Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| from fastapi import FastAPI | |
| from txtai.embeddings import Embeddings | |
| from txtai.pipeline import Extractor | |
| import os | |
| from langchain import HuggingFaceHub | |
| from langchain.prompts import PromptTemplate | |
| from langchain.chains import LLMChain | |
| # from transformers import pipeline | |
| # NOTE - we configure docs_url to serve the interactive Docs at the root path | |
| # of the app. This way, we can use the docs as a landing page for the app on Spaces. | |
| app = FastAPI(docs_url="/") | |
| # @app.get("/generate") | |
| # def generate(text: str): | |
| # """ | |
| # Using the text2text-generation pipeline from `transformers`, generate text | |
| # from the given input text. The model used is `google/flan-t5-small`, which | |
| # can be found [here](https://huggingface.co/google/flan-t5-small). | |
| # """ | |
| # output = pipe(text) | |
| # return {"output": output[0]["generated_text"]} | |
| def _check_if_db_exists(db_path: str) -> bool: | |
| return os.path.exists(db_path) | |
| def _load_embeddings_from_db( | |
| db_present: bool, | |
| domain: str, | |
| path: str = "sentence-transformers/all-MiniLM-L6-v2", | |
| ): | |
| # Create embeddings model with content support | |
| embeddings = Embeddings({"path": path, "content": True}) | |
| # if Vector DB is not present | |
| if not db_present: | |
| return embeddings | |
| else: | |
| if domain == "": | |
| embeddings.load("index") # change this later | |
| else: | |
| print(3) | |
| embeddings.load(f"index/{domain}") | |
| return embeddings | |
| def _prompt(question): | |
| return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered. | |
| Question: {question} | |
| Context: """ | |
| def _search(query, extractor, question=None): | |
| # Default question to query if empty | |
| if not question: | |
| question = query | |
| # template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered. | |
| # Question: {question} | |
| # Context: """ | |
| # prompt = PromptTemplate(template=template, input_variables=["question"]) | |
| # llm_chain = LLMChain(prompt=prompt, llm=extractor) | |
| # return {"question": question, "answer": llm_chain.run(question)} | |
| return extractor([("answer", query, _prompt(question), False)])[0][1] | |
| def rag(domain: str, question: str): | |
| db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}\index\{domain}\documents") | |
| print(db_exists) | |
| # if db_exists: | |
| embeddings = _load_embeddings_from_db(db_exists, domain) | |
| # Create extractor instance | |
| extractor = Extractor(embeddings, "google/flan-t5-base") | |
| # llm = HuggingFaceHub( | |
| # repo_id="google/flan-t5-xxl", | |
| # model_kwargs={"temperature": 1, "max_length": 1000000}, | |
| # ) | |
| # else: | |
| answer = _search(question, extractor) | |
| return {"question": question, "answer": answer} | |