Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,47 @@
|
|
1 |
-
import base64
|
2 |
-
import os
|
3 |
-
|
4 |
import streamlit as st
|
5 |
-
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from langchain.llms import HuggingFacePipeline
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
from
|
11 |
-
from
|
|
|
12 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
13 |
import torch
|
14 |
|
15 |
-
st.
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def get_file_size(file):
|
24 |
file.seek(0, os.SEEK_END)
|
@@ -26,29 +49,27 @@ def get_file_size(file):
|
|
26 |
file.seek(0)
|
27 |
return file_size
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
def data_ingestion():
|
32 |
-
for root, dirs, files in os.walk("docs"):
|
33 |
-
for file in files:
|
34 |
-
if file.endswith(".pdf"):
|
35 |
-
print(file)
|
36 |
-
loader = PDFMinerLoader(os.path.join(root, file))
|
37 |
|
|
|
|
|
|
|
38 |
documents = loader.load()
|
39 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
40 |
splits = text_splitter.split_documents(documents)
|
41 |
|
42 |
-
#
|
43 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
44 |
vectordb = FAISS.from_documents(splits, embeddings)
|
45 |
-
vectordb.save_local("faiss_index")
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
def initialize_qa_chain(selected_model):
|
50 |
-
# Constants
|
51 |
-
CHECKPOINT = selected_model
|
52 |
TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT)
|
53 |
BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32)
|
54 |
pipe = pipeline(
|
@@ -59,13 +80,9 @@ def initialize_qa_chain(selected_model):
|
|
59 |
do_sample=True,
|
60 |
temperature=0.3,
|
61 |
top_p=0.95,
|
62 |
-
# device=torch.device('cpu')
|
63 |
)
|
64 |
|
65 |
llm = HuggingFacePipeline(pipeline=pipe)
|
66 |
-
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
67 |
-
|
68 |
-
vectordb = FAISS.load_local("faiss_index", embeddings)
|
69 |
|
70 |
# Build a QA chain
|
71 |
qa_chain = RetrievalQA.from_chain_type(
|
@@ -75,88 +92,49 @@ def initialize_qa_chain(selected_model):
|
|
75 |
)
|
76 |
return qa_chain
|
77 |
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
st.
|
110 |
-
|
111 |
-
uploaded_file = st.file_uploader("", type=["pdf"])
|
112 |
-
|
113 |
-
if uploaded_file is not None:
|
114 |
-
file_details = {
|
115 |
-
"Filename": uploaded_file.name,
|
116 |
-
"File size": get_file_size(uploaded_file)
|
117 |
-
}
|
118 |
-
os.makedirs("docs", exist_ok=True)
|
119 |
-
filepath = os.path.join("docs", uploaded_file.name)
|
120 |
-
try:
|
121 |
-
with open(filepath, "wb") as temp_file:
|
122 |
-
temp_file.write(uploaded_file.read())
|
123 |
-
|
124 |
-
col1, col2 = st.columns([1, 2])
|
125 |
-
with col1:
|
126 |
-
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
|
127 |
-
st.json(file_details)
|
128 |
-
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
|
129 |
-
pdf_view = display_pdf(filepath)
|
130 |
-
|
131 |
-
with col2:
|
132 |
-
st.success(f'model selected successfully: {selected_model}')
|
133 |
-
with st.spinner('Embeddings are in process...'):
|
134 |
-
ingested_data = data_ingestion()
|
135 |
-
st.success('Embeddings are created successfully!')
|
136 |
-
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)
|
137 |
-
|
138 |
-
user_input = st.text_input("", key="input")
|
139 |
-
|
140 |
-
# Initialize session state for generated responses and past messages
|
141 |
-
if "generated" not in st.session_state:
|
142 |
-
st.session_state["generated"] = ["I am ready to help you"]
|
143 |
-
if "past" not in st.session_state:
|
144 |
-
st.session_state["past"] = ["Hey there!"]
|
145 |
-
|
146 |
-
# Search the database for a response based on user input and update session state
|
147 |
-
if user_input:
|
148 |
-
answer = process_answer({'query': user_input}, initialize_qa_chain(selected_model))
|
149 |
-
st.session_state["past"].append(user_input)
|
150 |
-
response = answer
|
151 |
-
st.session_state["generated"].append(response)
|
152 |
-
|
153 |
-
# Display conversation history using Streamlit messages
|
154 |
-
if st.session_state["generated"]:
|
155 |
-
display_conversation(st.session_state)
|
156 |
-
|
157 |
-
except Exception as e:
|
158 |
-
st.error(f"An error occurred: {e}")
|
159 |
-
|
160 |
-
# edited
|
161 |
-
if __name__ == "__main__":
|
162 |
-
main()
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain_community.document_loaders import PDFMinerLoader
|
4 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.llms import HuggingFacePipeline
|
9 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
10 |
import torch
|
11 |
|
12 |
+
st.title("Custom PDF Chatbot")
|
13 |
+
|
14 |
+
# Custom CSS for chat messages
|
15 |
+
st.markdown("""
|
16 |
+
<style>
|
17 |
+
.user-message {
|
18 |
+
text-align: right;
|
19 |
+
background-color: #3c8ce7;
|
20 |
+
color: white;
|
21 |
+
padding: 10px;
|
22 |
+
border-radius: 10px;
|
23 |
+
margin-bottom: 10px;
|
24 |
+
display: inline-block;
|
25 |
+
width: fit-content;
|
26 |
+
max-width: 70%;
|
27 |
+
margin-left: auto;
|
28 |
+
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
|
29 |
+
}
|
30 |
+
.assistant-message {
|
31 |
+
text-align: left;
|
32 |
+
background-color: #d16ba5;
|
33 |
+
color: white;
|
34 |
+
padding: 10px;
|
35 |
+
border-radius: 10px;
|
36 |
+
margin-bottom: 10px;
|
37 |
+
display: inline-block;
|
38 |
+
width: fit-content;
|
39 |
+
max-width: 70%;
|
40 |
+
margin-right: auto;
|
41 |
+
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
|
42 |
+
}
|
43 |
+
</style>
|
44 |
+
""", unsafe_allow_html=True)
|
45 |
|
46 |
def get_file_size(file):
|
47 |
file.seek(0, os.SEEK_END)
|
|
|
49 |
file.seek(0)
|
50 |
return file_size
|
51 |
|
52 |
+
# Add a sidebar for model selection
|
53 |
+
st.sidebar.write("Settings")
|
54 |
+
st.sidebar.write("-----------")
|
55 |
+
model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"]
|
56 |
+
selected_model = st.sidebar.radio("Choose Model", model_options)
|
57 |
+
st.sidebar.write("-----------")
|
58 |
|
59 |
+
uploaded_file = st.sidebar.file_uploader("Upload file", type=["pdf"])
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
@st.cache_resource
|
62 |
+
def initialize_qa_chain(filepath, CHECKPOINT):
|
63 |
+
loader = PDFMinerLoader(filepath)
|
64 |
documents = loader.load()
|
65 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
66 |
splits = text_splitter.split_documents(documents)
|
67 |
|
68 |
+
# Create embeddings
|
69 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
70 |
vectordb = FAISS.from_documents(splits, embeddings)
|
|
|
|
|
71 |
|
72 |
+
# Initialize model
|
|
|
|
|
|
|
73 |
TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT)
|
74 |
BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32)
|
75 |
pipe = pipeline(
|
|
|
80 |
do_sample=True,
|
81 |
temperature=0.3,
|
82 |
top_p=0.95,
|
|
|
83 |
)
|
84 |
|
85 |
llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
|
|
|
86 |
|
87 |
# Build a QA chain
|
88 |
qa_chain = RetrievalQA.from_chain_type(
|
|
|
92 |
)
|
93 |
return qa_chain
|
94 |
|
95 |
+
def process_answer(instruction, qa_chain):
|
96 |
+
generated_text = qa_chain.run(instruction)
|
97 |
+
return generated_text
|
98 |
|
99 |
+
if uploaded_file is not None:
|
100 |
+
file_details = {
|
101 |
+
"Filename": uploaded_file.name,
|
102 |
+
"File size": get_file_size(uploaded_file)
|
103 |
+
}
|
104 |
+
os.makedirs("docs", exist_ok=True)
|
105 |
+
filepath = os.path.join("docs", uploaded_file.name)
|
106 |
+
with st.spinner('Embeddings are in process...'):
|
107 |
+
qa_chain = initialize_qa_chain(filepath, selected_model)
|
108 |
+
else:
|
109 |
+
qa_chain = None
|
110 |
+
|
111 |
+
# Initialize chat history
|
112 |
+
if "messages" not in st.session_state:
|
113 |
+
st.session_state.messages = []
|
114 |
+
|
115 |
+
# Display chat messages from history on app rerun
|
116 |
+
for message in st.session_state.messages:
|
117 |
+
if message["role"] == "user":
|
118 |
+
st.markdown(f"<div class='user-message'>{message['content']}</div>", unsafe_allow_html=True)
|
119 |
+
else:
|
120 |
+
st.markdown(f"<div class='assistant-message'>{message['content']}</div>", unsafe_allow_html=True)
|
121 |
+
|
122 |
+
# React to user input
|
123 |
+
if prompt := st.chat_input("What is up?"):
|
124 |
+
# Display user message in chat message container
|
125 |
+
st.markdown(f"<div class='user-message'>{prompt}</div>", unsafe_allow_html=True)
|
126 |
+
# Add user message to chat history
|
127 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
128 |
+
|
129 |
+
if qa_chain:
|
130 |
+
# Generate response
|
131 |
+
response = process_answer({'query': prompt}, qa_chain)
|
132 |
+
else:
|
133 |
+
# Prompt to upload a file
|
134 |
+
response = "Please upload a PDF file to enable the chatbot."
|
135 |
+
|
136 |
+
# Display assistant response in chat message container
|
137 |
+
st.markdown(f"<div class='assistant-message'>{response}</div>", unsafe_allow_html=True)
|
138 |
|
139 |
+
# Add assistant response to chat history
|
140 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|