :4])
+
+        x = torch.where(iou > self.iou_thres)
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+        else:
+            matches = np.zeros((0, 3))
+
+        n = matches.shape[0] > 0
+        m0, m1, _ = matches.transpose().astype(int)
+        for i, gc in enumerate(gt_classes):
+            j = m0 == i
+            if n and sum(j) == 1:
+                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
+            else:
+                self.matrix[self.nc, gc] += 1  # true background
+
+        if n:
+            for i, dc in enumerate(detection_classes):
+                if not any(m1 == i):
+                    self.matrix[dc, self.nc] += 1  # predicted background
+
+    def tp_fp(self):
+        """Calculates true positives (tp) and false positives (fp) excluding the background class from the confusion
+        matrix.
+        """
+        tp = self.matrix.diagonal()  # true positives
+        fp = self.matrix.sum(1) - tp  # false positives
+        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
+        return tp[:-1], fp[:-1]  # remove background class
+
+    @TryExcept("WARNING ⚠ī¸ ConfusionMatrix plot failure")
+    def plot(self, normalize=True, save_dir="", names=()):
+        """Plots confusion matrix using seaborn, optional normalization; can save plot to specified directory."""
+        import seaborn as sn
+
+        array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)  # normalize columns
+        array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)
+
+        fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
+        nc, nn = self.nc, len(names)  # number of classes, names
+        sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
+        labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
+        ticklabels = (names + ["background"]) if labels else "auto"
+        with warnings.catch_warnings():
+            warnings.simplefilter("ignore")  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
+            sn.heatmap(
+                array,
+                ax=ax,
+                annot=nc < 30,
+                annot_kws={"size": 8},
+                cmap="Blues",
+                fmt=".2f",
+                square=True,
+                vmin=0.0,
+                xticklabels=ticklabels,
+                yticklabels=ticklabels,
+            ).set_facecolor((1, 1, 1))
+        ax.set_xlabel("True")
+        ax.set_ylabel("Predicted")
+        ax.set_title("Confusion Matrix")
+        fig.savefig(Path(save_dir) / "confusion_matrix.png", dpi=250)
+        plt.close(fig)
+
+    def print(self):
+        """Prints the confusion matrix row-wise, with each class and its predictions separated by spaces."""
+        for i in range(self.nc + 1):
+            print(" ".join(map(str, self.matrix[i])))
+
+
+def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
+    """
+    Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats.
+
+    Input shapes are box1(1,4) to box2(n,4).
+    """
+
+    # Get the coordinates of bounding boxes
+    if xywh:  # transform from xywh to xyxy
+        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
+        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
+        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
+        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
+    else:  # x1, y1, x2, y2 = box1
+        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
+        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
+        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
+        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
+
+    # Intersection area
+    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * (
+        b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
+    ).clamp(0)
+
+    # Union Area
+    union = w1 * h1 + w2 * h2 - inter + eps
+
+    # IoU
+    iou = inter / union
+    if CIoU or DIoU or GIoU:
+        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
+        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
+        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+            c2 = cw**2 + ch**2 + eps  # convex diagonal squared
+            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
+            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+                v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
+                with torch.no_grad():
+                    alpha = v / (v - iou + (1 + eps))
+                return iou - (rho2 / c2 + v * alpha)  # CIoU
+            return iou - rho2 / c2  # DIoU
+        c_area = cw * ch + eps  # convex area
+        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
+    return iou  # IoU
+
+
+def box_iou(box1, box2, eps=1e-7):
+    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+    """
+    Return intersection-over-union (Jaccard index) of boxes.
+
+    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+    Arguments:
+        box1 (Tensor[N, 4])
+        box2 (Tensor[M, 4])
+    Returns:
+        iou (Tensor[N, M]): the NxM matrix containing the pairwise
+            IoU values for every element in boxes1 and boxes2
+    """
+
+    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
+    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
+
+    # IoU = inter / (area1 + area2 - inter)
+    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
+
+
+def bbox_ioa(box1, box2, eps=1e-7):
+    """
+    Returns the intersection over box2 area given box1, box2.
+
+    Boxes are x1y1x2y2
+    box1:       np.array of shape(4)
+    box2:       np.array of shape(nx4)
+    returns:    np.array of shape(n)
+    """
+
+    # Get the coordinates of bounding boxes
+    b1_x1, b1_y1, b1_x2, b1_y2 = box1
+    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
+
+    # Intersection area
+    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * (
+        np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)
+    ).clip(0)
+
+    # box2 area
+    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
+
+    # Intersection over box2 area
+    return inter_area / box2_area
+
+
+def wh_iou(wh1, wh2, eps=1e-7):
+    """Calculates the Intersection over Union (IoU) for two sets of widths and heights; `wh1` and `wh2` should be nx2
+    and mx2 tensors.
+    """
+    wh1 = wh1[:, None]  # [N,1,2]
+    wh2 = wh2[None]  # [1,M,2]
+    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
+    return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps)  # iou = inter / (area1 + area2 - inter)
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+
+@threaded
+def plot_pr_curve(px, py, ap, save_dir=Path("pr_curve.png"), names=()):
+    """Plots precision-recall curve, optionally per class, saving to `save_dir`; `px`, `py` are lists, `ap` is Nx2
+    array, `names` optional.
+    """
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+    py = np.stack(py, axis=1)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py.T):
+            ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}")  # plot(recall, precision)
+    else:
+        ax.plot(px, py, linewidth=1, color="grey")  # plot(recall, precision)
+
+    ax.plot(px, py.mean(1), linewidth=3, color="blue", label="all classes %.3f mAP@0.5" % ap[:, 0].mean())
+    ax.set_xlabel("Recall")
+    ax.set_ylabel("Precision")
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+    ax.set_title("Precision-Recall Curve")
+    fig.savefig(save_dir, dpi=250)
+    plt.close(fig)
+
+
+@threaded
+def plot_mc_curve(px, py, save_dir=Path("mc_curve.png"), names=(), xlabel="Confidence", ylabel="Metric"):
+    """Plots a metric-confidence curve for model predictions, supporting per-class visualization and smoothing."""
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py):
+            ax.plot(px, y, linewidth=1, label=f"{names[i]}")  # plot(confidence, metric)
+    else:
+        ax.plot(px, py.T, linewidth=1, color="grey")  # plot(confidence, metric)
+
+    y = smooth(py.mean(0), 0.05)
+    ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
+    ax.set_xlabel(xlabel)
+    ax.set_ylabel(ylabel)
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+    ax.set_title(f"{ylabel}-Confidence Curve")
+    fig.savefig(save_dir, dpi=250)
+    plt.close(fig)
diff --git a/yolov5/utils/plots.py b/yolov5/utils/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb5edabc6c41e789b23d04475552d8ba23bfdb88
--- /dev/null
+++ b/yolov5/utils/plots.py
@@ -0,0 +1,513 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Plotting utils."""
+
+import contextlib
+import math
+import os
+from copy import copy
+from pathlib import Path
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sn
+import torch
+from PIL import Image, ImageDraw
+from scipy.ndimage.filters import gaussian_filter1d
+from ultralytics.utils.plotting import Annotator
+
+from utils import TryExcept, threaded
+from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
+from utils.metrics import fitness
+
+# Settings
+RANK = int(os.getenv("RANK", -1))
+matplotlib.rc("font", **{"size": 11})
+matplotlib.use("Agg")  # for writing to files only
+
+
+class Colors:
+    # Ultralytics color palette https://ultralytics.com/
+    def __init__(self):
+        """
+        Initializes the Colors class with a palette derived from Ultralytics color scheme, converting hex codes to RGB.
+
+        Colors derived from `hex = matplotlib.colors.TABLEAU_COLORS.values()`.
+        """
+        hexs = (
+            "FF3838",
+            "FF9D97",
+            "FF701F",
+            "FFB21D",
+            "CFD231",
+            "48F90A",
+            "92CC17",
+            "3DDB86",
+            "1A9334",
+            "00D4BB",
+            "2C99A8",
+            "00C2FF",
+            "344593",
+            "6473FF",
+            "0018EC",
+            "8438FF",
+            "520085",
+            "CB38FF",
+            "FF95C8",
+            "FF37C7",
+        )
+        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
+        self.n = len(self.palette)
+
+    def __call__(self, i, bgr=False):
+        """Returns color from palette by index `i`, in BGR format if `bgr=True`, else RGB; `i` is an integer index."""
+        c = self.palette[int(i) % self.n]
+        return (c[2], c[1], c[0]) if bgr else c
+
+    @staticmethod
+    def hex2rgb(h):
+        """Converts hexadecimal color `h` to an RGB tuple (PIL-compatible) with order (R, G, B)."""
+        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors()  # create instance for 'from utils.plots import colors'
+
+
+def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
+    """
+    x:              Features to be visualized
+    module_type:    Module type
+    stage:          Module stage within model
+    n:              Maximum number of feature maps to plot
+    save_dir:       Directory to save results
+    """
+    if ("Detect" not in module_type) and (
+        "Segment" not in module_type
+    ):  # 'Detect' for Object Detect task,'Segment' for Segment task
+        batch, channels, height, width = x.shape  # batch, channels, height, width
+        if height > 1 and width > 1:
+            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename
+
+            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
+            n = min(n, channels)  # number of plots
+            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
+            ax = ax.ravel()
+            plt.subplots_adjust(wspace=0.05, hspace=0.05)
+            for i in range(n):
+                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
+                ax[i].axis("off")
+
+            LOGGER.info(f"Saving {f}... ({n}/{channels})")
+            plt.savefig(f, dpi=300, bbox_inches="tight")
+            plt.close()
+            np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())  # npy save
+
+
+def hist2d(x, y, n=100):
+    """
+    Generates a logarithmic 2D histogram, useful for visualizing label or evolution distributions.
+
+    Used in used in labels.png and evolve.png.
+    """
+    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+    return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+    """Applies a low-pass Butterworth filter to `data` with specified `cutoff`, `fs`, and `order`."""
+    from scipy.signal import butter, filtfilt
+
+    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+    def butter_lowpass(cutoff, fs, order):
+        nyq = 0.5 * fs
+        normal_cutoff = cutoff / nyq
+        return butter(order, normal_cutoff, btype="low", analog=False)
+
+    b, a = butter_lowpass(cutoff, fs, order=order)
+    return filtfilt(b, a, data)  # forward-backward filter
+
+
+def output_to_target(output, max_det=300):
+    """Converts YOLOv5 model output to [batch_id, class_id, x, y, w, h, conf] format for plotting, limiting detections
+    to `max_det`.
+    """
+    targets = []
+    for i, o in enumerate(output):
+        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
+        j = torch.full((conf.shape[0], 1), i)
+        targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
+    return torch.cat(targets, 0).numpy()
+
+
+@threaded
+def plot_images(images, targets, paths=None, fname="images.jpg", names=None):
+    """Plots an image grid with labels from YOLOv5 predictions or targets, saving to `fname`."""
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+
+    max_size = 1920  # max image size
+    max_subplots = 16  # max image subplots, i.e. 4x4
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs**0.5)  # number of subplots (square)
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y : y + h, x : x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            ti = targets[targets[:, 0] == i]  # image targets
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype("int")
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}"
+                    annotator.box_label(box, label, color=color)
+    annotator.im.save(fname)  # save
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=""):
+    """Plots learning rate schedule for given optimizer and scheduler, saving plot to `save_dir`."""
+    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
+    y = []
+    for _ in range(epochs):
+        scheduler.step()
+        y.append(optimizer.param_groups[0]["lr"])
+    plt.plot(y, ".-", label="LR")
+    plt.xlabel("epoch")
+    plt.ylabel("LR")
+    plt.grid()
+    plt.xlim(0, epochs)
+    plt.ylim(0)
+    plt.savefig(Path(save_dir) / "LR.png", dpi=200)
+    plt.close()
+
+
+def plot_val_txt():
+    """
+    Plots 2D and 1D histograms of bounding box centers from 'val.txt' using matplotlib, saving as 'hist2d.png' and
+    'hist1d.png'.
+
+    Example: from utils.plots import *; plot_val()
+    """
+    x = np.loadtxt("val.txt", dtype=np.float32)
+    box = xyxy2xywh(x[:, :4])
+    cx, cy = box[:, 0], box[:, 1]
+
+    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+    ax.set_aspect("equal")
+    plt.savefig("hist2d.png", dpi=300)
+
+    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+    ax[0].hist(cx, bins=600)
+    ax[1].hist(cy, bins=600)
+    plt.savefig("hist1d.png", dpi=200)
+
+
+def plot_targets_txt():
+    """
+    Plots histograms of object detection targets from 'targets.txt', saving the figure as 'targets.jpg'.
+
+    Example: from utils.plots import *; plot_targets_txt()
+    """
+    x = np.loadtxt("targets.txt", dtype=np.float32).T
+    s = ["x targets", "y targets", "width targets", "height targets"]
+    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+    ax = ax.ravel()
+    for i in range(4):
+        ax[i].hist(x[i], bins=100, label=f"{x[i].mean():.3g} +/- {x[i].std():.3g}")
+        ax[i].legend()
+        ax[i].set_title(s[i])
+    plt.savefig("targets.jpg", dpi=200)
+
+
+def plot_val_study(file="", dir="", x=None):
+    """
+    Plots validation study results from 'study*.txt' files in a directory or a specific file, comparing model
+    performance and speed.
+
+    Example: from utils.plots import *; plot_val_study()
+    """
+    save_dir = Path(file).parent if file else Path(dir)
+    plot2 = False  # plot additional results
+    if plot2:
+        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
+
+    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+    # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
+    for f in sorted(save_dir.glob("study*.txt")):
+        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+        x = np.arange(y.shape[1]) if x is None else np.array(x)
+        if plot2:
+            s = ["P", "R", "mAP@.5", "mAP@.5:.95", "t_preprocess (ms/img)", "t_inference (ms/img)", "t_NMS (ms/img)"]
+            for i in range(7):
+                ax[i].plot(x, y[i], ".-", linewidth=2, markersize=8)
+                ax[i].set_title(s[i])
+
+        j = y[3].argmax() + 1
+        ax2.plot(
+            y[5, 1:j],
+            y[3, 1:j] * 1e2,
+            ".-",
+            linewidth=2,
+            markersize=8,
+            label=f.stem.replace("study_coco_", "").replace("yolo", "YOLO"),
+        )
+
+    ax2.plot(
+        1e3 / np.array([209, 140, 97, 58, 35, 18]),
+        [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+        "k.-",
+        linewidth=2,
+        markersize=8,
+        alpha=0.25,
+        label="EfficientDet",
+    )
+
+    ax2.grid(alpha=0.2)
+    ax2.set_yticks(np.arange(20, 60, 5))
+    ax2.set_xlim(0, 57)
+    ax2.set_ylim(25, 55)
+    ax2.set_xlabel("GPU Speed (ms/img)")
+    ax2.set_ylabel("COCO AP val")
+    ax2.legend(loc="lower right")
+    f = save_dir / "study.png"
+    print(f"Saving {f}...")
+    plt.savefig(f, dpi=300)
+
+
+@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
+def plot_labels(labels, names=(), save_dir=Path("")):
+    """Plots dataset labels, saving correlogram and label images, handles classes, and visualizes bounding boxes."""
+    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
+    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
+    nc = int(c.max() + 1)  # number of classes
+    x = pd.DataFrame(b.transpose(), columns=["x", "y", "width", "height"])
+
+    # seaborn correlogram
+    sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+    plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
+    plt.close()
+
+    # matplotlib labels
+    matplotlib.use("svg")  # faster
+    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+    with contextlib.suppress(Exception):  # color histogram bars by class
+        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
+    ax[0].set_ylabel("instances")
+    if 0 < len(names) < 30:
+        ax[0].set_xticks(range(len(names)))
+        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
+    else:
+        ax[0].set_xlabel("classes")
+    sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
+    sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
+
+    # rectangles
+    labels[:, 1:3] = 0.5  # center
+    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+    for cls, *box in labels[:1000]:
+        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
+    ax[1].imshow(img)
+    ax[1].axis("off")
+
+    for a in [0, 1, 2, 3]:
+        for s in ["top", "right", "left", "bottom"]:
+            ax[a].spines[s].set_visible(False)
+
+    plt.savefig(save_dir / "labels.jpg", dpi=200)
+    matplotlib.use("Agg")
+    plt.close()
+
+
+def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path("images.jpg")):
+    """Displays a grid of images with optional labels and predictions, saving to a file."""
+    from utils.augmentations import denormalize
+
+    names = names or [f"class{i}" for i in range(1000)]
+    blocks = torch.chunk(
+        denormalize(im.clone()).cpu().float(), len(im), dim=0
+    )  # select batch index 0, block by channels
+    n = min(len(blocks), nmax)  # number of plots
+    m = min(8, round(n**0.5))  # 8 x 8 default
+    fig, ax = plt.subplots(math.ceil(n / m), m)  # 8 rows x n/8 cols
+    ax = ax.ravel() if m > 1 else [ax]
+    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
+    for i in range(n):
+        ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
+        ax[i].axis("off")
+        if labels is not None:
+            s = names[labels[i]] + (f"—{names[pred[i]]}" if pred is not None else "")
+            ax[i].set_title(s, fontsize=8, verticalalignment="top")
+    plt.savefig(f, dpi=300, bbox_inches="tight")
+    plt.close()
+    if verbose:
+        LOGGER.info(f"Saving {f}")
+        if labels is not None:
+            LOGGER.info("True:     " + " ".join(f"{names[i]:3s}" for i in labels[:nmax]))
+        if pred is not None:
+            LOGGER.info("Predicted:" + " ".join(f"{names[i]:3s}" for i in pred[:nmax]))
+    return f
+
+
+def plot_evolve(evolve_csv="path/to/evolve.csv"):
+    """
+    Plots hyperparameter evolution results from a given CSV, saving the plot and displaying best results.
+
+    Example: from utils.plots import *; plot_evolve()
+    """
+    evolve_csv = Path(evolve_csv)
+    data = pd.read_csv(evolve_csv)
+    keys = [x.strip() for x in data.columns]
+    x = data.values
+    f = fitness(x)
+    j = np.argmax(f)  # max fitness index
+    plt.figure(figsize=(10, 12), tight_layout=True)
+    matplotlib.rc("font", **{"size": 8})
+    print(f"Best results from row {j} of {evolve_csv}:")
+    for i, k in enumerate(keys[7:]):
+        v = x[:, 7 + i]
+        mu = v[j]  # best single result
+        plt.subplot(6, 5, i + 1)
+        plt.scatter(v, f, c=hist2d(v, f, 20), cmap="viridis", alpha=0.8, edgecolors="none")
+        plt.plot(mu, f.max(), "k+", markersize=15)
+        plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})  # limit to 40 characters
+        if i % 5 != 0:
+            plt.yticks([])
+        print(f"{k:>15}: {mu:.3g}")
+    f = evolve_csv.with_suffix(".png")  # filename
+    plt.savefig(f, dpi=200)
+    plt.close()
+    print(f"Saved {f}")
+
+
+def plot_results(file="path/to/results.csv", dir=""):
+    """
+    Plots training results from a 'results.csv' file; accepts file path and directory as arguments.
+
+    Example: from utils.plots import *; plot_results('path/to/results.csv')
+    """
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob("results*.csv"))
+    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
+    for f in files:
+        try:
+            data = pd.read_csv(f)
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
+                y = data.values[:, j].astype("float")
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)  # actual results
+                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)  # smoothing line
+                ax[i].set_title(s[j], fontsize=12)
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            LOGGER.info(f"Warning: Plotting error for {f}: {e}")
+    ax[1].legend()
+    fig.savefig(save_dir / "results.png", dpi=200)
+    plt.close()
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=""):
+    """
+    Plots per-image iDetection logs, comparing metrics like storage and performance over time.
+
+    Example: from utils.plots import *; profile_idetection()
+    """
+    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+    s = ["Images", "Free Storage (GB)", "RAM Usage (GB)", "Battery", "dt_raw (ms)", "dt_smooth (ms)", "real-world FPS"]
+    files = list(Path(save_dir).glob("frames*.txt"))
+    for fi, f in enumerate(files):
+        try:
+            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
+            n = results.shape[1]  # number of rows
+            x = np.arange(start, min(stop, n) if stop else n)
+            results = results[:, x]
+            t = results[0] - results[0].min()  # set t0=0s
+            results[0] = x
+            for i, a in enumerate(ax):
+                if i < len(results):
+                    label = labels[fi] if len(labels) else f.stem.replace("frames_", "")
+                    a.plot(t, results[i], marker=".", label=label, linewidth=1, markersize=5)
+                    a.set_title(s[i])
+                    a.set_xlabel("time (s)")
+                    # if fi == len(files) - 1:
+                    #     a.set_ylim(bottom=0)
+                    for side in ["top", "right"]:
+                        a.spines[side].set_visible(False)
+                else:
+                    a.remove()
+        except Exception as e:
+            print(f"Warning: Plotting error for {f}; {e}")
+    ax[1].legend()
+    plt.savefig(Path(save_dir) / "idetection_profile.png", dpi=200)
+
+
+def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
+    """Crops and saves an image from bounding box `xyxy`, applied with `gain` and `pad`, optionally squares and adjusts
+    for BGR.
+    """
+    xyxy = torch.tensor(xyxy).view(-1, 4)
+    b = xyxy2xywh(xyxy)  # boxes
+    if square:
+        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
+    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
+    xyxy = xywh2xyxy(b).long()
+    clip_boxes(xyxy, im.shape)
+    crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
+    if save:
+        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
+        f = str(increment_path(file).with_suffix(".jpg"))
+        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
+        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
+    return crop
diff --git a/yolov5/utils/segment/__init__.py b/yolov5/utils/segment/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5/utils/segment/augmentations.py b/yolov5/utils/segment/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..e13a53d34821ff38ce78a73f213c73f9cea103be
--- /dev/null
+++ b/yolov5/utils/segment/augmentations.py
@@ -0,0 +1,100 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Image augmentation functions."""
+
+import math
+import random
+
+import cv2
+import numpy as np
+
+from ..augmentations import box_candidates
+from ..general import resample_segments, segment2box
+
+
+def mixup(im, labels, segments, im2, labels2, segments2):
+    """
+    Applies MixUp augmentation blending two images, labels, and segments with a random ratio.
+
+    See https://arxiv.org/pdf/1710.09412.pdf
+    """
+    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
+    im = (im * r + im2 * (1 - r)).astype(np.uint8)
+    labels = np.concatenate((labels, labels2), 0)
+    segments = np.concatenate((segments, segments2), 0)
+    return im, labels, segments
+
+
+def random_perspective(
+    im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0)
+):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = im.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
+    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(im[:, :, ::-1])  # base
+    # ax[1].imshow(im2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    new_segments = []
+    if n:
+        new = np.zeros((n, 4))
+        segments = resample_segments(segments)  # upsample
+        for i, segment in enumerate(segments):
+            xy = np.ones((len(segment), 3))
+            xy[:, :2] = segment
+            xy = xy @ M.T  # transform
+            xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine
+
+            # clip
+            new[i] = segment2box(xy, width, height)
+            new_segments.append(xy)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+        new_segments = np.array(new_segments)[i]
+
+    return im, targets, new_segments
diff --git a/yolov5/utils/segment/dataloaders.py b/yolov5/utils/segment/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d2e9bef0b09e3370224fdc2191e1e5511c36e9e
--- /dev/null
+++ b/yolov5/utils/segment/dataloaders.py
@@ -0,0 +1,362 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Dataloaders."""
+
+import os
+import random
+
+import cv2
+import numpy as np
+import torch
+from torch.utils.data import DataLoader, distributed
+
+from ..augmentations import augment_hsv, copy_paste, letterbox
+from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, SmartDistributedSampler, seed_worker
+from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
+from ..torch_utils import torch_distributed_zero_first
+from .augmentations import mixup, random_perspective
+
+RANK = int(os.getenv("RANK", -1))
+
+
+def create_dataloader(
+    path,
+    imgsz,
+    batch_size,
+    stride,
+    single_cls=False,
+    hyp=None,
+    augment=False,
+    cache=False,
+    pad=0.0,
+    rect=False,
+    rank=-1,
+    workers=8,
+    image_weights=False,
+    quad=False,
+    prefix="",
+    shuffle=False,
+    mask_downsample_ratio=1,
+    overlap_mask=False,
+    seed=0,
+):
+    if rect and shuffle:
+        LOGGER.warning("WARNING ⚠ī¸ --rect is incompatible with DataLoader shuffle, setting shuffle=False")
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabelsAndMasks(
+            path,
+            imgsz,
+            batch_size,
+            augment=augment,  # augmentation
+            hyp=hyp,  # hyperparameters
+            rect=rect,  # rectangular batches
+            cache_images=cache,
+            single_cls=single_cls,
+            stride=int(stride),
+            pad=pad,
+            image_weights=image_weights,
+            prefix=prefix,
+            downsample_ratio=mask_downsample_ratio,
+            overlap=overlap_mask,
+            rank=rank,
+        )
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + seed + RANK)
+    return loader(
+        dataset,
+        batch_size=batch_size,
+        shuffle=shuffle and sampler is None,
+        num_workers=nw,
+        sampler=sampler,
+        pin_memory=True,
+        collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
+        worker_init_fn=seed_worker,
+        generator=generator,
+    ), dataset
+
+
+class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels):  # for training/testing
+    def __init__(
+        self,
+        path,
+        img_size=640,
+        batch_size=16,
+        augment=False,
+        hyp=None,
+        rect=False,
+        image_weights=False,
+        cache_images=False,
+        single_cls=False,
+        stride=32,
+        pad=0,
+        min_items=0,
+        prefix="",
+        downsample_ratio=1,
+        overlap=False,
+        rank=-1,
+        seed=0,
+    ):
+        super().__init__(
+            path,
+            img_size,
+            batch_size,
+            augment,
+            hyp,
+            rect,
+            image_weights,
+            cache_images,
+            single_cls,
+            stride,
+            pad,
+            min_items,
+            prefix,
+            rank,
+            seed,
+        )
+        self.downsample_ratio = downsample_ratio
+        self.overlap = overlap
+
+    def __getitem__(self, index):
+        """Returns a transformed item from the dataset at the specified index, handling indexing and image weighting."""
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp["mosaic"]
+        masks = []
+        if mosaic:
+            # Load mosaic
+            img, labels, segments = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp["mixup"]:
+                img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
+            segments = self.segments[index].copy()
+            if len(segments):
+                for i_s in range(len(segments)):
+                    segments[i_s] = xyn2xy(
+                        segments[i_s],
+                        ratio[0] * w,
+                        ratio[1] * h,
+                        padw=pad[0],
+                        padh=pad[1],
+                    )
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels, segments = random_perspective(
+                    img,
+                    labels,
+                    segments=segments,
+                    degrees=hyp["degrees"],
+                    translate=hyp["translate"],
+                    scale=hyp["scale"],
+                    shear=hyp["shear"],
+                    perspective=hyp["perspective"],
+                )
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
+            if self.overlap:
+                masks, sorted_idx = polygons2masks_overlap(
+                    img.shape[:2], segments, downsample_ratio=self.downsample_ratio
+                )
+                masks = masks[None]  # (640, 640) -> (1, 640, 640)
+                labels = labels[sorted_idx]
+            else:
+                masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
+
+        masks = (
+            torch.from_numpy(masks)
+            if len(masks)
+            else torch.zeros(
+                1 if self.overlap else nl, img.shape[0] // self.downsample_ratio, img.shape[1] // self.downsample_ratio
+            )
+        )
+        # TODO: albumentations support
+        if self.augment:
+            # Albumentations
+            # there are some augmentation that won't change boxes and masks,
+            # so just be it for now.
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
+
+            # Flip up-down
+            if random.random() < hyp["flipud"]:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+                    masks = torch.flip(masks, dims=[1])
+
+            # Flip left-right
+            if random.random() < hyp["fliplr"]:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+                    masks = torch.flip(masks, dims=[2])
+
+            # Cutouts  # labels = cutout(img, labels, p=0.5)
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
+
+    def load_mosaic(self, index):
+        """Loads 1 image + 3 random images into a 4-image YOLOv5 mosaic, adjusting labels and segments accordingly."""
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+
+        # 3 additional image indices
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
+        img4, labels4, segments4 = random_perspective(
+            img4,
+            labels4,
+            segments4,
+            degrees=self.hyp["degrees"],
+            translate=self.hyp["translate"],
+            scale=self.hyp["scale"],
+            shear=self.hyp["shear"],
+            perspective=self.hyp["perspective"],
+            border=self.mosaic_border,
+        )  # border to remove
+        return img4, labels4, segments4
+
+    @staticmethod
+    def collate_fn(batch):
+        """Custom collation function for DataLoader, batches images, labels, paths, shapes, and segmentation masks."""
+        img, label, path, shapes, masks = zip(*batch)  # transposed
+        batched_masks = torch.cat(masks, 0)
+        for i, l in enumerate(label):
+            l[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
+
+
+def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
+    """
+    Args:
+        img_size (tuple): The image size.
+        polygons (np.ndarray): [N, M], N is the number of polygons,
+            M is the number of points(Be divided by 2).
+    """
+    mask = np.zeros(img_size, dtype=np.uint8)
+    polygons = np.asarray(polygons)
+    polygons = polygons.astype(np.int32)
+    shape = polygons.shape
+    polygons = polygons.reshape(shape[0], -1, 2)
+    cv2.fillPoly(mask, polygons, color=color)
+    nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
+    # NOTE: fillPoly firstly then resize is trying the keep the same way
+    # of loss calculation when mask-ratio=1.
+    mask = cv2.resize(mask, (nw, nh))
+    return mask
+
+
+def polygons2masks(img_size, polygons, color, downsample_ratio=1):
+    """
+    Args:
+        img_size (tuple): The image size.
+        polygons (list[np.ndarray]): each polygon is [N, M],
+            N is the number of polygons,
+            M is the number of points(Be divided by 2).
+    """
+    masks = []
+    for si in range(len(polygons)):
+        mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
+        masks.append(mask)
+    return np.array(masks)
+
+
+def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
+    """Return a (640, 640) overlap mask."""
+    masks = np.zeros(
+        (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
+        dtype=np.int32 if len(segments) > 255 else np.uint8,
+    )
+    areas = []
+    ms = []
+    for si in range(len(segments)):
+        mask = polygon2mask(
+            img_size,
+            [segments[si].reshape(-1)],
+            downsample_ratio=downsample_ratio,
+            color=1,
+        )
+        ms.append(mask)
+        areas.append(mask.sum())
+    areas = np.asarray(areas)
+    index = np.argsort(-areas)
+    ms = np.array(ms)[index]
+    for i in range(len(segments)):
+        mask = ms[i] * (i + 1)
+        masks = masks + mask
+        masks = np.clip(masks, a_min=0, a_max=i + 1)
+    return masks, index
diff --git a/yolov5/utils/segment/general.py b/yolov5/utils/segment/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..f292496c0da986a8f841160ca23bc9f6b1a3bcb7
--- /dev/null
+++ b/yolov5/utils/segment/general.py
@@ -0,0 +1,161 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+
+def crop_mask(masks, boxes):
+    """
+    "Crop" predicted masks by zeroing out everything not in the predicted bbox. Vectorized by Chong (thanks Chong).
+
+    Args:
+        - masks should be a size [n, h, w] tensor of masks
+        - boxes should be a size [n, 4] tensor of bbox coords in relative point form
+    """
+
+    n, h, w = masks.shape
+    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(1,1,n)
+    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,w,1)
+    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(h,1,1)
+
+    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
+
+
+def process_mask_upsample(protos, masks_in, bboxes, shape):
+    """
+    Crop after upsample.
+    protos: [mask_dim, mask_h, mask_w]
+    masks_in: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape: input_image_size, (h, w)
+
+    return: h, w, n
+    """
+
+    c, mh, mw = protos.shape  # CHW
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+    masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0]  # CHW
+    masks = crop_mask(masks, bboxes)  # CHW
+    return masks.gt_(0.5)
+
+
+def process_mask(protos, masks_in, bboxes, shape, upsample=False):
+    """
+    Crop before upsample.
+    proto_out: [mask_dim, mask_h, mask_w]
+    out_masks: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape:input_image_size, (h, w)
+
+    return: h, w, n
+    """
+
+    c, mh, mw = protos.shape  # CHW
+    ih, iw = shape
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)  # CHW
+
+    downsampled_bboxes = bboxes.clone()
+    downsampled_bboxes[:, 0] *= mw / iw
+    downsampled_bboxes[:, 2] *= mw / iw
+    downsampled_bboxes[:, 3] *= mh / ih
+    downsampled_bboxes[:, 1] *= mh / ih
+
+    masks = crop_mask(masks, downsampled_bboxes)  # CHW
+    if upsample:
+        masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0]  # CHW
+    return masks.gt_(0.5)
+
+
+def process_mask_native(protos, masks_in, bboxes, shape):
+    """
+    Crop after upsample.
+    protos: [mask_dim, mask_h, mask_w]
+    masks_in: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape: input_image_size, (h, w)
+
+    return: h, w, n
+    """
+    c, mh, mw = protos.shape  # CHW
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
+    pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2  # wh padding
+    top, left = int(pad[1]), int(pad[0])  # y, x
+    bottom, right = int(mh - pad[1]), int(mw - pad[0])
+    masks = masks[:, top:bottom, left:right]
+
+    masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0]  # CHW
+    masks = crop_mask(masks, bboxes)  # CHW
+    return masks.gt_(0.5)
+
+
+def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
+    """
+    img1_shape: model input shape, [h, w]
+    img0_shape: origin pic shape, [h, w, 3]
+    masks: [h, w, num]
+    """
+    # Rescale coordinates (xyxy) from im1_shape to im0_shape
+    if ratio_pad is None:  # calculate from im0_shape
+        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
+        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
+    else:
+        pad = ratio_pad[1]
+    top, left = int(pad[1]), int(pad[0])  # y, x
+    bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
+
+    if len(masks.shape) < 2:
+        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
+    masks = masks[top:bottom, left:right]
+    # masks = masks.permute(2, 0, 1).contiguous()
+    # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
+    # masks = masks.permute(1, 2, 0).contiguous()
+    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
+
+    if len(masks.shape) == 2:
+        masks = masks[:, :, None]
+    return masks
+
+
+def mask_iou(mask1, mask2, eps=1e-7):
+    """
+    mask1: [N, n] m1 means number of predicted objects
+    mask2: [M, n] m2 means number of gt objects
+    Note: n means image_w x image_h
+
+    return: masks iou, [N, M]
+    """
+    intersection = torch.matmul(mask1, mask2.t()).clamp(0)
+    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
+    return intersection / (union + eps)
+
+
+def masks_iou(mask1, mask2, eps=1e-7):
+    """
+    mask1: [N, n] m1 means number of predicted objects
+    mask2: [N, n] m2 means number of gt objects
+    Note: n means image_w x image_h
+
+    return: masks iou, (N, )
+    """
+    intersection = (mask1 * mask2).sum(1).clamp(0)  # (N, )
+    union = (mask1.sum(1) + mask2.sum(1))[None] - intersection  # (area1 + area2) - intersection
+    return intersection / (union + eps)
+
+
+def masks2segments(masks, strategy="largest"):
+    """Converts binary (n,160,160) masks to polygon segments with options for concatenation or selecting the largest
+    segment.
+    """
+    segments = []
+    for x in masks.int().cpu().numpy().astype("uint8"):
+        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
+        if c:
+            if strategy == "concat":  # concatenate all segments
+                c = np.concatenate([x.reshape(-1, 2) for x in c])
+            elif strategy == "largest":  # select largest segment
+                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
+        else:
+            c = np.zeros((0, 2))  # no segments found
+        segments.append(c.astype("float32"))
+    return segments
diff --git a/yolov5/utils/segment/loss.py b/yolov5/utils/segment/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa0c10939b7031d85d2d9846d95a67c49ea9ec9c
--- /dev/null
+++ b/yolov5/utils/segment/loss.py
@@ -0,0 +1,195 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ..general import xywh2xyxy
+from ..loss import FocalLoss, smooth_BCE
+from ..metrics import bbox_iou
+from ..torch_utils import de_parallel
+from .general import crop_mask
+
+
+class ComputeLoss:
+    # Compute losses
+    def __init__(self, model, autobalance=False, overlap=False):
+        """Initializes the compute loss function for YOLOv5 models with options for autobalancing and overlap
+        handling.
+        """
+        self.sort_obj_iou = False
+        self.overlap = overlap
+        device = next(model.parameters()).device  # get model device
+        h = model.hyp  # hyperparameters
+
+        # Define criteria
+        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device))
+        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["obj_pw"]], device=device))
+
+        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets
+
+        # Focal loss
+        g = h["fl_gamma"]  # focal loss gamma
+        if g > 0:
+            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+        m = de_parallel(model).model[-1]  # Detect() module
+        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
+        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
+        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+        self.na = m.na  # number of anchors
+        self.nc = m.nc  # number of classes
+        self.nl = m.nl  # number of layers
+        self.nm = m.nm  # number of masks
+        self.anchors = m.anchors
+        self.device = device
+
+    def __call__(self, preds, targets, masks):  # predictions, targets, model
+        """Evaluates YOLOv5 model's loss for given predictions, targets, and masks; returns total loss components."""
+        p, proto = preds
+        bs, nm, mask_h, mask_w = proto.shape  # batch size, number of masks, mask height, mask width
+        lcls = torch.zeros(1, device=self.device)
+        lbox = torch.zeros(1, device=self.device)
+        lobj = torch.zeros(1, device=self.device)
+        lseg = torch.zeros(1, device=self.device)
+        tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets)  # targets
+
+        # Losses
+        for i, pi in enumerate(p):  # layer index, layer predictions
+            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
+            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj
+
+            n = b.shape[0]  # number of targets
+            if n:
+                pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1)  # subset of predictions
+
+                # Box regression
+                pxy = pxy.sigmoid() * 2 - 0.5
+                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+                pbox = torch.cat((pxy, pwh), 1)  # predicted box
+                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
+                lbox += (1.0 - iou).mean()  # iou loss
+
+                # Objectness
+                iou = iou.detach().clamp(0).type(tobj.dtype)
+                if self.sort_obj_iou:
+                    j = iou.argsort()
+                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+                if self.gr < 1:
+                    iou = (1.0 - self.gr) + self.gr * iou
+                tobj[b, a, gj, gi] = iou  # iou ratio
+
+                # Classification
+                if self.nc > 1:  # cls loss (only if multiple classes)
+                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
+                    t[range(n), tcls[i]] = self.cp
+                    lcls += self.BCEcls(pcls, t)  # BCE
+
+                # Mask regression
+                if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
+                    masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
+                marea = xywhn[i][:, 2:].prod(1)  # mask width, height normalized
+                mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
+                for bi in b.unique():
+                    j = b == bi  # matching index
+                    if self.overlap:
+                        mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
+                    else:
+                        mask_gti = masks[tidxs[i]][j]
+                    lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
+
+            obji = self.BCEobj(pi[..., 4], tobj)
+            lobj += obji * self.balance[i]  # obj loss
+            if self.autobalance:
+                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+        if self.autobalance:
+            self.balance = [x / self.balance[self.ssi] for x in self.balance]
+        lbox *= self.hyp["box"]
+        lobj *= self.hyp["obj"]
+        lcls *= self.hyp["cls"]
+        lseg *= self.hyp["box"] / bs
+
+        loss = lbox + lobj + lcls + lseg
+        return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
+
+    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+        """Calculates and normalizes single mask loss for YOLOv5 between predicted and ground truth masks."""
+        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n,32) @ (32,80,80) -> (n,80,80)
+        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
+        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+    def build_targets(self, p, targets):
+        """Prepares YOLOv5 targets for loss computation; inputs targets (image, class, x, y, w, h), output target
+        classes/boxes.
+        """
+        na, nt = self.na, targets.shape[0]  # number of anchors, targets
+        tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
+        gain = torch.ones(8, device=self.device)  # normalized to gridspace gain
+        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
+        if self.overlap:
+            batch = p[0].shape[0]
+            ti = []
+            for i in range(batch):
+                num = (targets[:, 0] == i).sum()  # find number of targets of each image
+                ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1)  # (na, num)
+            ti = torch.cat(ti, 1)  # (na, nt)
+        else:
+            ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
+        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2)  # append anchor indices
+
+        g = 0.5  # bias
+        off = (
+            torch.tensor(
+                [
+                    [0, 0],
+                    [1, 0],
+                    [0, 1],
+                    [-1, 0],
+                    [0, -1],  # j,k,l,m
+                    # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
+                ],
+                device=self.device,
+            ).float()
+            * g
+        )  # offsets
+
+        for i in range(self.nl):
+            anchors, shape = self.anchors[i], p[i].shape
+            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain
+
+            # Match targets to anchors
+            t = targets * gain  # shape(3,n,7)
+            if nt:
+                # Matches
+                r = t[..., 4:6] / anchors[:, None]  # wh ratio
+                j = torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"]  # compare
+                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+                t = t[j]  # filter
+
+                # Offsets
+                gxy = t[:, 2:4]  # grid xy
+                gxi = gain[[2, 3]] - gxy  # inverse
+                j, k = ((gxy % 1 < g) & (gxy > 1)).T
+                l, m = ((gxi % 1 < g) & (gxi > 1)).T
+                j = torch.stack((torch.ones_like(j), j, k, l, m))
+                t = t.repeat((5, 1, 1))[j]
+                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+            else:
+                t = targets[0]
+                offsets = 0
+
+            # Define
+            bc, gxy, gwh, at = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
+            (a, tidx), (b, c) = at.long().T, bc.long().T  # anchors, image, class
+            gij = (gxy - offsets).long()
+            gi, gj = gij.T  # grid indices
+
+            # Append
+            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
+            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
+            anch.append(anchors[a])  # anchors
+            tcls.append(c)  # class
+            tidxs.append(tidx)
+            xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6])  # xywh normalized
+
+        return tcls, tbox, indices, anch, tidxs, xywhn
diff --git a/yolov5/utils/segment/metrics.py b/yolov5/utils/segment/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..973b398eb6b9c469342b800c3777e8eb99392f39
--- /dev/null
+++ b/yolov5/utils/segment/metrics.py
@@ -0,0 +1,217 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Model validation metrics."""
+
+import numpy as np
+
+from ..metrics import ap_per_class
+
+
+def fitness(x):
+    """Evaluates model fitness by a weighted sum of 8 metrics, `x`: [N,8] array, weights: [0.1, 0.9] for mAP and F1."""
+    w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
+    return (x[:, :8] * w).sum(1)
+
+
+def ap_per_class_box_and_mask(
+    tp_m,
+    tp_b,
+    conf,
+    pred_cls,
+    target_cls,
+    plot=False,
+    save_dir=".",
+    names=(),
+):
+    """
+    Args:
+        tp_b: tp of boxes.
+        tp_m: tp of masks.
+        other arguments see `func: ap_per_class`.
+    """
+    results_boxes = ap_per_class(
+        tp_b, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Box"
+    )[2:]
+    results_masks = ap_per_class(
+        tp_m, conf, pred_cls, target_cls, plot=plot, save_dir=save_dir, names=names, prefix="Mask"
+    )[2:]
+
+    return {
+        "boxes": {
+            "p": results_boxes[0],
+            "r": results_boxes[1],
+            "ap": results_boxes[3],
+            "f1": results_boxes[2],
+            "ap_class": results_boxes[4],
+        },
+        "masks": {
+            "p": results_masks[0],
+            "r": results_masks[1],
+            "ap": results_masks[3],
+            "f1": results_masks[2],
+            "ap_class": results_masks[4],
+        },
+    }
+
+
+class Metric:
+    def __init__(self) -> None:
+        self.p = []  # (nc, )
+        self.r = []  # (nc, )
+        self.f1 = []  # (nc, )
+        self.all_ap = []  # (nc, 10)
+        self.ap_class_index = []  # (nc, )
+
+    @property
+    def ap50(self):
+        """
+        AP@0.5 of all classes.
+
+        Return:
+            (nc, ) or [].
+        """
+        return self.all_ap[:, 0] if len(self.all_ap) else []
+
+    @property
+    def ap(self):
+        """AP@0.5:0.95
+        Return:
+            (nc, ) or [].
+        """
+        return self.all_ap.mean(1) if len(self.all_ap) else []
+
+    @property
+    def mp(self):
+        """
+        Mean precision of all classes.
+
+        Return:
+            float.
+        """
+        return self.p.mean() if len(self.p) else 0.0
+
+    @property
+    def mr(self):
+        """
+        Mean recall of all classes.
+
+        Return:
+            float.
+        """
+        return self.r.mean() if len(self.r) else 0.0
+
+    @property
+    def map50(self):
+        """
+        Mean AP@0.5 of all classes.
+
+        Return:
+            float.
+        """
+        return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
+
+    @property
+    def map(self):
+        """
+        Mean AP@0.5:0.95 of all classes.
+
+        Return:
+            float.
+        """
+        return self.all_ap.mean() if len(self.all_ap) else 0.0
+
+    def mean_results(self):
+        """Mean of results, return mp, mr, map50, map."""
+        return (self.mp, self.mr, self.map50, self.map)
+
+    def class_result(self, i):
+        """Class-aware result, return p[i], r[i], ap50[i], ap[i]"""
+        return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
+
+    def get_maps(self, nc):
+        """Calculates and returns mean Average Precision (mAP) for each class given number of classes `nc`."""
+        maps = np.zeros(nc) + self.map
+        for i, c in enumerate(self.ap_class_index):
+            maps[c] = self.ap[i]
+        return maps
+
+    def update(self, results):
+        """
+        Args:
+            results: tuple(p, r, ap, f1, ap_class)
+        """
+        p, r, all_ap, f1, ap_class_index = results
+        self.p = p
+        self.r = r
+        self.all_ap = all_ap
+        self.f1 = f1
+        self.ap_class_index = ap_class_index
+
+
+class Metrics:
+    """Metric for boxes and masks."""
+
+    def __init__(self) -> None:
+        self.metric_box = Metric()
+        self.metric_mask = Metric()
+
+    def update(self, results):
+        """
+        Args:
+            results: Dict{'boxes': Dict{}, 'masks': Dict{}}
+        """
+        self.metric_box.update(list(results["boxes"].values()))
+        self.metric_mask.update(list(results["masks"].values()))
+
+    def mean_results(self):
+        """Computes and returns the mean results for both box and mask metrics by summing their individual means."""
+        return self.metric_box.mean_results() + self.metric_mask.mean_results()
+
+    def class_result(self, i):
+        """Returns the sum of box and mask metric results for a specified class index `i`."""
+        return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
+
+    def get_maps(self, nc):
+        """Calculates and returns the sum of mean average precisions (mAPs) for both box and mask metrics for `nc`
+        classes.
+        """
+        return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
+
+    @property
+    def ap_class_index(self):
+        """Returns the class index for average precision, shared by both box and mask metrics."""
+        return self.metric_box.ap_class_index
+
+
+KEYS = [
+    "train/box_loss",
+    "train/seg_loss",  # train loss
+    "train/obj_loss",
+    "train/cls_loss",
+    "metrics/precision(B)",
+    "metrics/recall(B)",
+    "metrics/mAP_0.5(B)",
+    "metrics/mAP_0.5:0.95(B)",  # metrics
+    "metrics/precision(M)",
+    "metrics/recall(M)",
+    "metrics/mAP_0.5(M)",
+    "metrics/mAP_0.5:0.95(M)",  # metrics
+    "val/box_loss",
+    "val/seg_loss",  # val loss
+    "val/obj_loss",
+    "val/cls_loss",
+    "x/lr0",
+    "x/lr1",
+    "x/lr2",
+]
+
+BEST_KEYS = [
+    "best/epoch",
+    "best/precision(B)",
+    "best/recall(B)",
+    "best/mAP_0.5(B)",
+    "best/mAP_0.5:0.95(B)",
+    "best/precision(M)",
+    "best/recall(M)",
+    "best/mAP_0.5(M)",
+    "best/mAP_0.5:0.95(M)",
+]
diff --git a/yolov5/utils/segment/plots.py b/yolov5/utils/segment/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..ce01988be9371cb9ac10976c1bbdd086c19e1a62
--- /dev/null
+++ b/yolov5/utils/segment/plots.py
@@ -0,0 +1,150 @@
+import contextlib
+import math
+from pathlib import Path
+
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import torch
+
+from .. import threaded
+from ..general import xywh2xyxy
+from ..plots import Annotator, colors
+
+
+@threaded
+def plot_images_and_masks(images, targets, masks, paths=None, fname="images.jpg", names=None):
+    """Plots a grid of images, their labels, and masks with optional resizing and annotations, saving to fname."""
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+    if isinstance(masks, torch.Tensor):
+        masks = masks.cpu().numpy().astype(int)
+
+    max_size = 1920  # max image size
+    max_subplots = 16  # max image subplots, i.e. 4x4
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs**0.5)  # number of subplots (square)
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y : y + h, x : x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            idx = targets[:, 0] == i
+            ti = targets[idx]  # image targets
+
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype("int")
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}"
+                    annotator.box_label(box, label, color=color)
+
+            # Plot masks
+            if len(masks):
+                if masks.max() > 1.0:  # mean that masks are overlap
+                    image_masks = masks[[i]]  # (1, 640, 640)
+                    nl = len(ti)
+                    index = np.arange(nl).reshape(nl, 1, 1) + 1
+                    image_masks = np.repeat(image_masks, nl, axis=0)
+                    image_masks = np.where(image_masks == index, 1.0, 0.0)
+                else:
+                    image_masks = masks[idx]
+
+                im = np.asarray(annotator.im).copy()
+                for j, box in enumerate(boxes.T.tolist()):
+                    if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                        color = colors(classes[j])
+                        mh, mw = image_masks[j].shape
+                        if mh != h or mw != w:
+                            mask = image_masks[j].astype(np.uint8)
+                            mask = cv2.resize(mask, (w, h))
+                            mask = mask.astype(bool)
+                        else:
+                            mask = image_masks[j].astype(bool)
+                        with contextlib.suppress(Exception):
+                            im[y : y + h, x : x + w, :][mask] = (
+                                im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
+                            )
+                annotator.fromarray(im)
+    annotator.im.save(fname)  # save
+
+
+def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
+    """
+    Plots training results from CSV files, plotting best or last result highlights based on `best` parameter.
+
+    Example: from utils.plots import *; plot_results('path/to/results.csv')
+    """
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob("results*.csv"))
+    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
+    for f in files:
+        try:
+            data = pd.read_csv(f)
+            index = np.argmax(
+                0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] + 0.1 * data.values[:, 11]
+            )
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
+                y = data.values[:, j]
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
+                if best:
+                    # best
+                    ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
+                    ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
+                else:
+                    # last
+                    ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
+                    ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            print(f"Warning: Plotting error for {f}: {e}")
+    ax[1].legend()
+    fig.savefig(save_dir / "results.png", dpi=200)
+    plt.close()
diff --git a/yolov5/utils/torch_utils.py b/yolov5/utils/torch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..4929d21cdf83448ca6a3aa6c710ba4d9e2179d26
--- /dev/null
+++ b/yolov5/utils/torch_utils.py
@@ -0,0 +1,480 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""PyTorch utils."""
+
+import math
+import os
+import platform
+import subprocess
+import time
+import warnings
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.parallel import DistributedDataParallel as DDP
+
+from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
+
+LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv("RANK", -1))
+WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+# Suppress PyTorch warnings
+warnings.filterwarnings("ignore", message="User provided device_type of 'cuda', but CUDA is not available. Disabling")
+warnings.filterwarnings("ignore", category=UserWarning)
+
+
+def smart_inference_mode(torch_1_9=check_version(torch.__version__, "1.9.0")):
+    """Applies torch.inference_mode() if torch>=1.9.0, else torch.no_grad() as a decorator for functions."""
+
+    def decorate(fn):
+        return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
+
+    return decorate
+
+
+def smartCrossEntropyLoss(label_smoothing=0.0):
+    """Returns a CrossEntropyLoss with optional label smoothing for torch>=1.10.0; warns if smoothing on lower
+    versions.
+    """
+    if check_version(torch.__version__, "1.10.0"):
+        return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
+    if label_smoothing > 0:
+        LOGGER.warning(f"WARNING ⚠ī¸ label smoothing {label_smoothing} requires torch>=1.10.0")
+    return nn.CrossEntropyLoss()
+
+
+def smart_DDP(model):
+    """Initializes DistributedDataParallel (DDP) for model training, respecting torch version constraints."""
+    assert not check_version(torch.__version__, "1.12.0", pinned=True), (
+        "torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. "
+        "Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395"
+    )
+    if check_version(torch.__version__, "1.11.0"):
+        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
+    else:
+        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
+
+
+def reshape_classifier_output(model, n=1000):
+    """Reshapes last layer of model to match class count 'n', supporting Classify, Linear, Sequential types."""
+    from models.common import Classify
+
+    name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1]  # last module
+    if isinstance(m, Classify):  # YOLOv5 Classify() head
+        if m.linear.out_features != n:
+            m.linear = nn.Linear(m.linear.in_features, n)
+    elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
+        if m.out_features != n:
+            setattr(model, name, nn.Linear(m.in_features, n))
+    elif isinstance(m, nn.Sequential):
+        types = [type(x) for x in m]
+        if nn.Linear in types:
+            i = types.index(nn.Linear)  # nn.Linear index
+            if m[i].out_features != n:
+                m[i] = nn.Linear(m[i].in_features, n)
+        elif nn.Conv2d in types:
+            i = types.index(nn.Conv2d)  # nn.Conv2d index
+            if m[i].out_channels != n:
+                m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+    """Context manager ensuring ordered operations in distributed training by making all processes wait for the leading
+    process.
+    """
+    if local_rank not in [-1, 0]:
+        dist.barrier(device_ids=[local_rank])
+    yield
+    if local_rank == 0:
+        dist.barrier(device_ids=[0])
+
+
+def device_count():
+    """Returns the number of available CUDA devices; works on Linux and Windows by invoking `nvidia-smi`."""
+    assert platform.system() in ("Linux", "Windows"), "device_count() only supported on Linux or Windows"
+    try:
+        cmd = "nvidia-smi -L | wc -l" if platform.system() == "Linux" else 'nvidia-smi -L | find /c /v ""'  # Windows
+        return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
+    except Exception:
+        return 0
+
+
+def select_device(device="", batch_size=0, newline=True):
+    """Selects computing device (CPU, CUDA GPU, MPS) for YOLOv5 model deployment, logging device info."""
+    s = f"YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} "
+    device = str(device).strip().lower().replace("cuda:", "").replace("none", "")  # to string, 'cuda:0' to '0'
+    cpu = device == "cpu"
+    mps = device == "mps"  # Apple Metal Performance Shaders (MPS)
+    if cpu or mps:
+        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # force torch.cuda.is_available() = False
+    elif device:  # non-cpu device requested
+        os.environ["CUDA_VISIBLE_DEVICES"] = device  # set environment variable - must be before assert is_available()
+        assert torch.cuda.is_available() and torch.cuda.device_count() >= len(
+            device.replace(",", "")
+        ), f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
+
+    if not cpu and not mps and torch.cuda.is_available():  # prefer GPU if available
+        devices = device.split(",") if device else "0"  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
+        n = len(devices)  # device count
+        if n > 1 and batch_size > 0:  # check batch_size is divisible by device_count
+            assert batch_size % n == 0, f"batch-size {batch_size} not multiple of GPU count {n}"
+        space = " " * (len(s) + 1)
+        for i, d in enumerate(devices):
+            p = torch.cuda.get_device_properties(i)
+            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"  # bytes to MB
+        arg = "cuda:0"
+    elif mps and getattr(torch, "has_mps", False) and torch.backends.mps.is_available():  # prefer MPS if available
+        s += "MPS\n"
+        arg = "mps"
+    else:  # revert to CPU
+        s += "CPU\n"
+        arg = "cpu"
+
+    if not newline:
+        s = s.rstrip()
+    LOGGER.info(s)
+    return torch.device(arg)
+
+
+def time_sync():
+    """Synchronizes PyTorch for accurate timing, leveraging CUDA if available, and returns the current time."""
+    if torch.cuda.is_available():
+        torch.cuda.synchronize()
+    return time.time()
+
+
+def profile(input, ops, n=10, device=None):
+    """YOLOv5 speed/memory/FLOPs profiler
+    Usage:
+        input = torch.randn(16, 3, 640, 640)
+        m1 = lambda x: x * torch.sigmoid(x)
+        m2 = nn.SiLU()
+        profile(input, [m1, m2], n=100)  # profile over 100 iterations
+    """
+    results = []
+    if not isinstance(device, torch.device):
+        device = select_device(device)
+    print(
+        f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
+        f"{'input':>24s}{'output':>24s}"
+    )
+
+    for x in input if isinstance(input, list) else [input]:
+        x = x.to(device)
+        x.requires_grad = True
+        for m in ops if isinstance(ops, list) else [ops]:
+            m = m.to(device) if hasattr(m, "to") else m  # device
+            m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
+            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
+            try:
+                flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1e9 * 2  # GFLOPs
+            except Exception:
+                flops = 0
+
+            try:
+                for _ in range(n):
+                    t[0] = time_sync()
+                    y = m(x)
+                    t[1] = time_sync()
+                    try:
+                        _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
+                        t[2] = time_sync()
+                    except Exception:  # no backward method
+                        # print(e)  # for debug
+                        t[2] = float("nan")
+                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
+                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
+                mem = torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0  # (GB)
+                s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y))  # shapes
+                p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0  # parameters
+                print(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}")
+                results.append([p, flops, mem, tf, tb, s_in, s_out])
+            except Exception as e:
+                print(e)
+                results.append(None)
+            torch.cuda.empty_cache()
+    return results
+
+
+def is_parallel(model):
+    """Checks if the model is using Data Parallelism (DP) or Distributed Data Parallelism (DDP)."""
+    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def de_parallel(model):
+    """Returns a single-GPU model by removing Data Parallelism (DP) or Distributed Data Parallelism (DDP) if applied."""
+    return model.module if is_parallel(model) else model
+
+
+def initialize_weights(model):
+    """Initializes weights of Conv2d, BatchNorm2d, and activations (Hardswish, LeakyReLU, ReLU, ReLU6, SiLU) in the
+    model.
+    """
+    for m in model.modules():
+        t = type(m)
+        if t is nn.Conv2d:
+            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+        elif t is nn.BatchNorm2d:
+            m.eps = 1e-3
+            m.momentum = 0.03
+        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+            m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+    """Finds and returns list of layer indices in `model.module_list` matching the specified `mclass`."""
+    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+    """Calculates and returns the global sparsity of a model as the ratio of zero-valued parameters to total
+    parameters.
+    """
+    a, b = 0, 0
+    for p in model.parameters():
+        a += p.numel()
+        b += (p == 0).sum()
+    return b / a
+
+
+def prune(model, amount=0.3):
+    """Prunes Conv2d layers in a model to a specified sparsity using L1 unstructured pruning."""
+    import torch.nn.utils.prune as prune
+
+    for name, m in model.named_modules():
+        if isinstance(m, nn.Conv2d):
+            prune.l1_unstructured(m, name="weight", amount=amount)  # prune
+            prune.remove(m, "weight")  # make permanent
+    LOGGER.info(f"Model pruned to {sparsity(model):.3g} global sparsity")
+
+
+def fuse_conv_and_bn(conv, bn):
+    """
+    Fuses Conv2d and BatchNorm2d layers into a single Conv2d layer.
+
+    See https://tehnokv.com/posts/fusing-batchnorm-and-conv/.
+    """
+    fusedconv = (
+        nn.Conv2d(
+            conv.in_channels,
+            conv.out_channels,
+            kernel_size=conv.kernel_size,
+            stride=conv.stride,
+            padding=conv.padding,
+            dilation=conv.dilation,
+            groups=conv.groups,
+            bias=True,
+        )
+        .requires_grad_(False)
+        .to(conv.weight.device)
+    )
+
+    # Prepare filters
+    w_conv = conv.weight.clone().view(conv.out_channels, -1)
+    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+    # Prepare spatial bias
+    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+    return fusedconv
+
+
+def model_info(model, verbose=False, imgsz=640):
+    """
+    Prints model summary including layers, parameters, gradients, and FLOPs; imgsz may be int or list.
+
+    Example: img_size=640 or img_size=[640, 320]
+    """
+    n_p = sum(x.numel() for x in model.parameters())  # number parameters
+    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
+    if verbose:
+        print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
+        for i, (name, p) in enumerate(model.named_parameters()):
+            name = name.replace("module_list.", "")
+            print(
+                "%5g %40s %9s %12g %20s %10.3g %10.3g"
+                % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())
+            )
+
+    try:  # FLOPs
+        p = next(model.parameters())
+        stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32  # max stride
+        im = torch.empty((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
+        flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1e9 * 2  # stride GFLOPs
+        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
+        fs = f", {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs"  # 640x640 GFLOPs
+    except Exception:
+        fs = ""
+
+    name = Path(model.yaml_file).stem.replace("yolov5", "YOLOv5") if hasattr(model, "yaml_file") else "Model"
+    LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
+    """Scales an image tensor `img` of shape (bs,3,y,x) by `ratio`, optionally maintaining the original shape, padded to
+    multiples of `gs`.
+    """
+    if ratio == 1.0:
+        return img
+    h, w = img.shape[2:]
+    s = (int(h * ratio), int(w * ratio))  # new size
+    img = F.interpolate(img, size=s, mode="bilinear", align_corners=False)  # resize
+    if not same_shape:  # pad/crop img
+        h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
+    return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+    """Copies attributes from object b to a, optionally filtering with include and exclude lists."""
+    for k, v in b.__dict__.items():
+        if (len(include) and k not in include) or k.startswith("_") or k in exclude:
+            continue
+        else:
+            setattr(a, k, v)
+
+
+def smart_optimizer(model, name="Adam", lr=0.001, momentum=0.9, decay=1e-5):
+    """
+    Initializes YOLOv5 smart optimizer with 3 parameter groups for different decay configurations.
+
+    Groups are 0) weights with decay, 1) weights no decay, 2) biases no decay.
+    """
+    g = [], [], []  # optimizer parameter groups
+    bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k)  # normalization layers, i.e. BatchNorm2d()
+    for v in model.modules():
+        for p_name, p in v.named_parameters(recurse=0):
+            if p_name == "bias":  # bias (no decay)
+                g[2].append(p)
+            elif p_name == "weight" and isinstance(v, bn):  # weight (no decay)
+                g[1].append(p)
+            else:
+                g[0].append(p)  # weight (with decay)
+
+    if name == "Adam":
+        optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999))  # adjust beta1 to momentum
+    elif name == "AdamW":
+        optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
+    elif name == "RMSProp":
+        optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
+    elif name == "SGD":
+        optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
+    else:
+        raise NotImplementedError(f"Optimizer {name} not implemented.")
+
+    optimizer.add_param_group({"params": g[0], "weight_decay": decay})  # add g0 with weight_decay
+    optimizer.add_param_group({"params": g[1], "weight_decay": 0.0})  # add g1 (BatchNorm2d weights)
+    LOGGER.info(
+        f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
+        f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias'
+    )
+    return optimizer
+
+
+def smart_hub_load(repo="ultralytics/yolov5", model="yolov5s", **kwargs):
+    """YOLOv5 torch.hub.load() wrapper with smart error handling, adjusting torch arguments for compatibility."""
+    if check_version(torch.__version__, "1.9.1"):
+        kwargs["skip_validation"] = True  # validation causes GitHub API rate limit errors
+    if check_version(torch.__version__, "1.12.0"):
+        kwargs["trust_repo"] = True  # argument required starting in torch 0.12
+    try:
+        return torch.hub.load(repo, model, **kwargs)
+    except Exception:
+        return torch.hub.load(repo, model, force_reload=True, **kwargs)
+
+
+def smart_resume(ckpt, optimizer, ema=None, weights="yolov5s.pt", epochs=300, resume=True):
+    """Resumes training from a checkpoint, updating optimizer, ema, and epochs, with optional resume verification."""
+    best_fitness = 0.0
+    start_epoch = ckpt["epoch"] + 1
+    if ckpt["optimizer"] is not None:
+        optimizer.load_state_dict(ckpt["optimizer"])  # optimizer
+        best_fitness = ckpt["best_fitness"]
+    if ema and ckpt.get("ema"):
+        ema.ema.load_state_dict(ckpt["ema"].float().state_dict())  # EMA
+        ema.updates = ckpt["updates"]
+    if resume:
+        assert start_epoch > 0, (
+            f"{weights} training to {epochs} epochs is finished, nothing to resume.\n"
+            f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
+        )
+        LOGGER.info(f"Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs")
+    if epochs < start_epoch:
+        LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
+        epochs += ckpt["epoch"]  # finetune additional epochs
+    return best_fitness, start_epoch, epochs
+
+
+class EarlyStopping:
+    # YOLOv5 simple early stopper
+    def __init__(self, patience=30):
+        """Initializes simple early stopping mechanism for YOLOv5, with adjustable patience for non-improving epochs."""
+        self.best_fitness = 0.0  # i.e. mAP
+        self.best_epoch = 0
+        self.patience = patience or float("inf")  # epochs to wait after fitness stops improving to stop
+        self.possible_stop = False  # possible stop may occur next epoch
+
+    def __call__(self, epoch, fitness):
+        """Evaluates if training should stop based on fitness improvement and patience, returning a boolean."""
+        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
+            self.best_epoch = epoch
+            self.best_fitness = fitness
+        delta = epoch - self.best_epoch  # epochs without improvement
+        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
+        stop = delta >= self.patience  # stop training if patience exceeded
+        if stop:
+            LOGGER.info(
+                f"Stopping training early as no improvement observed in last {self.patience} epochs. "
+                f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n"
+                f"To update EarlyStopping(patience={self.patience}) pass a new patience value, "
+                f"i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping."
+            )
+        return stop
+
+
+class ModelEMA:
+    """Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
+    Keeps a moving average of everything in the model state_dict (parameters and buffers)
+    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+    """
+
+    def __init__(self, model, decay=0.9999, tau=2000, updates=0):
+        """Initializes EMA with model parameters, decay rate, tau for decay adjustment, and update count; sets model to
+        evaluation mode.
+        """
+        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
+        self.updates = updates  # number of EMA updates
+        self.decay = lambda x: decay * (1 - math.exp(-x / tau))  # decay exponential ramp (to help early epochs)
+        for p in self.ema.parameters():
+            p.requires_grad_(False)
+
+    def update(self, model):
+        """Updates the Exponential Moving Average (EMA) parameters based on the current model's parameters."""
+        self.updates += 1
+        d = self.decay(self.updates)
+
+        msd = de_parallel(model).state_dict()  # model state_dict
+        for k, v in self.ema.state_dict().items():
+            if v.dtype.is_floating_point:  # true for FP16 and FP32
+                v *= d
+                v += (1 - d) * msd[k].detach()
+        # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
+
+    def update_attr(self, model, include=(), exclude=("process_group", "reducer")):
+        """Updates EMA attributes by copying specified attributes from model to EMA, excluding certain attributes by
+        default.
+        """
+        copy_attr(self.ema, model, include, exclude)
diff --git a/yolov5/utils/triton.py b/yolov5/utils/triton.py
new file mode 100644
index 0000000000000000000000000000000000000000..87524c9c7801f03e2e642865de801933fd976690
--- /dev/null
+++ b/yolov5/utils/triton.py
@@ -0,0 +1,91 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""Utils to interact with the Triton Inference Server."""
+
+import typing
+from urllib.parse import urlparse
+
+import torch
+
+
+class TritonRemoteModel:
+    """
+    A wrapper over a model served by the Triton Inference Server.
+
+    It can be configured to communicate over GRPC or HTTP. It accepts Torch Tensors as input and returns them as
+    outputs.
+    """
+
+    def __init__(self, url: str):
+        """
+        Keyword arguments:
+        url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
+        """
+
+        parsed_url = urlparse(url)
+        if parsed_url.scheme == "grpc":
+            from tritonclient.grpc import InferenceServerClient, InferInput
+
+            self.client = InferenceServerClient(parsed_url.netloc)  # Triton GRPC client
+            model_repository = self.client.get_model_repository_index()
+            self.model_name = model_repository.models[0].name
+            self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)
+
+            def create_input_placeholders() -> typing.List[InferInput]:
+                return [
+                    InferInput(i["name"], [int(s) for s in i["shape"]], i["datatype"]) for i in self.metadata["inputs"]
+                ]
+
+        else:
+            from tritonclient.http import InferenceServerClient, InferInput
+
+            self.client = InferenceServerClient(parsed_url.netloc)  # Triton HTTP client
+            model_repository = self.client.get_model_repository_index()
+            self.model_name = model_repository[0]["name"]
+            self.metadata = self.client.get_model_metadata(self.model_name)
+
+            def create_input_placeholders() -> typing.List[InferInput]:
+                return [
+                    InferInput(i["name"], [int(s) for s in i["shape"]], i["datatype"]) for i in self.metadata["inputs"]
+                ]
+
+        self._create_input_placeholders_fn = create_input_placeholders
+
+    @property
+    def runtime(self):
+        """Returns the model runtime."""
+        return self.metadata.get("backend", self.metadata.get("platform"))
+
+    def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
+        """
+        Invokes the model.
+
+        Parameters can be provided via args or kwargs. args, if provided, are assumed to match the order of inputs of
+        the model. kwargs are matched with the model input names.
+        """
+        inputs = self._create_inputs(*args, **kwargs)
+        response = self.client.infer(model_name=self.model_name, inputs=inputs)
+        result = []
+        for output in self.metadata["outputs"]:
+            tensor = torch.as_tensor(response.as_numpy(output["name"]))
+            result.append(tensor)
+        return result[0] if len(result) == 1 else result
+
+    def _create_inputs(self, *args, **kwargs):
+        """Creates input tensors from args or kwargs, not both; raises error if none or both are provided."""
+        args_len, kwargs_len = len(args), len(kwargs)
+        if not args_len and not kwargs_len:
+            raise RuntimeError("No inputs provided.")
+        if args_len and kwargs_len:
+            raise RuntimeError("Cannot specify args and kwargs at the same time")
+
+        placeholders = self._create_input_placeholders_fn()
+        if args_len:
+            if args_len != len(placeholders):
+                raise RuntimeError(f"Expected {len(placeholders)} inputs, got {args_len}.")
+            for input, value in zip(placeholders, args):
+                input.set_data_from_numpy(value.cpu().numpy())
+        else:
+            for input in placeholders:
+                value = kwargs[input.name]
+                input.set_data_from_numpy(value.cpu().numpy())
+        return placeholders
diff --git a/yolov5/val.py b/yolov5/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c8c65ba89aaf1a7a0757988ac8fcf7254e57a56
--- /dev/null
+++ b/yolov5/val.py
@@ -0,0 +1,438 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Validate a trained YOLOv5 detection model on a detection dataset.
+
+Usage:
+    $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
+
+Usage - formats:
+    $ python val.py --weights yolov5s.pt                 # PyTorch
+                              yolov5s.torchscript        # TorchScript
+                              yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                              yolov5s_openvino_model     # OpenVINO
+                              yolov5s.engine             # TensorRT
+                              yolov5s.mlmodel            # CoreML (macOS-only)
+                              yolov5s_saved_model        # TensorFlow SavedModel
+                              yolov5s.pb                 # TensorFlow GraphDef
+                              yolov5s.tflite             # TensorFlow Lite
+                              yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                              yolov5s_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import json
+import os
+import subprocess
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.general import (
+    LOGGER,
+    TQDM_BAR_FORMAT,
+    Profile,
+    check_dataset,
+    check_img_size,
+    check_requirements,
+    check_yaml,
+    coco80_to_coco91_class,
+    colorstr,
+    increment_path,
+    non_max_suppression,
+    print_args,
+    scale_boxes,
+    xywh2xyxy,
+    xyxy2xywh,
+)
+from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    """Saves one detection result to a txt file in normalized xywh format, optionally including confidence."""
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, "a") as f:
+            f.write(("%g " * len(line)).rstrip() % line + "\n")
+
+
+def save_one_json(predn, jdict, path, class_map):
+    """
+    Saves one JSON detection result with image ID, category ID, bounding box, and score.
+
+    Example: {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    """
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    for p, b in zip(predn.tolist(), box.tolist()):
+        jdict.append(
+            {
+                "image_id": image_id,
+                "category_id": class_map[int(p[5])],
+                "bbox": [round(x, 3) for x in b],
+                "score": round(p[4], 5),
+            }
+        )
+
+
+def process_batch(detections, labels, iouv):
+    """
+    Return correct prediction matrix.
+
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+    """
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    iou = box_iou(labels[:, 1:], detections[:, :4])
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+    data,
+    weights=None,  # model.pt path(s)
+    batch_size=32,  # batch size
+    imgsz=640,  # inference size (pixels)
+    conf_thres=0.001,  # confidence threshold
+    iou_thres=0.6,  # NMS IoU threshold
+    max_det=300,  # maximum detections per image
+    task="val",  # train, val, test, speed or study
+    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    workers=8,  # max dataloader workers (per RANK in DDP mode)
+    single_cls=False,  # treat as single-class dataset
+    augment=False,  # augmented inference
+    verbose=False,  # verbose output
+    save_txt=False,  # save results to *.txt
+    save_hybrid=False,  # save label+prediction hybrid results to *.txt
+    save_conf=False,  # save confidences in --save-txt labels
+    save_json=False,  # save a COCO-JSON results file
+    project=ROOT / "runs/val",  # save to project/name
+    name="exp",  # save to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    half=True,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    model=None,
+    dataloader=None,
+    save_dir=Path(""),
+    plots=True,
+    callbacks=Callbacks(),
+    compute_loss=None,
+):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != "cpu"  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    cuda = device.type != "cpu"
+    is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt")  # COCO dataset
+    nc = 1 if single_cls else int(data["nc"])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        if pt and not single_cls:  # check --weights are trained on --data
+            ncm = model.model.nc
+            assert ncm == nc, (
+                f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
+                f"classes). Pass correct combination of --weights and --data that are trained together."
+            )
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
+        pad, rect = (0.0, False) if task == "speed" else (0.5, pt)  # square inference for benchmarks
+        task = task if task in ("train", "val", "test") else "val"  # path to train/val/test images
+        dataloader = create_dataloader(
+            data[task],
+            imgsz,
+            batch_size,
+            stride,
+            single_cls,
+            pad=pad,
+            rect=rect,
+            workers=workers,
+            prefix=colorstr(f"{task}: "),
+        )[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = model.names if hasattr(model, "names") else model.module.names  # get class names
+    if isinstance(names, (list, tuple)):  # old format
+        names = dict(enumerate(names))
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "P", "R", "mAP50", "mAP50-95")
+    tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+    dt = Profile(device=device), Profile(device=device), Profile(device=device)  # profiling times
+    loss = torch.zeros(3, device=device)
+    jdict, stats, ap, ap_class = [], [], [], []
+    callbacks.run("on_val_start")
+    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+        callbacks.run("on_val_batch_start")
+        with dt[0]:
+            if cuda:
+                im = im.to(device, non_blocking=True)
+                targets = targets.to(device)
+            im = im.half() if half else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            nb, _, height, width = im.shape  # batch size, channels, height, width
+
+        # Inference
+        with dt[1]:
+            preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss(train_out, targets)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        with dt[2]:
+            preds = non_max_suppression(
+                preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det
+            )
+
+        # Metrics
+        for si, pred in enumerate(preds):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
+            path, shape = Path(paths[si]), shapes[si][0]
+            correct = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            seen += 1
+
+            if npr == 0:
+                if nl:
+                    stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
+                    if plots:
+                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+                continue
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct = process_batch(predn, labelsn, iouv)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0]))  # (correct, conf, pcls, tcls)
+
+            # Save/log
+            if save_txt:
+                (save_dir / "labels").mkdir(parents=True, exist_ok=True)
+                save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
+            if save_json:
+                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
+            callbacks.run("on_val_image_end", pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            plot_images(im, targets, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names)  # labels
+            plot_images(im, output_to_target(preds), paths, save_dir / f"val_batch{batch_i}_pred.jpg", names)  # pred
+
+        callbacks.run("on_val_batch_end", batch_i, im, targets, paths, shapes, preds)
+
+    # Compute metrics
+    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
+        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+    nt = np.bincount(stats[3].astype(int), minlength=nc)  # number of targets per class
+
+    # Print results
+    pf = "%22s" + "%11i" * 2 + "%11.3g" * 4  # print format
+    LOGGER.info(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
+    if nt.sum() == 0:
+        LOGGER.warning(f"WARNING ⚠ī¸ no labels found in {task} set, can not compute metrics without labels")
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(ap_class):
+            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+    # Print speeds
+    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+        callbacks.run("on_val_end", nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ""  # weights
+        anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json"))  # annotations
+        if not os.path.exists(anno_json):
+            anno_json = os.path.join(data["path"], "annotations", "instances_val2017.json")
+        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions
+        LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
+        with open(pred_json, "w") as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            check_requirements("pycocotools>=2.0.6")
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            eval = COCOeval(anno, pred, "bbox")
+            if is_coco:
+                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # image IDs to evaluate
+            eval.evaluate()
+            eval.accumulate()
+            eval.summarize()
+            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
+        except Exception as e:
+            LOGGER.info(f"pycocotools unable to run: {e}")
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    maps = np.zeros(nc) + map
+    for i, c in enumerate(ap_class):
+        maps[c] = ap[i]
+    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+    """Parses command-line options for YOLOv5 model inference configuration."""
+    parser = argparse.ArgumentParser()
+    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
+    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path(s)")
+    parser.add_argument("--batch-size", type=int, default=32, help="batch size")
+    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
+    parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
+    parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
+    parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
+    parser.add_argument("--task", default="val", help="train, val, test, speed or study")
+    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
+    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
+    parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
+    parser.add_argument("--augment", action="store_true", help="augmented inference")
+    parser.add_argument("--verbose", action="store_true", help="report mAP by class")
+    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
+    parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
+    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
+    parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
+    parser.add_argument("--project", default=ROOT / "runs/val", help="save to project/name")
+    parser.add_argument("--name", default="exp", help="save to project/name")
+    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
+    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
+    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    opt.save_json |= opt.data.endswith("coco.yaml")
+    opt.save_txt |= opt.save_hybrid
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    """Executes YOLOv5 tasks like training, validation, testing, speed, and study benchmarks based on provided
+    options.
+    """
+    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
+
+    if opt.task in ("train", "val", "test"):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.info(f"WARNING ⚠ī¸ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
+        if opt.save_hybrid:
+            LOGGER.info("WARNING ⚠ī¸ --save-hybrid will return high mAP from hybrid labels, not from predictions alone")
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = torch.cuda.is_available() and opt.device != "cpu"  # FP16 for fastest results
+        if opt.task == "speed":  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == "study":  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt"  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt="%10.4g")  # save
+            subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
+            plot_val_study(x=x)  # plot
+        else:
+            raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)