Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
-
#
|
|
|
|
|
2 |
import os
|
3 |
-
import shutil
|
4 |
import re
|
5 |
-
import
|
6 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException
|
7 |
-
from fastapi.middleware.cors import CORSMiddleware
|
8 |
-
from pydantic import BaseModel
|
9 |
-
import torch
|
10 |
-
|
11 |
from langchain_community.document_loaders import PyPDFLoader
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
@@ -15,128 +11,141 @@ from langchain_community.vectorstores import FAISS
|
|
15 |
from langchain_community.retrievers import BM25Retriever
|
16 |
from langchain.retrievers import EnsembleRetriever
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
18 |
-
import torch
|
19 |
-
|
20 |
-
dynamo.config.automatic_dynamic_shapes = False
|
21 |
-
dynamo.config.assume_static_by_default = True
|
22 |
-
|
23 |
-
UPLOAD_DIR = "temp_uploads"
|
24 |
-
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
25 |
-
|
26 |
-
app = FastAPI(title="Financial RAG Chatbot API")
|
27 |
-
|
28 |
-
origins = ["*"]
|
29 |
-
app.add_middleware(CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
|
30 |
-
|
31 |
-
rag_pipeline = {"retriever": None, "llm": None, "tokenizer": None, "embeddings": None, "all_chunks": None}
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
try:
|
52 |
-
|
53 |
-
|
|
|
54 |
loader = PyPDFLoader(file_path)
|
55 |
docs = loader.load()
|
56 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
57 |
chunks = text_splitter.split_documents(docs)
|
|
|
58 |
rag_pipeline["all_chunks"] = chunks
|
59 |
-
|
|
|
60 |
faiss_retriever = faiss_db.as_retriever(search_kwargs={"k": 10})
|
61 |
bm25_retriever = BM25Retriever.from_documents(chunks)
|
62 |
bm25_retriever.k = 10
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
class ChatRequest(BaseModel):
|
70 |
-
query: str
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
raise HTTPException(status_code=400, detail="Dokumen belum di-upload.")
|
76 |
|
77 |
-
query_original =
|
78 |
query_lower = query_original.lower()
|
79 |
-
|
80 |
-
found_source = ""
|
81 |
-
|
82 |
priority_keywords = ["jumlah aset lancar"]
|
83 |
use_smart_lane = any(keyword in query_lower for keyword in priority_keywords)
|
84 |
|
85 |
if use_smart_lane:
|
86 |
-
|
87 |
year_match = re.search(r'\b(202[3-4])\b', query_lower)
|
88 |
target_year = year_match.group(1) if year_match else "2024"
|
89 |
-
|
90 |
-
all_chunks = rag_pipeline.get("all_chunks", [])
|
91 |
-
for chunk in all_chunks:
|
92 |
lines = chunk.page_content.split('\n')
|
93 |
for line in lines:
|
94 |
if any(keyword in line.lower() for keyword in priority_keywords):
|
95 |
-
# --- [FIX #1] PARSING CERDAS DENGAN REGEX ---
|
96 |
-
# Mencari semua angka yang diformat dengan koma/titik
|
97 |
numbers = re.findall(r'(\d{1,3}(?:[.,]\d{3})*)', line)
|
98 |
if len(numbers) >= 2:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
found_source = f"Halaman {chunk.metadata.get('page', 'NA')}"
|
107 |
-
break
|
108 |
-
except (IndexError, ValueError):
|
109 |
-
continue
|
110 |
-
if clean_context:
|
111 |
-
break
|
112 |
|
113 |
-
if not
|
114 |
-
|
115 |
retrieved_docs = rag_pipeline["retriever"].invoke(query_original)
|
116 |
clean_context = "\n\n".join([doc.page_content for doc in retrieved_docs[:3]])
|
117 |
found_source = ", ".join(list(set([f"Halaman {doc.metadata.get('page', 'NA')}" for doc in retrieved_docs[:3]])))
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
if __name__ == "__main__":
|
142 |
-
|
|
|
1 |
+
# app.py (Versi Final untuk Gradio di Hugging Face)
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
import os
|
|
|
5 |
import re
|
6 |
+
import shutil
|
|
|
|
|
|
|
|
|
|
|
7 |
from langchain_community.document_loaders import PyPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
11 |
from langchain_community.retrievers import BM25Retriever
|
12 |
from langchain.retrievers import EnsembleRetriever
|
13 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# --- 1. SETUP MODEL (dijalankan sekali saat aplikasi start) ---
|
17 |
+
@torch.no_grad()
|
18 |
+
def load_models():
|
19 |
+
print("Memuat model (hanya terjadi sekali)...")
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
|
22 |
+
cache_dir = "./model_cache"
|
23 |
+
os.makedirs(cache_dir, exist_ok=True)
|
24 |
+
os.environ['SENTENCE_TRANSFORMERS_HOME'] = cache_dir
|
25 |
+
|
26 |
+
embeddings = HuggingFaceEmbeddings(
|
27 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
28 |
+
cache_folder=cache_dir
|
29 |
+
)
|
30 |
+
|
31 |
+
# Gunakan token dari secrets jika ada
|
32 |
+
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-270m-it", cache_dir=cache_dir, token=hf_token)
|
35 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
36 |
+
"google/gemma-3-270m-it",
|
37 |
+
cache_dir=cache_dir,
|
38 |
+
device_map="auto",
|
39 |
+
torch_dtype=torch.bfloat16,
|
40 |
+
token=hf_token
|
41 |
+
)
|
42 |
+
print("Model berhasil dimuat.")
|
43 |
+
return embeddings, tokenizer, llm
|
44 |
+
|
45 |
+
embeddings, tokenizer, llm = load_models()
|
46 |
+
# Inisialisasi state global untuk retriever dan chunks
|
47 |
+
rag_pipeline = {"retriever": None, "all_chunks": None}
|
48 |
+
|
49 |
+
|
50 |
+
# --- 2. FUNGSI INTI RAG (backend logic) ---
|
51 |
+
def process_document(uploaded_file):
|
52 |
+
if uploaded_file is None:
|
53 |
+
return "Mohon unggah file terlebih dahulu.", gr.update(interactive=False)
|
54 |
+
|
55 |
try:
|
56 |
+
# Gradio menyimpan file di temporary path, kita bisa langsung pakai
|
57 |
+
file_path = uploaded_file.name
|
58 |
+
|
59 |
loader = PyPDFLoader(file_path)
|
60 |
docs = loader.load()
|
61 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
62 |
chunks = text_splitter.split_documents(docs)
|
63 |
+
|
64 |
rag_pipeline["all_chunks"] = chunks
|
65 |
+
|
66 |
+
faiss_db = FAISS.from_documents(chunks, embeddings)
|
67 |
faiss_retriever = faiss_db.as_retriever(search_kwargs={"k": 10})
|
68 |
bm25_retriever = BM25Retriever.from_documents(chunks)
|
69 |
bm25_retriever.k = 10
|
70 |
+
|
71 |
+
rag_pipeline["retriever"] = EnsembleRetriever(
|
72 |
+
retrievers=[bm25_retriever, faiss_retriever],
|
73 |
+
weights=[0.5, 0.5]
|
74 |
+
)
|
75 |
+
|
76 |
+
return f"File '{os.path.basename(file_path)}' berhasil diproses! Silakan ajukan pertanyaan.", gr.update(interactive=True)
|
77 |
+
except Exception as e:
|
78 |
+
return f"Error saat memproses file: {str(e)}", gr.update(interactive=False)
|
79 |
|
|
|
|
|
80 |
|
81 |
+
def get_rag_response(query, chat_history):
|
82 |
+
if rag_pipeline["retriever"] is None:
|
83 |
+
return "Dokumen belum diproses. Mohon unggah file terlebih dahulu."
|
|
|
84 |
|
85 |
+
query_original = query
|
86 |
query_lower = query_original.lower()
|
87 |
+
final_answer = ""
|
88 |
+
found_source = "Tidak ada sumber spesifik"
|
89 |
+
|
90 |
priority_keywords = ["jumlah aset lancar"]
|
91 |
use_smart_lane = any(keyword in query_lower for keyword in priority_keywords)
|
92 |
|
93 |
if use_smart_lane:
|
94 |
+
# Jalur Cerdas
|
95 |
year_match = re.search(r'\b(202[3-4])\b', query_lower)
|
96 |
target_year = year_match.group(1) if year_match else "2024"
|
97 |
+
for chunk in rag_pipeline["all_chunks"]:
|
|
|
|
|
98 |
lines = chunk.page_content.split('\n')
|
99 |
for line in lines:
|
100 |
if any(keyword in line.lower() for keyword in priority_keywords):
|
|
|
|
|
101 |
numbers = re.findall(r'(\d{1,3}(?:[.,]\d{3})*)', line)
|
102 |
if len(numbers) >= 2:
|
103 |
+
value_2024 = numbers[0]
|
104 |
+
value_2023 = numbers[1]
|
105 |
+
value = value_2024 if target_year == "2024" else value_2023
|
106 |
+
final_answer = f"Jumlah aset lancar untuk tahun {target_year} adalah **{value}**."
|
107 |
+
found_source = f"Sumber: Halaman {chunk.metadata.get('page', 'NA')}"
|
108 |
+
break
|
109 |
+
if final_answer: break
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
if not final_answer:
|
112 |
+
# Jalur Normal
|
113 |
retrieved_docs = rag_pipeline["retriever"].invoke(query_original)
|
114 |
clean_context = "\n\n".join([doc.page_content for doc in retrieved_docs[:3]])
|
115 |
found_source = ", ".join(list(set([f"Halaman {doc.metadata.get('page', 'NA')}" for doc in retrieved_docs[:3]])))
|
116 |
+
|
117 |
+
chat_template = [{"role": "system", "content": "Anda adalah AI analis keuangan yang teliti. Jawab pertanyaan hanya berdasarkan teks yang diberikan."}, {"role": "user", "content": f"Dari TEKS di bawah, temukan jawaban untuk pertanyaan '{query_original}'.\n\nTEKS:\n{clean_context}\n\nJAWABAN:"}]
|
118 |
+
final_prompt = tokenizer.apply_chat_template(chat_template, tokenize=False, add_generation_prompt=True)
|
119 |
+
inputs = tokenizer(final_prompt, return_tensors="pt").to(llm.device)
|
120 |
+
outputs = llm.generate(**inputs, max_new_tokens=250, do_sample=False, pad_token_id=tokenizer.eos_token_id)
|
121 |
+
input_length = inputs.input_ids.shape[1]
|
122 |
+
generated_tokens = outputs[0, input_length:]
|
123 |
+
final_answer = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
124 |
+
|
125 |
+
full_response = f"{final_answer}\n\n*{found_source}*"
|
126 |
+
chat_history.append((query, full_response))
|
127 |
+
return "", chat_history
|
128 |
+
|
129 |
+
|
130 |
+
# --- 3. MEMBUAT UI DENGAN GRADIO ---
|
131 |
+
with gr.Blocks() as demo:
|
132 |
+
gr.Markdown("# 📊 Financial RAG Chatbot")
|
133 |
|
134 |
+
with gr.Row():
|
135 |
+
with gr.Column(scale=1):
|
136 |
+
file_output = gr.Textbox(label="Status Dokumen", interactive=False)
|
137 |
+
upload_button = gr.UploadButton("Klik untuk Upload PDF", file_types=[".pdf"])
|
138 |
+
ask_button = gr.Button("Tanya", interactive=False)
|
139 |
+
|
140 |
+
with gr.Column(scale=4):
|
141 |
+
chatbot = gr.Chatbot(label="Chat")
|
142 |
+
msg = gr.Textbox(label="Ketik Pertanyaan Anda di Sini...")
|
143 |
+
|
144 |
+
# Hubungkan Aksi dengan Fungsi
|
145 |
+
upload_button.upload(process_document, upload_button, [file_output, ask_button])
|
146 |
+
msg.submit(get_rag_response, [msg, chatbot], [msg, chatbot])
|
147 |
+
ask_button.click(get_rag_response, [msg, chatbot], [msg, chatbot])
|
148 |
+
|
149 |
+
# --- 4. JALANKAN APLIKASI ---
|
150 |
if __name__ == "__main__":
|
151 |
+
demo.launch()
|