Spaces:
Running
Running
File size: 16,568 Bytes
91eaff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# pylint: disable=C0301
"""
HuggingFace Spaces demo of the `TextGraphs` library using Streamlit
see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md
"""
import pathlib
import time
import typing
import matplotlib.pyplot as plt # pylint: disable=E0401
import pandas as pd # pylint: disable=E0401
import pyvis # pylint: disable=E0401
import spacy # pylint: disable=E0401
import streamlit as st # pylint: disable=E0401
import textgraphs
if __name__ == "__main__":
# default text input
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and intellectual originally from Germany, the son of Dietrich Herzog.
"""
# store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
with st.container():
st.title("demo: TextGraphs + LLMs to construct a 'lemma graph'")
st.markdown(
"""
docs: <https://derwen.ai/docs/txg/>
DOI: 10.5281/zenodo.10431783
""",
unsafe_allow_html = True,
)
# collect input + config
st.subheader("configure", divider = "rainbow")
text_input: str = st.text_area(
"Source Text:",
value = SRC_TEXT.strip(),
)
llm_ner = st.checkbox(
"enhance spaCy NER using: SpanMarker",
value = False,
)
link_ents = st.checkbox(
"link entities using: DBPedia Spotlight, WikiMedia API",
value = False,
)
infer_rel = st.checkbox(
"infer relations using: REBEL, OpenNRE, qwikidata",
value = False,
)
if text_input or llm_ner or link_ents or infer_rel:
## parse the document
st.subheader("parse the raw text", divider = "rainbow")
start_time: float = time.time()
# generally it is fine to use factory defaults,
# although let's illustrate these settings here
infer_rels: list = []
if infer_rel:
with st.spinner(text = "load rel models..."):
infer_rels = [
textgraphs.InferRel_OpenNRE(
model = textgraphs.OPENNRE_MODEL,
max_skip = textgraphs.MAX_SKIP,
min_prob = textgraphs.OPENNRE_MIN_PROB,
),
textgraphs.InferRel_Rebel(
lang = "en_XX",
mrebel_model = textgraphs.MREBEL_MODEL,
),
]
ner: typing.Optional[ textgraphs.Component ] = None
if llm_ner:
ner = textgraphs.NERSpanMarker(
ner_model = textgraphs.NER_MODEL,
)
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
spacy_model = textgraphs.SPACY_MODEL,
ner = ner,
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
min_alias = textgraphs.DBPEDIA_MIN_ALIAS,
min_similarity = textgraphs.DBPEDIA_MIN_SIM,
),
infer_rels = infer_rels,
),
)
duration: float = round(time.time() - start_time, 3)
st.write(f"set up: {round(duration, 3)} sec")
with st.spinner(text = "parse text..."):
start_time = time.time()
pipe: textgraphs.Pipeline = tg.create_pipeline(
text_input.strip(),
)
duration = round(time.time() - start_time, 3)
st.write(f"parse text: {round(duration, 3)} sec, {len(text_input)} characters")
# render the entity html
ent_html: str = spacy.displacy.render(
pipe.ner_doc,
style = "ent",
jupyter = False,
)
st.markdown(
ent_html,
unsafe_allow_html = True,
)
# generate dependencies as an SVG
dep_svg = spacy.displacy.render(
pipe.ner_doc,
style = "dep",
jupyter = False,
)
st.image(
dep_svg,
width = 800,
use_column_width = "never",
)
## collect graph elements from the parse
st.subheader("construct the base level of the lemma graph", divider = "rainbow")
start_time = time.time()
tg.collect_graph_elements(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"collect elements: {round(duration, 3)} sec, {len(tg.nodes)} nodes, {len(tg.edges)} edges")
## perform entity linking
if link_ents:
st.subheader("extract entities and perform entity linking", divider = "rainbow")
with st.spinner(text = "entity linking..."):
start_time = time.time()
tg.perform_entity_linking(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"entity linking: {round(duration, 3)} sec")
## perform relation extraction
if infer_rel:
st.subheader("infer relations", divider = "rainbow")
st.write("NB: this part runs an order of magnitude more *slooooooowly* on HF Spaces")
with st.spinner(text = "relation extraction..."):
start_time = time.time()
# NB: run this iteratively since Streamlit on HF Spaces is *sloooooooooow*
inferred_edges: list = tg.infer_relations(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
n_list: list = list(tg.nodes.values())
df_rel: pd.DataFrame = pd.DataFrame.from_dict([
{
"src": n_list[edge.src_node].text,
"dst": n_list[edge.dst_node].text,
"rel": edge.rel,
"weight": edge.prob,
}
for edge in inferred_edges
])
st.dataframe(df_rel)
st.write(f"relation extraction: {round(duration, 3)} sec, {len(df_rel)} edges")
## construct the _lemma graph_
start_time = time.time()
tg.construct_lemma_graph(
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"construct graph: {round(duration, 3)} sec")
## rank the extracted phrases
st.subheader("rank the extracted phrases", divider = "rainbow")
start_time = time.time()
tg.calc_phrase_ranks(
pr_alpha = textgraphs.PAGERANK_ALPHA,
debug = False,
)
df_ent: pd.DataFrame = tg.get_phrases_as_df()
duration = round(time.time() - start_time, 3)
st.write(f"extract: {round(duration, 3)} sec, {len(df_ent)} entities")
st.dataframe(df_ent)
## generate a word cloud
st.subheader("generate a word cloud", divider = "rainbow")
render: textgraphs.RenderPyVis = tg.create_render()
wordcloud = render.generate_wordcloud()
st.image(
wordcloud.to_image(),
width = 700,
use_column_width = "never",
)
## visualize the lemma graph
st.subheader("visualize the lemma graph", divider = "rainbow")
st.markdown(
"""
what you get at this stage is a relatively noisy,
low-level detailed graph of the parsed text
the most interesting nodes will probably be either
subjects (`nsubj`) or direct objects (`pobj`)
"""
)
pv_graph: pyvis.network.Network = render.render_lemma_graph(
debug = False,
)
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
py_html: pathlib.Path = pathlib.Path("vis.html")
pv_graph.save_graph(py_html.as_posix())
st.components.v1.html(
py_html.read_text(encoding = "utf-8"),
height = render.HTML_HEIGHT_WITH_CONTROLS,
scrolling = False,
)
## cluster the communities
st.subheader("cluster the communities", divider = "rainbow")
st.markdown(
"""
<details>
<summary><strong>About this clustering...</strong></summary>
<p>
In the tutorial
<a href="https://towardsdatascience.com/how-to-convert-any-text-into-a-graph-of-concepts-110844f22a1a" target="_blank">"How to Convert Any Text Into a Graph of Concepts"</a>,
Rahul Nayak uses the
<a href="https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm"><em>girvan-newman</em></a>
algorithm to split the graph into communities, then clusters on those communities.
His approach works well for unsupervised clustering of key phrases which have been extracted from a collection of many documents.
</p>
<p>
While Nayak was working with entities extracted from "chunks" of text, not with a text graph per se, this approach is useful for identifying network motifs which can be condensed, e.g., to extract a semantic graph overlay as an <em>abstraction layer</em> atop a lemma graph.
</p>
</details>
<br/>
""",
unsafe_allow_html = True,
)
spring_dist_val = st.slider(
"spring distance for NetworkX clusters",
min_value = 0.0,
max_value = 10.0,
value = 1.2,
)
if spring_dist_val:
start_time = time.time()
fig, ax = plt.subplots()
comm_map: dict = render.draw_communities(
spring_distance = spring_dist_val,
)
st.pyplot(fig)
duration = round(time.time() - start_time, 3)
st.write(f"cluster: {round(duration, 3)} sec, {max(comm_map.values()) + 1} clusters")
## transform a graph of relations
st.subheader("transform as a graph of relations", divider = "rainbow")
st.markdown(
"""
Using the topological transform given in `lee2023ingram`, construct a
_graph of relations_ for enhancing graph inference.
<details>
<summary><strong>What does this transform provide?</strong></summary>
<p>
By using a <em>graph of relations</em> dual representation of our graph data, first and foremost we obtain a more compact representation of the relations in the graph, and means of making inferences (e.g., <em>link prediction</em>) where there is substantially more invariance in the training data.
</p>
<p>
Also recognize that for a parse graph of a paragraph in the English language, the most interesting nodes will probably be either subjects (<code>nsubj</code>) or direct objects (<code>pobj</code>). Here in the <em>graph of relations</em> we can see illustrated how the important details from <em>entity linking</em> tend to cluster near either <code>nsubj</code> or <code>pobj</code> entities, connected through punctuation. This aspect is not as readily observed in the earlier visualization of the <em>lemma graph</em>.
</p>
</details>
""",
unsafe_allow_html = True,
)
start_time = time.time()
gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(tg)
gor.seeds()
gor.construct_gor()
scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores()
pv_graph = gor.render_gor_pyvis(scores)
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
py_html = pathlib.Path("gor.html")
pv_graph.save_graph(py_html.as_posix())
st.components.v1.html(
py_html.read_text(encoding = "utf-8"),
height = render.HTML_HEIGHT_WITH_CONTROLS,
scrolling = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"transform: {round(duration, 3)} sec, {len(gor.rel_list)} relations")
## download lemma graph
st.subheader("download the results", divider = "rainbow")
st.markdown(
"""
Download a serialized <em>lemma graph</em> in multiple formats:
""",
unsafe_allow_html = True,
)
col1, col2, col3 = st.columns(3)
with col1:
st.download_button(
label = "download node-link",
data = tg.dump_lemma_graph(),
file_name = "lemma_graph.json",
mime = "application/json",
)
st.markdown(
"""
<a href="https://networkx.org/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_data.html" target="_blank"><em>node-link</em></a>: JSON data suitable for import to <a href="https://neo4j.com/docs/getting-started/data-import/csv-import/" target="_blank"><em>Neo4j</em></a>, <a href="https://networkx.org/documentation/stable/reference/readwrite/generated/networkx.readwrite.json_graph.node_link_graph.html#networkx.readwrite.json_graph.node_link_graph" target="_blank"><em>NetworkX</em></a>, etc.
""",
unsafe_allow_html = True,
)
with col2:
st.download_button(
label = "download RDF",
data = tg.export_rdf(),
file_name = "lemma_graph.ttl",
mime = "text/turtle",
)
st.markdown(
"""
<a href="https://www.w3.org/TR/turtle/" target="_blank"><em>Turtle/N3</em></a>: W3C semantic graph representation, based on RDF, OWL, SKOS, etc.
""",
unsafe_allow_html = True,
)
with col3:
st.download_button(
label = "download KùzuDB",
data = tg.export_kuzu(zip_name = "lemma_graph.zip"),
file_name = "lemma.zip",
mime = "application/x-zip-compressed",
)
st.markdown(
"""
<a href="https://opencypher.org/" target="_blank"><em>openCypher</em></a>: ZIP file of a labeled property graph in <a href="https://kuzudb.com/" target="_blank"><em>KùzuDB</em></a>
""",
unsafe_allow_html = True,
)
## WIP
st.divider()
st.write("(WIP)")
thanks: str = """
This demo has completed, and thank you for running a Derwen space!
"""
st.toast(
thanks,
icon ="😍",
)
|