Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,89 +3,85 @@ import requests, json
|
|
3 |
|
4 |
public_ip = '71.202.66.108'
|
5 |
|
6 |
-
model = 'llama3.1:latest'
|
7 |
context = []
|
8 |
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
|
12 |
-
# ollama_serve = f"http://{mac_pro_ip}:11434/api/generate"
|
13 |
ollama_serve = f"http://{public_ip}:11434/api/generate"
|
14 |
|
15 |
-
#Call Ollama API
|
16 |
def generate(prompt, context, top_k, top_p, temp):
|
17 |
r = requests.post(ollama_serve,
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
r.raise_for_status()
|
30 |
|
31 |
-
|
32 |
response = ""
|
33 |
|
34 |
for line in r.iter_lines():
|
35 |
body = json.loads(line)
|
36 |
response_part = body.get('response', '')
|
37 |
-
|
38 |
if 'error' in body:
|
39 |
-
|
|
|
40 |
|
41 |
-
response
|
|
|
|
|
|
|
42 |
|
43 |
if body.get('done', False):
|
44 |
context = body.get('context', [])
|
45 |
-
return
|
46 |
-
|
47 |
-
|
48 |
|
49 |
def chat(input, chat_history, top_k, top_p, temp):
|
50 |
-
|
51 |
chat_history = chat_history or []
|
52 |
-
|
53 |
global context
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
-
#
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
|
64 |
-
#########################Gradio Code##########################
|
65 |
block = gr.Blocks()
|
66 |
|
67 |
-
|
68 |
with block:
|
69 |
|
70 |
-
gr.Markdown("""<h1><center> Trashcan AI </center></h1>
|
71 |
-
""")
|
72 |
-
|
73 |
-
gr.Markdown("""<h3><center> LLama3.1 hosted on a 2013 "Trashcan" Mac Pro with ollama </center></h3>
|
74 |
-
""")
|
75 |
|
76 |
chatbot = gr.Chatbot()
|
77 |
message = gr.Textbox(placeholder="Type here")
|
78 |
|
79 |
state = gr.State()
|
80 |
with gr.Row():
|
81 |
-
top_k = gr.Slider(0.0,100.0, label="top_k", value=40, info="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)")
|
82 |
-
top_p = gr.Slider(0.0,1.0, label="top_p", value=0.9, info="
|
83 |
-
temp = gr.Slider(0.0,2.0, label="temperature", value=0.8, info="The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)")
|
84 |
-
|
85 |
|
86 |
submit = gr.Button("SEND")
|
87 |
-
|
|
|
88 |
submit.click(chat, inputs=[message, state, top_k, top_p, temp], outputs=[chatbot, state])
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
-
block.launch()
|
|
|
3 |
|
4 |
public_ip = '71.202.66.108'
|
5 |
|
6 |
+
model = 'llama3.1:latest' # You can replace the model name if needed
|
7 |
context = []
|
8 |
|
|
|
|
|
|
|
|
|
9 |
ollama_serve = f"http://{public_ip}:11434/api/generate"
|
10 |
|
11 |
+
# Call Ollama API
|
12 |
def generate(prompt, context, top_k, top_p, temp):
|
13 |
r = requests.post(ollama_serve,
|
14 |
+
json={
|
15 |
+
'model': model,
|
16 |
+
'prompt': prompt,
|
17 |
+
'context': context,
|
18 |
+
'options': {
|
19 |
+
'top_k': top_k,
|
20 |
+
'temperature': top_p,
|
21 |
+
'top_p': temp
|
22 |
+
}
|
23 |
+
},
|
24 |
+
stream=True)
|
25 |
r.raise_for_status()
|
26 |
|
|
|
27 |
response = ""
|
28 |
|
29 |
for line in r.iter_lines():
|
30 |
body = json.loads(line)
|
31 |
response_part = body.get('response', '')
|
32 |
+
|
33 |
if 'error' in body:
|
34 |
+
yield f"Error: {body['error']}"
|
35 |
+
return
|
36 |
|
37 |
+
# Append token to the growing response and yield the entire response so far
|
38 |
+
if response_part:
|
39 |
+
response += response_part
|
40 |
+
yield response # Yield the growing response incrementally
|
41 |
|
42 |
if body.get('done', False):
|
43 |
context = body.get('context', [])
|
44 |
+
return # End the generator once done
|
|
|
|
|
45 |
|
46 |
def chat(input, chat_history, top_k, top_p, temp):
|
|
|
47 |
chat_history = chat_history or []
|
|
|
48 |
global context
|
49 |
+
|
50 |
+
# Initialize the user input as part of the chat history
|
51 |
+
chat_history.append((input, "")) # Add user input first
|
52 |
+
response = "" # Initialize empty response
|
53 |
|
54 |
+
# Stream each part of the response as it's received
|
55 |
+
response_stream = generate(input, context, top_k, top_p, temp)
|
56 |
|
57 |
+
for response_part in response_stream:
|
58 |
+
response = response_part # Keep updating with the new part of the response
|
59 |
+
# Update the latest assistant response (the second part of the tuple)
|
60 |
+
chat_history[-1] = (input, response)
|
61 |
+
yield chat_history, chat_history # Yield the updated chat history
|
62 |
|
63 |
|
64 |
+
######################### Gradio Code ##########################
|
65 |
block = gr.Blocks()
|
66 |
|
|
|
67 |
with block:
|
68 |
|
69 |
+
gr.Markdown("""<h1><center> Trashcan AI </center></h1>""")
|
70 |
+
gr.Markdown("""<h3><center> LLama3.1 hosted on a 2013 "Trashcan" Mac Pro with ollama </center></h3>""")
|
|
|
|
|
|
|
71 |
|
72 |
chatbot = gr.Chatbot()
|
73 |
message = gr.Textbox(placeholder="Type here")
|
74 |
|
75 |
state = gr.State()
|
76 |
with gr.Row():
|
77 |
+
top_k = gr.Slider(0.0, 100.0, label="top_k", value=40, info="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)")
|
78 |
+
top_p = gr.Slider(0.0, 1.0, label="top_p", value=0.9, info="Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)")
|
79 |
+
temp = gr.Slider(0.0, 2.0, label="temperature", value=0.8, info="The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)")
|
|
|
80 |
|
81 |
submit = gr.Button("SEND")
|
82 |
+
|
83 |
+
# Use .click() to trigger the response streaming
|
84 |
submit.click(chat, inputs=[message, state, top_k, top_p, temp], outputs=[chatbot, state])
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
+
block.launch()
|