File size: 3,804 Bytes
ccbd4ac
 
44caf9f
ccbd4ac
 
 
 
 
44caf9f
 
ccbd4ac
 
9c95dae
ccbd4ac
44caf9f
ccbd4ac
44caf9f
 
 
ccbd4ac
44caf9f
ccbd4ac
 
 
 
 
 
 
 
 
 
 
afa25e8
44caf9f
ccbd4ac
 
44caf9f
 
 
ccbd4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585c098
55c11e6
44caf9f
 
 
 
 
 
 
 
 
 
 
e27972a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
import transformers
import torch

# Load the model and tokenizer
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")

# Define the function for sentiment analysis
@st.cache_resource
def predict_sentiment(text):
    # Load the pipeline
    pipeline = transformers.pipeline("sentiment-analysis", model = "DeeeTeeee01/mytest_trainer_roberta-base", tokenizer= "DeeeTeeee01/mytest_trainer_roberta-base")

    
    # Predict the sentiment
    prediction = pipeline(text)
    sentiment = prediction[0]["label"]
    score = prediction[0]["score"]

    return sentiment, score

# Setting the page configurations
st.set_page_config(
    page_title="Sentiment Analysis App",
    page_icon=":smile:",
    layout="wide",
    initial_sidebar_state="auto",
)

# Add description and title
st.write("""
# Twit Analyzer
Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
""")

# Add image
image = st.image("sentiment.jpeg", width=400)

# Get user input
text = st.text_input("Type here:")

# Add Predict button
predict_button = st.button("Predict")

# Define the CSS style for the app
st.markdown(
"""
<style>
body {
    background: linear-gradient(to right, #4e79a7, #86a8e7);
    color: lightblue;
}
h1 {
    color: #4e79a7;
}
</style>
""",
unsafe_allow_html=True
)

# Show sentiment output
if predict_button and text:
    sentiment, score = predict_sentiment(text)
    if sentiment == "Positive":
        st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
    elif sentiment == "Negative":
        st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
    else:
        st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")




# import streamlit as st
# import transformers
# import torch

# # Load the model and tokenizer
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")

# # Define the function for sentiment analysis
# @st.cache_resource
# def predict_sentiment(text):
#     # Load the pipeline.
#     pipeline = transformers.pipeline("sentiment-analysis")

#     # Predict the sentiment.
#     prediction = pipeline(text)
#     sentiment = prediction[0]["label"]
#     score = prediction[0]["score"]

#     return sentiment, score

# # Setting the page configurations
# st.set_page_config(
#     page_title="Sentiment Analysis App",
#     page_icon=":smile:",
#     layout="wide",
#     initial_sidebar_state="auto",
# )

# # Add description and title
# st.write("""
# # Predict if your text is  Positive, Negative or Nuetral ...
# Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
# """)


# # Add image
# image = st.image("sentiment.jpeg", width=400)

# # Get user input
# text = st.text_input("Type here:")

# # Define the CSS style for the app
# st.markdown(
# """
# <style>
# body {
#     background-color: #f5f5f5;
# }
# h1 {
#     color: #4e79a7;
# }
# </style>
# """,
# unsafe_allow_html=True
# )

# # Show sentiment output
# if text:
#     sentiment, score = predict_sentiment(text)
#     if sentiment == "Positive":
#         st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
#     elif sentiment == "Negative":
#         st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
#     else:
#         st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")