Spaces:
Runtime error
Runtime error
add files
Browse files- ade20k_colors.py +150 -0
- app.py +57 -0
- images/armchair.jpg +0 -0
- images/cat.jpg +0 -0
- images/plant.jpg +0 -0
- requirements.txt +2 -0
ade20k_colors.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
colors = [(120, 120, 120),
|
| 2 |
+
(180, 120, 120),
|
| 3 |
+
(6, 230, 230),
|
| 4 |
+
(80, 50, 50),
|
| 5 |
+
(4, 200, 3),
|
| 6 |
+
(120, 120, 80),
|
| 7 |
+
(140, 140, 140),
|
| 8 |
+
(204, 5, 255),
|
| 9 |
+
(230, 230, 230),
|
| 10 |
+
(4, 250, 7),
|
| 11 |
+
(224, 5, 255),
|
| 12 |
+
(235, 255, 7),
|
| 13 |
+
(150, 5, 61),
|
| 14 |
+
(120, 120, 70),
|
| 15 |
+
(8, 255, 51),
|
| 16 |
+
(255, 6, 82),
|
| 17 |
+
(143, 255, 140),
|
| 18 |
+
(204, 255, 4),
|
| 19 |
+
(255, 51, 7),
|
| 20 |
+
(204, 70, 3),
|
| 21 |
+
(0, 102, 200),
|
| 22 |
+
(61, 230, 250),
|
| 23 |
+
(255, 6, 51),
|
| 24 |
+
(11, 102, 255),
|
| 25 |
+
(255, 7, 71),
|
| 26 |
+
(255, 9, 224),
|
| 27 |
+
(9, 7, 230),
|
| 28 |
+
(220, 220, 220),
|
| 29 |
+
(255, 9, 92),
|
| 30 |
+
(112, 9, 255),
|
| 31 |
+
(8, 255, 214),
|
| 32 |
+
(7, 255, 224),
|
| 33 |
+
(255, 184, 6),
|
| 34 |
+
(10, 255, 71),
|
| 35 |
+
(255, 41, 10),
|
| 36 |
+
(7, 255, 255),
|
| 37 |
+
(224, 255, 8),
|
| 38 |
+
(102, 8, 255),
|
| 39 |
+
(255, 61, 6),
|
| 40 |
+
(255, 194, 7),
|
| 41 |
+
(255, 122, 8),
|
| 42 |
+
(0, 255, 20),
|
| 43 |
+
(255, 8, 41),
|
| 44 |
+
(255, 5, 153),
|
| 45 |
+
(6, 51, 255),
|
| 46 |
+
(235, 12, 255),
|
| 47 |
+
(160, 150, 20),
|
| 48 |
+
(0, 163, 255),
|
| 49 |
+
(140, 140, 140),
|
| 50 |
+
(250, 10, 15),
|
| 51 |
+
(20, 255, 0),
|
| 52 |
+
(31, 255, 0),
|
| 53 |
+
(255, 31, 0),
|
| 54 |
+
(255, 224, 0),
|
| 55 |
+
(153, 255, 0),
|
| 56 |
+
(0, 0, 255),
|
| 57 |
+
(255, 71, 0),
|
| 58 |
+
(0, 235, 255),
|
| 59 |
+
(0, 173, 255),
|
| 60 |
+
(31, 0, 255),
|
| 61 |
+
(11, 200, 200),
|
| 62 |
+
(255, 82, 0),
|
| 63 |
+
(0, 255, 245),
|
| 64 |
+
(0, 61, 255),
|
| 65 |
+
(0, 255, 112),
|
| 66 |
+
(0, 255, 133),
|
| 67 |
+
(255, 0, 0),
|
| 68 |
+
(255, 163, 0),
|
| 69 |
+
(255, 102, 0),
|
| 70 |
+
(194, 255, 0),
|
| 71 |
+
(0, 143, 255),
|
| 72 |
+
(51, 255, 0),
|
| 73 |
+
(0, 82, 255),
|
| 74 |
+
(0, 255, 41),
|
| 75 |
+
(0, 255, 173),
|
| 76 |
+
(10, 0, 255),
|
| 77 |
+
(173, 255, 0),
|
| 78 |
+
(0, 255, 153),
|
| 79 |
+
(255, 92, 0),
|
| 80 |
+
(255, 0, 255),
|
| 81 |
+
(255, 0, 245),
|
| 82 |
+
(255, 0, 102),
|
| 83 |
+
(255, 173, 0),
|
| 84 |
+
(255, 0, 20),
|
| 85 |
+
(255, 184, 184),
|
| 86 |
+
(0, 31, 255),
|
| 87 |
+
(0, 255, 61),
|
| 88 |
+
(0, 71, 255),
|
| 89 |
+
(255, 0, 204),
|
| 90 |
+
(0, 255, 194),
|
| 91 |
+
(0, 255, 82),
|
| 92 |
+
(0, 10, 255),
|
| 93 |
+
(0, 112, 255),
|
| 94 |
+
(51, 0, 255),
|
| 95 |
+
(0, 194, 255),
|
| 96 |
+
(0, 122, 255),
|
| 97 |
+
(0, 255, 163),
|
| 98 |
+
(255, 153, 0),
|
| 99 |
+
(0, 255, 10),
|
| 100 |
+
(255, 112, 0),
|
| 101 |
+
(143, 255, 0),
|
| 102 |
+
(82, 0, 255),
|
| 103 |
+
(163, 255, 0),
|
| 104 |
+
(255, 235, 0),
|
| 105 |
+
(8, 184, 170),
|
| 106 |
+
(133, 0, 255),
|
| 107 |
+
(0, 255, 92),
|
| 108 |
+
(184, 0, 255),
|
| 109 |
+
(255, 0, 31),
|
| 110 |
+
(0, 184, 255),
|
| 111 |
+
(0, 214, 255),
|
| 112 |
+
(255, 0, 112),
|
| 113 |
+
(92, 255, 0),
|
| 114 |
+
(0, 224, 255),
|
| 115 |
+
(112, 224, 255),
|
| 116 |
+
(70, 184, 160),
|
| 117 |
+
(163, 0, 255),
|
| 118 |
+
(153, 0, 255),
|
| 119 |
+
(71, 255, 0),
|
| 120 |
+
(255, 0, 163),
|
| 121 |
+
(255, 204, 0),
|
| 122 |
+
(255, 0, 143),
|
| 123 |
+
(0, 255, 235),
|
| 124 |
+
(133, 255, 0),
|
| 125 |
+
(255, 0, 235),
|
| 126 |
+
(245, 0, 255),
|
| 127 |
+
(255, 0, 122),
|
| 128 |
+
(255, 245, 0),
|
| 129 |
+
(10, 190, 212),
|
| 130 |
+
(214, 255, 0),
|
| 131 |
+
(0, 204, 255),
|
| 132 |
+
(20, 0, 255),
|
| 133 |
+
(255, 255, 0),
|
| 134 |
+
(0, 153, 255),
|
| 135 |
+
(0, 41, 255),
|
| 136 |
+
(0, 255, 204),
|
| 137 |
+
(41, 0, 255),
|
| 138 |
+
(41, 255, 0),
|
| 139 |
+
(173, 0, 255),
|
| 140 |
+
(0, 245, 255),
|
| 141 |
+
(71, 0, 255),
|
| 142 |
+
(122, 0, 255),
|
| 143 |
+
(0, 255, 184),
|
| 144 |
+
(0, 92, 255),
|
| 145 |
+
(184, 255, 0),
|
| 146 |
+
(0, 133, 255),
|
| 147 |
+
(255, 214, 0),
|
| 148 |
+
(25, 194, 194),
|
| 149 |
+
(102, 255, 0),
|
| 150 |
+
(92, 0, 255)]
|
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from ade20k_colors import colors
|
| 7 |
+
|
| 8 |
+
from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
beit_models = ['microsoft/beit-base-finetuned-ade-640-640',
|
| 12 |
+
'microsoft/beit-large-finetuned-ade-640-640']
|
| 13 |
+
|
| 14 |
+
models = [BeitForSemanticSegmentation.from_pretrained(m) for m in beit_models]
|
| 15 |
+
extractors = [BeitFeatureExtractor.from_pretrained(m) for m in beit_models]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def apply_colors(img):
|
| 19 |
+
ret = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
|
| 20 |
+
|
| 21 |
+
for y in range(img.shape[0]):
|
| 22 |
+
for x in range(img.shape[1]):
|
| 23 |
+
ret[y,x] = colors[np.argmax(img[y,x])]
|
| 24 |
+
|
| 25 |
+
return ret
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def inference(image, chosen_model):
|
| 29 |
+
feature_extractor = extractors[chosen_model]
|
| 30 |
+
model = models[chosen_model]
|
| 31 |
+
|
| 32 |
+
inputs = feature_extractor(images=image, return_tensors='pt')
|
| 33 |
+
outputs = model(**inputs)
|
| 34 |
+
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
|
| 37 |
+
output = torch.sigmoid(logits).detach().numpy()[0]
|
| 38 |
+
output = np.transpose(output, (1,2,0))
|
| 39 |
+
|
| 40 |
+
output = apply_colors(output)
|
| 41 |
+
|
| 42 |
+
return cv2.resize(output, image.shape[1::-1])
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
inputs = [gr.inputs.Image(label='Input Image'),
|
| 46 |
+
gr.inputs.Radio(['Base', 'Large'], label='BEiT Model', type='index')]
|
| 47 |
+
|
| 48 |
+
gr.Interface(
|
| 49 |
+
inference,
|
| 50 |
+
inputs,
|
| 51 |
+
gr.outputs.Image(label='Output'),
|
| 52 |
+
title='BEiT - Semantic Segmentation',
|
| 53 |
+
description='BEIT: BERT Pre-Training of Image Transformers',
|
| 54 |
+
examples=[['images/armchair.jpg', 'Base'],
|
| 55 |
+
['images/cat.jpg', 'Base'],
|
| 56 |
+
['images/plant.jpg', 'Large']]
|
| 57 |
+
).launch()
|
images/armchair.jpg
ADDED
|
images/cat.jpg
ADDED
|
images/plant.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python-headless
|
| 2 |
+
torch
|