# app.py (Versi Final untuk Gradio di Hugging Face) import gradio as gr import os import re import shutil from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.retrievers import BM25Retriever from langchain.retrievers import EnsembleRetriever from transformers import AutoTokenizer, AutoModelForCausalLM import torch # --- 1. SETUP MODEL (dijalankan sekali saat aplikasi start) --- @torch.no_grad() def load_models(): print("Memuat model (hanya terjadi sekali)...") device = "cuda" if torch.cuda.is_available() else "cpu" cache_dir = "./model_cache" os.makedirs(cache_dir, exist_ok=True) os.environ['SENTENCE_TRANSFORMERS_HOME'] = cache_dir embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", cache_folder=cache_dir ) # Gunakan token dari secrets jika ada hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-270m-it", cache_dir=cache_dir, token=hf_token) llm = AutoModelForCausalLM.from_pretrained( "google/gemma-3-270m-it", cache_dir=cache_dir, device_map="auto", torch_dtype=torch.bfloat16, token=hf_token ) print("Model berhasil dimuat.") return embeddings, tokenizer, llm embeddings, tokenizer, llm = load_models() # Inisialisasi state global untuk retriever dan chunks rag_pipeline = {"retriever": None, "all_chunks": None} # --- 2. FUNGSI INTI RAG (backend logic) --- def process_document(uploaded_file): if uploaded_file is None: return "Mohon unggah file terlebih dahulu.", gr.update(interactive=False) try: # Gradio menyimpan file di temporary path, kita bisa langsung pakai file_path = uploaded_file.name loader = PyPDFLoader(file_path) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200) chunks = text_splitter.split_documents(docs) rag_pipeline["all_chunks"] = chunks faiss_db = FAISS.from_documents(chunks, embeddings) faiss_retriever = faiss_db.as_retriever(search_kwargs={"k": 10}) bm25_retriever = BM25Retriever.from_documents(chunks) bm25_retriever.k = 10 rag_pipeline["retriever"] = EnsembleRetriever( retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5] ) return f"File '{os.path.basename(file_path)}' berhasil diproses! Silakan ajukan pertanyaan.", gr.update(interactive=True) except Exception as e: return f"Error saat memproses file: {str(e)}", gr.update(interactive=False) def get_rag_response(query, chat_history): if rag_pipeline["retriever"] is None: return "Dokumen belum diproses. Mohon unggah file terlebih dahulu." query_original = query query_lower = query_original.lower() final_answer = "" found_source = "Tidak ada sumber spesifik" priority_keywords = ["jumlah aset lancar"] use_smart_lane = any(keyword in query_lower for keyword in priority_keywords) if use_smart_lane: # Jalur Cerdas year_match = re.search(r'\b(202[3-4])\b', query_lower) target_year = year_match.group(1) if year_match else "2024" for chunk in rag_pipeline["all_chunks"]: lines = chunk.page_content.split('\n') for line in lines: if any(keyword in line.lower() for keyword in priority_keywords): numbers = re.findall(r'(\d{1,3}(?:[.,]\d{3})*)', line) if len(numbers) >= 2: value_2024 = numbers[0] value_2023 = numbers[1] value = value_2024 if target_year == "2024" else value_2023 final_answer = f"Jumlah aset lancar untuk tahun {target_year} adalah **{value}**." found_source = f"Sumber: Halaman {chunk.metadata.get('page', 'NA')}" break if final_answer: break if not final_answer: # Jalur Normal retrieved_docs = rag_pipeline["retriever"].invoke(query_original) clean_context = "\n\n".join([doc.page_content for doc in retrieved_docs[:3]]) found_source = ", ".join(list(set([f"Halaman {doc.metadata.get('page', 'NA')}" for doc in retrieved_docs[:3]]))) chat_template = [{"role": "system", "content": "Anda adalah AI analis keuangan yang teliti. Jawab pertanyaan hanya berdasarkan teks yang diberikan."}, {"role": "user", "content": f"Dari TEKS di bawah, temukan jawaban untuk pertanyaan '{query_original}'.\n\nTEKS:\n{clean_context}\n\nJAWABAN:"}] final_prompt = tokenizer.apply_chat_template(chat_template, tokenize=False, add_generation_prompt=True) inputs = tokenizer(final_prompt, return_tensors="pt").to(llm.device) outputs = llm.generate(**inputs, max_new_tokens=250, do_sample=False, pad_token_id=tokenizer.eos_token_id) input_length = inputs.input_ids.shape[1] generated_tokens = outputs[0, input_length:] final_answer = tokenizer.decode(generated_tokens, skip_special_tokens=True) full_response = f"{final_answer}\n\n*{found_source}*" chat_history.append((query, full_response)) return "", chat_history # --- 3. MEMBUAT UI DENGAN GRADIO --- with gr.Blocks() as demo: gr.Markdown("# 📊 Financial RAG Chatbot") with gr.Row(): with gr.Column(scale=1): file_output = gr.Textbox(label="Status Dokumen", interactive=False) upload_button = gr.UploadButton("Klik untuk Upload PDF", file_types=[".pdf"]) ask_button = gr.Button("Tanya", interactive=False) with gr.Column(scale=4): chatbot = gr.Chatbot(label="Chat") msg = gr.Textbox(label="Ketik Pertanyaan Anda di Sini...") # Hubungkan Aksi dengan Fungsi upload_button.upload(process_document, upload_button, [file_output, ask_button]) msg.submit(get_rag_response, [msg, chatbot], [msg, chatbot]) ask_button.click(get_rag_response, [msg, chatbot], [msg, chatbot]) # --- 4. JALANKAN APLIKASI --- if __name__ == "__main__": demo.launch()