Update app.py
Browse files
app.py
CHANGED
@@ -1,137 +1,60 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
import yt-dlp as youtube_dl
|
4 |
-
from transformers import pipeline
|
5 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
6 |
-
|
7 |
-
import tempfile
|
8 |
import os
|
9 |
import time
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
file_length = info["duration"]
|
49 |
-
file_length_s = int(file_length)
|
50 |
-
|
51 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
52 |
-
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S))
|
53 |
-
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length_s))
|
54 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
55 |
-
|
56 |
-
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
|
57 |
-
|
58 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
59 |
-
try:
|
60 |
-
ydl.download([yt_url])
|
61 |
-
except youtube_dl.utils.ExtractorError as err:
|
62 |
-
raise gr.Error(str(err))
|
63 |
-
|
64 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
65 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
66 |
-
|
67 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
68 |
-
filepath = os.path.join(tmpdirname, "audio.m4a")
|
69 |
-
download_yt_audio(yt_url, filepath)
|
70 |
-
with open(filepath, "rb") as f:
|
71 |
-
inputs = f.read()
|
72 |
-
|
73 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
74 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
75 |
-
|
76 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
77 |
-
|
78 |
-
return html_embed_str, text
|
79 |
-
|
80 |
-
mf_transcribe = gr.Interface(
|
81 |
fn=transcribe,
|
82 |
inputs=[
|
83 |
-
gr.Audio(type="filepath"),
|
84 |
-
gr.
|
85 |
],
|
86 |
-
outputs=
|
87 |
-
|
88 |
-
|
89 |
-
title="Whisper Large V3: Transcribe Audio",
|
90 |
-
description=(
|
91 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
92 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
93 |
-
" of arbitrary length."
|
94 |
-
),
|
95 |
-
allow_flagging="never",
|
96 |
-
)
|
97 |
-
|
98 |
-
file_transcribe = gr.Interface(
|
99 |
-
fn=transcribe,
|
100 |
-
inputs=[
|
101 |
-
gr.Audio(type="filepath", label="Audio file"),
|
102 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
103 |
],
|
104 |
-
|
105 |
-
|
106 |
-
theme="huggingface",
|
107 |
-
title="Whisper Large V3: Transcribe Audio",
|
108 |
-
description=(
|
109 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
110 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
111 |
-
" of arbitrary length."
|
112 |
-
),
|
113 |
allow_flagging="never",
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
120 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
121 |
],
|
122 |
-
outputs=["html", "text"],
|
123 |
-
layout="horizontal",
|
124 |
-
theme="huggingface",
|
125 |
-
title="Whisper Large V3: Transcribe YouTube",
|
126 |
-
description=(
|
127 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
128 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
129 |
-
" arbitrary length."
|
130 |
-
),
|
131 |
-
allow_flagging="never",
|
132 |
)
|
133 |
|
134 |
-
|
135 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
136 |
-
|
137 |
-
demo.launch(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
+
import json
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
import numpy as np
|
8 |
+
from denoiser.demucs import Demucs
|
9 |
+
from pydub import AudioSegment
|
10 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
11 |
+
|
12 |
+
# 設置 Hugging Face Hub 的 Access Token
|
13 |
+
auth_token = os.getenv("HF_TOKEN")
|
14 |
+
|
15 |
+
# 加載私有模型
|
16 |
+
model_id = "DeepLearning101/Speech-Quality-Inspection_Meta-Denoiser"
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, token=auth_token)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token)
|
19 |
+
|
20 |
+
def transcribe(file_upload, microphone):
|
21 |
+
file = microphone if microphone is not None else file_upload
|
22 |
+
demucs_model = Demucs(hidden=64)
|
23 |
+
state_dict = torch.load("path_to_model_checkpoint", map_location='cpu') # 請確保提供正確的模型文件路徑
|
24 |
+
demucs_model.load_state_dict(state_dict)
|
25 |
+
x, sr = torchaudio.load(file)
|
26 |
+
out = demucs_model(x[None])[0]
|
27 |
+
out = out / max(out.abs().max().item(), 1)
|
28 |
+
torchaudio.save('enhanced.wav', out, sr)
|
29 |
+
enhanced = AudioSegment.from_wav('enhanced.wav') # 只有去完噪的需要降bitrate再做語音識別
|
30 |
+
enhanced.export('enhanced.wav', format="wav", bitrate="256k")
|
31 |
+
|
32 |
+
# 假設模型是用於文本分類
|
33 |
+
inputs = tokenizer("enhanced.wav", return_tensors="pt")
|
34 |
+
outputs = model(**inputs)
|
35 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
36 |
+
|
37 |
+
return "enhanced.wav", predictions
|
38 |
+
|
39 |
+
demo = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
fn=transcribe,
|
41 |
inputs=[
|
42 |
+
gr.Audio(type="filepath", label="語音質檢麥克風實時錄音"),
|
43 |
+
gr.Audio(type="filepath", label="語音質檢原始音檔"),
|
44 |
],
|
45 |
+
outputs=[
|
46 |
+
gr.Audio(type="filepath", label="Output"),
|
47 |
+
gr.Textbox(label="Model Predictions")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
],
|
49 |
+
title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>語音質檢噪音去除 (語音增強):Meta Denoiser</a>",
|
50 |
+
description="為了提升語音識別的效果,可以在識別前先進行噪音去除",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
allow_flagging="never",
|
52 |
+
examples=[
|
53 |
+
["exampleAudio/15s_2020-03-27_sep1.wav"],
|
54 |
+
["exampleAudio/13s_2020-03-27_sep2.wav"],
|
55 |
+
["exampleAudio/30s_2020-04-23_sep1.wav"],
|
56 |
+
["exampleAudio/15s_2020-04-23_sep2.wav"],
|
|
|
|
|
57 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
59 |
|
60 |
+
demo.launch(debug=True)
|
|
|
|
|
|