File size: 8,266 Bytes
9125950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e32d729
9125950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e4364
9125950
a7e4364
 
9125950
 
a7e4364
9125950
a7e4364
9125950
a7e4364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9125950
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import streamlit as st
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import model_view
import streamlit.components.v1 as components
from train import get_or_build_tokenizer, greedy_decode
from config import get_config, latest_weights_file_path
from model import build_transformer
import torch
from bertviz import model_view
import torch
import altair as alt
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

utils.logging.set_verbosity_error()  # Suppress standard warnings

st.set_page_config(page_title='Attention Visualizer', layout='wide')

def mtx2df(m, max_row, max_col, row_tokens, col_tokens):
    return pd.DataFrame(
        [
            (
                r,
                c,
                float(m[r, c]),
                "%.2d - %s" % (r, row_tokens[r] if len(row_tokens) > r else "<blank>"),
                "%.2d - %s" % (c, col_tokens[c] if len(col_tokens) > c else "<blank>"),
            )
            for r in range(m.shape[0])
            for c in range(m.shape[1])
            if r < max_row and c < max_col
        ],
        columns=["row", "column", "value", "row_token", "col_token"],
    )
    
    
def get_attn_map(attn_type: str, layer: int, head: int, model):
    if attn_type == "encoder":
        attn = model.encoder.layers[layer].self_attention_block.attention_scores
    elif attn_type == "decoder":
        attn = model.decoder.layers[layer].self_attention_block.attention_scores
    elif attn_type == "encoder-decoder":
        attn = model.decoder.layers[layer].cross_attention_block.attention_scores
    return attn[0, head].data

def attn_map(attn_type, layer, head, row_tokens, col_tokens, max_sentence_len, model):
    df = mtx2df(
        get_attn_map(attn_type, layer, head, model),
        max_sentence_len,
        max_sentence_len,
        row_tokens,
        col_tokens,
    )
    return (
        alt.Chart(data=df)
        .mark_rect()
        .encode(
            x=alt.X("col_token", axis=alt.Axis(title="")),
            y=alt.Y("row_token", axis=alt.Axis(title="")),
            color=alt.Color("value", scale=alt.Scale(scheme="blues")),
            tooltip=["row", "column", "value", "row_token", "col_token"],
        )
        #.title(f"Layer {layer} Head {head}")
        .properties(height=200, width=200, title=f"Layer {layer} Head {head}")
        .interactive()
    )

def get_all_attention_maps(attn_type: str, layers: list[int], heads: list[int], row_tokens: list, col_tokens, max_sentence_len: int, model):
    charts = []
    for layer in layers:
        rowCharts = []
        for head in heads:
            rowCharts.append(attn_map(attn_type, layer, head, row_tokens, col_tokens, max_sentence_len, model))
        charts.append(alt.hconcat(*rowCharts))
    return alt.vconcat(*charts)

def initiate_model(config, device):
    tokenizer_src = get_or_build_tokenizer(config, None, config["lang_src"])
    tokenizer_tgt = get_or_build_tokenizer(config, None, config["lang_tgt"])

    model = build_transformer(tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size(), config["seq_len"], config['seq_len'], d_model=config['d_model']).to(device)

    model_filename = latest_weights_file_path(config)
    state = torch.load(model_filename, map_location=torch.device('cpu'))
    model.load_state_dict(state['model_state_dict'])
    return model, tokenizer_src, tokenizer_tgt

def process_input(input_text, tokenizer_src, tokenizer_tgt, model, config, device):
    src = tokenizer_src.encode(input_text)
    src = torch.cat([
        torch.tensor([tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64), 
        torch.tensor(src.ids, dtype=torch.int64),
        torch.tensor([tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64),
        torch.tensor([tokenizer_src.token_to_id('[PAD]')] * (config['seq_len'] - len(src.ids) - 2), dtype=torch.int64)
    ], dim=0).to(device)
    source_mask = (src != tokenizer_src.token_to_id('[PAD]')).unsqueeze(0).unsqueeze(0).int().to(device)

    encoder_input_tokens = [tokenizer_src.id_to_token(i) for i in src.cpu().numpy()]
    encoder_input_tokens = [i for i in encoder_input_tokens if i != '[PAD]']

    model_out = greedy_decode(model, src, source_mask, tokenizer_src, tokenizer_tgt, config['seq_len'], device)

    decoder_input_tokens = [tokenizer_tgt.id_to_token(i) for i in model_out.cpu().numpy()]
    
    output = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
    
    return encoder_input_tokens, decoder_input_tokens, output
        

# def get_html_data(model_name, input_text):
#     model_name ="microsoft/xtremedistil-l12-h384-uncased"
#     model = AutoModel.from_pretrained(model_name, output_attentions=True, cache_dir='__pycache__')  # Configure model to return attention values
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     inputs = tokenizer.encode(input_text, return_tensors='pt')  # Tokenize input text
#     outputs = model(inputs)  # Run model
#     attention = outputs[-1]  # Retrieve attention from model outputs
#     tokens = tokenizer.convert_ids_to_tokens(inputs[0])  # Convert input ids to token strings
#     model_html = model_view(attention, tokens, html_action="return")  # Display model view
#     with open("static/model_view.html", 'w') as file:
#         file.write(model_html.data)

def main():
    st.title('Transformer Visualizer')
    # st.info('Enter a sentence to visualize the attention of the model')
    st.write('This app visualizes the attention of a transformer model on a given sentence.')
    # add a side bar with model options and a prompt
    config = get_config()
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model, tokenizer_src, tokenizer_tgt = initiate_model(config, device)
    with st.sidebar:
        input_text = st.text_input('Enter a sentence')
        # put two buttons side by side in the sidebar
        # translate_button = st.button('Translate', key='translate_button')
        # viz_button = st.button('Visualize Attention', key='viz_button')
        attn_type = st.selectbox('Select attention type', ['encoder', 'decoder', 'encoder-decoder'])
        layers = st.multiselect('Select layers', list(range(6)))
        heads = st.multiselect('Select heads', list(range(8)))
        # allow the user to select the all the layers and heads at once to visualize
        if st.checkbox('Select all layers'):
            layers = list(range(6))
        if st.checkbox('Select all heads'):
            heads = list(range(8))
    
    if input_text != '':
        with st.spinner("Translating..."):
            encoder_input_tokens, decoder_input_tokens, output = process_input(input_text, tokenizer_src, tokenizer_tgt, model, config, device)
            max_sentence_len = len(encoder_input_tokens)
            row_tokens = encoder_input_tokens
            col_tokens = decoder_input_tokens
            st.write('Input:', ' '.join(encoder_input_tokens))
            st.write('Output:', ' '.join(decoder_input_tokens))
            st.write('Translated:', output)
            st.write('Attention Visualization')
        with st.spinner("Visualizing Attention..."):
            if attn_type == 'encoder':
                st.write(get_all_attention_maps(attn_type, layers, heads, row_tokens, row_tokens, max_sentence_len, model))
            elif attn_type == 'decoder':
                st.write(get_all_attention_maps(attn_type, layers, heads, col_tokens, col_tokens, max_sentence_len, model))
            elif attn_type == 'encoder-decoder':
                st.write(get_all_attention_maps(attn_type, layers, heads, row_tokens, col_tokens, max_sentence_len, model))
    else:
        st.write('Enter a sentence to visualize the attention of the model')
    
    # add a footer with the github repo link and dataset link 
    st.markdown('---')
    st.write('Made by [Pratik Dwivedi](https://github.com/Dekode1859)')
    st.write('Check out the Scratch Implementation and Visualizer Code on [GitHub](https://github.com/Dekode1859/transformer-visualizer)')
    st.write('Dataset: [Opus-books: english-Italian](https://huggingface.co/datasets/Helsinki-NLP/opus_books)')
    # st.write('This app is a Streamlit implementation of the [BERTViz](

if __name__ == '__main__':
    main()