import os import gradio as gr from random import randint from operator import itemgetter import bisect from all_models2 import tags_plus_models,models,models_plus_tags,find_warm_model_list from datetime import datetime from externalmod import gr_Interface_load import asyncio import os from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. now2 = 0 inference_timeout = 300 MAX_SEED = 2**32-1 nb_rep=2 nb_mod_dif=20 nb_models=nb_mod_dif*nb_rep cache_image={} cache_image_actu={} def split_models(models,nb_models): models_temp=[] models_lis_temp=[] i=0 for m in models: models_temp.append(m) i=i+1 if i%nb_models==0: models_lis_temp.append(models_temp) models_temp=[] if len(models_temp)>1: models_lis_temp.append(models_temp) return models_lis_temp def split_models_axb(models,a,b): models_temp=[] models_lis_temp=[] i=0 nb_models=b for m in models: for j in range(a): models_temp.append(m) i=i+1 if i%nb_models==0: models_lis_temp.append(models_temp) models_temp=[] if len(models_temp)>1: models_lis_temp.append(models_temp) return models_lis_temp def split_models_8x3(models,nb_models): models_temp=[] models_lis_temp=[] i=0 nb_models_x3=8 for m in models: models_temp.append(m) i=i+1 if i%nb_models_x3==0: models_lis_temp.append(models_temp+models_temp+models_temp) models_temp=[] if len(models_temp)>1: models_lis_temp.append(models_temp+models_temp+models_temp) return models_lis_temp def construct_list_models(tags_plus_models,nb_rep,nb_mod_dif): list_temp=[] output=[] for tag_plus_models in tags_plus_models: list_temp=split_models_axb(tag_plus_models[2],nb_rep,nb_mod_dif) list_temp2=[] i=0 for elem in list_temp: list_temp2.append([f"{tag_plus_models[0]}_{i+1}/{len(list_temp)} ({len(elem)}) : {elem[0]} - {elem[len(elem)-1]}" ,elem]) i+=1 output.append([f"{tag_plus_models[0]} ({tag_plus_models[1]})",list_temp2]) tag_plus_models[0]=f"{tag_plus_models[0]} ({tag_plus_models[1]})" return output models_test = [] models_test = construct_list_models(tags_plus_models,nb_rep,nb_mod_dif) def get_current_time(): now = datetime.now() now2 = now current_time = now2.strftime("%Y-%m-%d %H:%M:%S") kii = "" # ? ki = f'{kii} {current_time}' return ki def load_fn_original(models): global models_load global num_models global default_models models_load = {} num_models = len(models) if num_models!=0: default_models = models[:num_models] else: default_models = {} for model in models: if model not in models_load.keys(): try: m = gr.load(f'models/{model}') except Exception as error: m = gr.Interface(lambda txt: None, ['text'], ['image']) print(error) models_load.update({model: m}) def load_fn(models): global models_load global num_models global default_models models_load = {} num_models = len(models) i=0 if num_models!=0: default_models = models[:num_models] else: default_models = {} for model in models: i+=1 if i%50==0: print("\n\n\n-------"+str(i)+'/'+str(len(models))+"-------\n\n\n") if model not in models_load.keys(): try: m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) except Exception as error: m = gr.Interface(lambda txt: None, ['text'], ['image']) print(error) models_load.update({model: m}) """models = models_test[1]""" #load_fn_original load_fn(models) """models = {} load_fn(models)""" def extend_choices(choices): return choices + (nb_models - len(choices)) * ['NA'] """return choices + (num_models - len(choices)) * ['NA']""" def extend_choices_b(choices): choices_plus = extend_choices(choices) return [gr.Textbox(m, visible=False) for m in choices_plus] def update_imgbox(choices): choices_plus = extend_choices(choices) return [gr.Image(None, label=m,interactive=False, visible=(m != 'NA'),show_share_button=False) for m in choices_plus] def choice_group_a(group_model_choice): return group_model_choice def choice_group_b(group_model_choice): choiceTemp =choice_group_a(group_model_choice) choiceTemp = extend_choices(choiceTemp) """return [gr.Image(label=m, min_width=170, height=170) for m in choice]""" return [gr.Image(None, label=m,interactive=False, visible=(m != 'NA'),show_share_button=False) for m in choiceTemp] def choice_group_c(group_model_choice): choiceTemp=choice_group_a(group_model_choice) choiceTemp = extend_choices(choiceTemp) return [gr.Textbox(m) for m in choiceTemp] def choice_group_d(group_model_choice): choiceTemp=choice_group_a(group_model_choice) choiceTemp = extend_choices(choiceTemp) return [gr.Textbox(choiceTemp[i*nb_rep], visible=(choiceTemp[i*nb_rep] != 'NA'),show_label=False) for i in range(nb_mod_dif)] def choice_group_e(group_model_choice): choiceTemp=choice_group_a(group_model_choice) choiceTemp = extend_choices(choiceTemp) return [gr.Column(visible=(choiceTemp[i*nb_rep] != 'NA')) for i in range(nb_mod_dif)] def cutStrg(longStrg,start,end): shortStrg='' for i in range(end-start): shortStrg+=longStrg[start+i] return shortStrg def aff_models_perso(txt_list_perso,nb_models=nb_models,models=models): list_perso=[] t1=True start=txt_list_perso.find('\"') if start!=-1: while t1: start+=1 end=txt_list_perso.find('\"',start) if end != -1: txtTemp=cutStrg(txt_list_perso,start,end) if txtTemp in models: list_perso.append(cutStrg(txt_list_perso,start,end)) else : t1=False start=txt_list_perso.find('\"',end+1) if start==-1: t1=False if len(list_perso)>=nb_models: t1=False return list_perso def aff_models_perso_b(txt_list_perso): return choice_group_b(aff_models_perso(txt_list_perso)) def aff_models_perso_c(txt_list_perso): return choice_group_c(aff_models_perso(txt_list_perso)) def tag_choice(group_tag_choice): return gr.Dropdown(label="List of Models with the chosen Tag", show_label=True, choices=list(group_tag_choice) , interactive = True , filterable = False) def test_pass(test): if test==os.getenv('p'): print("ok") return gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test) , interactive = True) else: print("nop") return gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True) def test_pass_aff(test): if test==os.getenv('p'): return gr.Accordion( open=True, visible=True) ,gr.Row(visible=False) else: return gr.Accordion( open=True, visible=False) , gr.Row() # https://huggingface.co/docs/api-inference/detailed_parameters # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout): from pathlib import Path kwargs = {} if height is not None and height >= 256: kwargs["height"] = height if width is not None and width >= 256: kwargs["width"] = width if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg if seed >= 0: kwargs["seed"] = seed else: kwargs["seed"] = randint(1, MAX_SEED-1) task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except (Exception, asyncio.TimeoutError) as e: print(e) print(f"Task timed out: {model_str}") if not task.done(): task.cancel() result = None if task.done() and result is not None: with lock: png_path = "image.png" result.save(png_path) image = str(Path(png_path).resolve()) return image return None def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1): if model_str == 'NA': return None try: loop = asyncio.new_event_loop() result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) except (Exception, asyncio.CancelledError) as e: print(e) print(f"Task aborted: {model_str}") result = None finally: loop.close() return result def gen_fn_original(model_str, prompt): if model_str == 'NA': return None noise = str(randint(0, 9999)) try : m=models_load[model_str](f'{prompt} {noise}') except Exception as error : print("error : " + model_str) print(error) m=False return m def add_gallery(image, model_str, gallery): if gallery is None: gallery = [] #with lock: if image is not None: gallery.append((image, model_str)) return gallery def reset_gallery(gallery): return add_gallery(None,"",[]) def load_gallery(gallery,id): gallery = reset_gallery(gallery) for c in cache_image[f"{id}"]: gallery=add_gallery(c[0],c[1],gallery) return gallery def load_gallery_sorted(gallery,id): gallery = reset_gallery(gallery) for c in sorted(cache_image[f"{id}"], key=itemgetter(1)): gallery=add_gallery(c[0],c[1],gallery) return gallery def load_gallery_actu(gallery,id): gallery = reset_gallery(gallery) for c in cache_image_actu[f"{id}"]: gallery=add_gallery(c[0],c[1],gallery) return gallery def add_cache_image(image, model_str,id,cache_image=cache_image): if image is not None: cache_image[f"{id}"].append((image,model_str)) #cache_image=sorted(cache_image, key=itemgetter(1)) return def add_cache_image_actu(image, model_str,id,cache_image_actu=cache_image_actu): if image is not None: bisect.insort(cache_image_actu[f"{id}"],(image, model_str), key=itemgetter(1)) #cache_image_actu=sorted(cache_image_actu, key=itemgetter(1)) return def reset_cache_image(id,cache_image=cache_image): cache_image[f"{id}"].clear() return def reset_cache_image_actu(id,cache_image_actu=cache_image_actu): cache_image_actu[f"{id}"].clear() return def reset_cache_image_all_sessions(cache_image=cache_image,cache_image_actu=cache_image_actu): for key, listT in cache_image.items(): listT.clear() for key, listT in cache_image_actu.items(): listT.clear() return def set_session(id): if id==0: randTemp=randint(1,MAX_SEED) cache_image[f"{randTemp}"]=[] cache_image_actu[f"{randTemp}"]=[] return gr.Number(visible=False,value=randTemp) else : return id def print_info_sessions(): lenTot=0 print("###################################") print("number of sessions : "+str(len(cache_image))) for key, listT in cache_image.items(): print("session "+key+" : "+str(len(listT))) lenTot+=len(listT) print("images total = "+str(lenTot)) print("###################################") return def disp_models(group_model_choice,nb_rep=nb_rep): listTemp=[] strTemp='\n' i=0 for m in group_model_choice: if m not in listTemp: listTemp.append(m) for m in listTemp: i+=1 strTemp+="\"" + m + "\",\n" if i%(8/nb_rep)==0: strTemp+="\n" return gr.Textbox(label="models",value=strTemp) def search_models(str_search,tags_plus_models=tags_plus_models): output1="\n" output2="" for m in tags_plus_models[0][2]: if m.find(str_search)!=-1: output1+="\"" + m + "\",\n" outputPlus="\n From tags : \n\n" for tag_plus_models in tags_plus_models: if str_search.lower() == tag_plus_models[0].lower() and str_search!="": for m in tag_plus_models[2]: output2+="\"" + m + "\",\n" if output2 != "": output=output1+outputPlus+output2 else : output=output1 return gr.Textbox(label="out",value=output) def search_info(txt_search_info,models_plus_tags=models_plus_tags): outputList=[] if txt_search_info.find("\"")!=-1: start=txt_search_info.find("\"")+1 end=txt_search_info.find("\"",start) m_name=cutStrg(txt_search_info,start,end) else : m_name = txt_search_info for m in models_plus_tags: if m_name == m[0]: outputList=m[1] if len(outputList)==0: outputList.append("Model Not Find") return gr.Textbox(label="out",value=outputList) def add_in_blacklist(bl,model): return gr.Textbox(bl+(f"\"{model}\",\n")) def add_in_fav(fav,model): return gr.Textbox(fav+(f"\"{model}\",\n")) def rand_from_all_all_models(): if len(tags_plus_models[0][2])<nb_mod_dif: return choice_group_c(tags_plus_models[0][2]) else: result=[] list_index_temp=[] for i in range(len(tags_plus_models[0][2])): list_index_temp.append(i) for i in range(nb_mod_dif): index_temp=randint(1,len(list_index_temp))-1 for j in range(nb_rep): result.append(gr.Textbox(tags_plus_models[0][2][list_index_temp[index_temp]])) list_index_temp.remove(list_index_temp[index_temp]) return result def rand_from_tag_all_models(index): if len(tags_plus_models[index][2])<nb_mod_dif: return choice_group_c(models_test[index][1][0][1]) else: result=[] list_index_temp=[] for i in range(len(tags_plus_models[index][2])): list_index_temp.append(i) for i in range(nb_mod_dif): index_temp=randint(1,len(list_index_temp))-1 for j in range(nb_rep): result.append(gr.Textbox(tags_plus_models[index][2][list_index_temp[index_temp]])) list_index_temp.remove(list_index_temp[index_temp]) return result def find_index_tag(group_tag_choice): for i in (range(len(models_test)-1)): if models_test[i][1]==group_tag_choice: return gr.Number(i) return gr.Number(0) def fonc_search_warm_models(tag,b_format): if tag == "": tagT=["stable-diffusion-xl"] else: tagT=["stable-diffusion-xl",tag] models_temp , models_plus_tags_temp = find_warm_model_list("John6666", tagT, "", "last_modified", 10000) s="" if b_format: rep=nb_rep else: rep=1 for m in models_temp: if m in models: for i in range(rep): s+=f"\"{m}\",\n" return gr.Textbox(s) def ratio_chosen(choice_ratio,width,height): if choice_ratio == [None,None]: return width , height else : return gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[0]), gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[1]) list_ratios=[["None",[None,None]], ["4:1 (2048 x 512)",[2048,512]], ["12:5 (1536 x 640)",[1536,640]], ["~16:9 (1344 x 768)",[1344,768]], ["~3:2 (1216 x 832)",[1216,832]], ["~4:3 (1152 x 896)",[1152,896]], ["1:1 (1024 x 1024)",[1024,1024]], ["~3:4 (896 x 1152)",[896,1152]], ["~2:3 (832 x 1216)",[832,1216]], ["~9:16 (768 x 1344)",[768,1344]], ["5:12 (640 x 1536)",[640,1536]], ["1:4 (512 x 2048)",[512,2048]]] def make_me(): # with gr.Tab('The Dream'): with gr.Row(): #txt_input = gr.Textbox(lines=3, width=300, max_height=100) #txt_input = gr.Textbox(label='Your prompt:', lines=3, width=300, max_height=100) with gr.Column(scale=4): with gr.Group(): txt_input = gr.Textbox(label='Your prompt:', lines=3) with gr.Accordion("Advanced", open=False, visible=True): neg_input = gr.Textbox(label='Negative prompt:', lines=1) with gr.Row(): width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) with gr.Row(): choice_ratio = gr.Dropdown(label="Ratio Width/Height", info="OverWrite Width and Height (W*H<1024*1024)", show_label=True, choices=list(list_ratios) , interactive = True, value=list_ratios[0][1]) choice_ratio.change(ratio_chosen,[choice_ratio,width,height],[width,height]) with gr.Row(): steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) #gen_button = gr.Button('Generate images', width=150, height=30) #stop_button = gr.Button('Stop', variant='secondary', interactive=False, width=150, height=30) gen_button = gr.Button('Generate images', scale=3) stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1) gen_button.click(lambda: gr.update(interactive=True), None, stop_button) #gr.HTML(""" #<div style="text-align: center; max-width: 100%; margin: 0 auto;"> # <body> # </body> #</div> #""") with gr.Row() as block_images: choices=[models_test[0][1][0][1][0]] output = [] current_models = [] #text_disp_models = [] block_images_liste = [] block_images_options_liste = [] button_rand_from_tag=[] button_rand_from_all=[] button_rand_from_fav=[] button_blacklisted=[] button_favorites=[] choices_plus = extend_choices(choices) for i in range(nb_mod_dif): with gr.Column(visible=(choices_plus[i*nb_rep] != 'NA')) as block_Temp : block_images_liste.append(block_Temp) with gr.Group(): with gr.Row(): for j in range(nb_rep): output.append(gr.Image(None, label=choices_plus[i*nb_rep+j],interactive=False, visible=(choices_plus[i*nb_rep+j] != 'NA'),show_label=False,show_share_button=False)) for j in range(nb_rep): current_models.append(gr.Textbox(choices_plus[i*nb_rep+j], visible=(j==0),show_label=False)) #text_disp_models.append(gr.Textbox(choices_plus[i*nb_rep], visible=(choices_plus[i*nb_rep] != 'NA'),show_label=False)) with gr.Row(visible=False) as block_Temp: block_images_options_liste.append(block_Temp) button_rand_from_tag.append(gr.Button("Random\nfrom tag")) button_rand_from_all.append(gr.Button("Random\nfrom all")) button_rand_from_fav.append(gr.Button("Random\nfrom fav")) button_blacklisted.append(gr.Button("put in\nblacklist")) button_favorites.append(gr.Button("put in\nfavorites")) #output = update_imgbox([choices[0]]) #current_models = extend_choices_b([choices[0]]) for m, o in zip(current_models, output): gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o]) stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event]) with gr.Row() as blockPass: txt_input_p = gr.Textbox(label="Pass", lines=1) test_button = gr.Button(' ') with gr.Accordion( open=True, visible=False) as stuffs: with gr.Accordion("Advanced",open=False): images_options=gr.Checkbox(False,label="Images Options") images_options.change(lambda x:[gr.Row(visible=x) for b in range(nb_mod_dif)],[images_options],block_images_options_liste) blacklist_perso=gr.Textbox(label="Blacklist perso") fav_perso=gr.Textbox(label="Fav perso") button_rand_from_tag_all_models=gr.Button("Random all models from tag") button_rand_from_all_all_models=gr.Button("Random all models from all") button_rand_from_fav_all_models=gr.Button("Random all models from fav") with gr.Accordion("Warm models",open=False): with gr.Row(): text_warm_models=gr.Textbox("",label="list of warm model") with gr.Column(): text_tag_warm_models=gr.Textbox(lines=1) bool_format_models=gr.Checkbox(label="Format list",value=False) button_search_warm_models=gr.Button("search warm models") button_search_warm_models.click(fonc_search_warm_models,[text_tag_warm_models,bool_format_models],[text_warm_models]) button_load_warm_models = gr.Button('Load') button_load_warm_models.click(aff_models_perso_b,text_warm_models,output) button_load_warm_models.click(aff_models_perso_c,text_warm_models,current_models) with gr.Accordion("Gallery",open=False): with gr.Row(): #global cache_image #global cache_image_actu id_session=gr.Number(visible=False,value=0) gen_button.click(set_session, id_session, id_session) cache_image[f"{id_session.value}"]=[] cache_image_actu[f"{id_session.value}"]=[] with gr.Column(): b11 = gr.Button('Load Galerry Actu') b12 = gr.Button('Load Galerry All') b13 = gr.Button('Load Galerry All (sorted)') gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery", interactive=False, show_share_button=True, container=True, format="png", preview=True, object_fit="cover",columns=4,rows=4) with gr.Column(): b21 = gr.Button('Reset Gallery') b22 = gr.Button('Reset Gallery All') b23 = gr.Button('Reset All Sessions') b24 = gr.Button('print info sessions') b11.click(load_gallery_actu,[gallery,id_session],gallery) b12.click(load_gallery,[gallery,id_session],gallery) b13.click(load_gallery_sorted,[gallery,id_session],gallery) b21.click(reset_gallery,[gallery],gallery) b22.click(reset_cache_image,[id_session],gallery) b23.click(reset_cache_image_all_sessions,[],[]) b24.click(print_info_sessions,[],[]) for m, o in zip(current_models, output): #o.change(add_gallery, [o, m, gallery], [gallery]) o.change(add_cache_image,[o,m,id_session],[]) o.change(add_cache_image_actu,[o,m,id_session],[]) gen_button.click(reset_cache_image_actu, [id_session], []) gen_button.click(lambda id:gr.Button('Load Galerry All ('+str(len(cache_image[f"{id}"]))+")"), [id_session], [b12]) with gr.Group(): with gr.Row(): #group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True) group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test), interactive = True,value=models_test[0][1]) #group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test), interactive = True) index_tag=gr.Number(0,visible=False) with gr.Row(): group_model_choice = gr.Dropdown(label="List of Models with the chosen Tag", show_label=True, choices=list([]), interactive = True) group_model_choice.change(choice_group_b,group_model_choice,output) group_model_choice.change(choice_group_c,group_model_choice,current_models) #group_model_choice.change(choice_group_d,group_model_choice,text_disp_models) group_model_choice.change(choice_group_e,group_model_choice,block_images_liste) group_tag_choice.change(tag_choice,group_tag_choice,group_model_choice) group_tag_choice.change(find_index_tag,group_tag_choice,index_tag) with gr.Accordion("Display/Load Models") : with gr.Row(): txt_list_models=gr.Textbox(label="Models Actu",value="") group_model_choice.change(disp_models,group_model_choice,txt_list_models) with gr.Column(): txt_list_perso = gr.Textbox(label='List Models Perso to Load') button_list_perso = gr.Button('Load') button_list_perso.click(aff_models_perso_b,txt_list_perso,output) button_list_perso.click(aff_models_perso_c,txt_list_perso,current_models) with gr.Row(): txt_search = gr.Textbox(label='Search in') txt_output_search = gr.Textbox(label='Search out') button_search = gr.Button('Research') button_search.click(search_models,txt_search,txt_output_search) with gr.Row(): txt_search_info = gr.Textbox(label='Search info in') txt_output_search_info = gr.Textbox(label='Search info out') button_search_info = gr.Button('Research info') button_search_info.click(search_info,txt_search_info,txt_output_search_info) with gr.Row(): test_button.click(test_pass_aff,txt_input_p,[stuffs,blockPass]) #test_button.click(test_pass,txt_input_p,group_tag_choice) #text_disp_models = [] #button_rand_from_tag=[] #button_rand_from_all=[] button_rand_from_all_all_models.click(rand_from_all_all_models,[],current_models) button_rand_from_tag_all_models.click(rand_from_tag_all_models,index_tag,current_models) for i in range(nb_mod_dif): ####################################################################################################################### #button_rand_from_tag.click() #button_rand_from_all.click() #button_rand_from_fav.click() button_blacklisted[i].click(add_in_blacklist,[blacklist_perso,current_models[i*nb_rep]],blacklist_perso) button_favorites[i].click(add_in_fav,[fav_perso,current_models[i*nb_rep]],fav_perso) gr.HTML(""" <div class="footer"> <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier! </p> """) js_code = """ console.log('ghgh'); """ with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}") as demo: gr.Markdown("<script>" + js_code + "</script>") make_me() # https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance #demo.queue(concurrency_count=999) # concurrency_count is deprecated in 4.x demo.queue(default_concurrency_limit=200, max_size=200) demo.launch(max_threads=400)