Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -49,26 +49,24 @@ def get_file_size(file):
|
|
49 |
file.seek(0)
|
50 |
return file_size
|
51 |
|
52 |
-
# Add a sidebar for model selection
|
53 |
st.sidebar.write("Settings")
|
54 |
st.sidebar.write("-----------")
|
55 |
model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"]
|
56 |
selected_model = st.sidebar.radio("Choose Model", model_options)
|
57 |
st.sidebar.write("-----------")
|
58 |
-
|
59 |
uploaded_file = st.sidebar.file_uploader("Upload file", type=["pdf"])
|
60 |
-
|
61 |
st.sidebar.write("-----------")
|
62 |
st.sidebar.write("About Me")
|
63 |
st.sidebar.write("Name: Deepak Yadav")
|
64 |
st.sidebar.write("Bio: Passionate about AI and machine learning. Enjoys working on innovative projects and sharing knowledge with the community.")
|
65 |
-
st.sidebar.write("[GitHub](https://github.com
|
66 |
-
st.sidebar.write("[LinkedIn](https://www.linkedin.com/in/dky7376)")
|
67 |
st.sidebar.write("-----------")
|
68 |
|
69 |
@st.cache_resource
|
70 |
-
def initialize_qa_chain(
|
71 |
-
loader = PDFMinerLoader(
|
72 |
documents = loader.load()
|
73 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
74 |
splits = text_splitter.split_documents(documents)
|
@@ -105,15 +103,14 @@ def process_answer(instruction, qa_chain):
|
|
105 |
return generated_text
|
106 |
|
107 |
if uploaded_file is not None:
|
108 |
-
file_details = {
|
109 |
-
"Filename": uploaded_file.name,
|
110 |
-
"File size": get_file_size(uploaded_file)
|
111 |
-
}
|
112 |
os.makedirs("docs", exist_ok=True)
|
113 |
filepath = os.path.join("docs", uploaded_file.name)
|
114 |
-
|
|
|
|
|
|
|
115 |
with st.spinner('Embeddings are in process...'):
|
116 |
-
|
117 |
else:
|
118 |
qa_chain = None
|
119 |
|
|
|
49 |
file.seek(0)
|
50 |
return file_size
|
51 |
|
52 |
+
# Add a sidebar for model selection and user details
|
53 |
st.sidebar.write("Settings")
|
54 |
st.sidebar.write("-----------")
|
55 |
model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"]
|
56 |
selected_model = st.sidebar.radio("Choose Model", model_options)
|
57 |
st.sidebar.write("-----------")
|
|
|
58 |
uploaded_file = st.sidebar.file_uploader("Upload file", type=["pdf"])
|
|
|
59 |
st.sidebar.write("-----------")
|
60 |
st.sidebar.write("About Me")
|
61 |
st.sidebar.write("Name: Deepak Yadav")
|
62 |
st.sidebar.write("Bio: Passionate about AI and machine learning. Enjoys working on innovative projects and sharing knowledge with the community.")
|
63 |
+
st.sidebar.write("[GitHub](https://github.com/deepak7376)")
|
64 |
+
st.sidebar.write("[LinkedIn](https://www.linkedin.com/in/dky7376/)")
|
65 |
st.sidebar.write("-----------")
|
66 |
|
67 |
@st.cache_resource
|
68 |
+
def initialize_qa_chain(filepath, CHECKPOINT):
|
69 |
+
loader = PDFMinerLoader(filepath)
|
70 |
documents = loader.load()
|
71 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
72 |
splits = text_splitter.split_documents(documents)
|
|
|
103 |
return generated_text
|
104 |
|
105 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
106 |
os.makedirs("docs", exist_ok=True)
|
107 |
filepath = os.path.join("docs", uploaded_file.name)
|
108 |
+
with open(filepath, "wb") as temp_file:
|
109 |
+
temp_file.write(uploaded_file.read())
|
110 |
+
temp_filepath = temp_file.name
|
111 |
+
|
112 |
with st.spinner('Embeddings are in process...'):
|
113 |
+
qa_chain = initialize_qa_chain(temp_filepath, selected_model)
|
114 |
else:
|
115 |
qa_chain = None
|
116 |
|