DebopamC's picture
Update utils/llm_logic.py
0074668 verified
# llm_logic.py
# from langchain_ollama import ChatOllama
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
import streamlit as st
import multiprocessing
from langchain_community.chat_models import ChatLlamaCpp
from langchain_google_genai import ChatGoogleGenerativeAI
local_model = "qwen2.5-coder-3b-instruct-q4_k_m.gguf"
stop = [
"<|image_pad|>",
"<|endoftext|>",
"<|quad_end|>",
"<|object_ref_end|>",
"<|object_ref_start|>",
"<|file_sep|>",
"<|repo_name|>",
"<|PAD_TOKEN|>",
"<|quad_start|>",
"<|box_start|>",
"<|box_end|>",
"<|im_start|>",
"</tool_call>",
"<|video_pad|>",
"<tool_call>",
"<|im_end|>",
"<|vision_",
"<|fim_",
]
def get_local_llm():
llm = ChatLlamaCpp(
temperature=0.0,
model_path=local_model,
n_ctx=10000,
n_gpu_layers=0,
n_batch=1024,
max_tokens=500,
n_threads=multiprocessing.cpu_count() - 1,
top_p=0.95,
verbose=False,
stop=stop,
)
# llm = ChatOllama(
# model="qwen2.5-coder:3b",
# temperature=0.0,
# num_predict=150,
# top_p=0.95,
# stop=stop,
# )
return llm
local_llm = get_local_llm()
def get_gemini_llm():
gemini = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
top_p=0.95,
)
return gemini
gemini_llm = get_gemini_llm()
db_schema = """### **customers**
| | customer_id | customer_zip_code_prefix | customer_city | customer_state |
|------:|:--------------|---------------------------:|:----------------|:-----------------|
| 21921 | 0tgYlOTGgpO6 | 79230 | russas | CE |
| 9748 | jGhRQF3CIew4 | 81460 | joao monlevade | MG |
| 22679 | 1UutQTIhBvcP | 94480 | pelotas | RS |
Rows: 38279, Columns: 4
---
### **order_items**
| | order_id | product_id | seller_id | price | shipping_charges |
|------:|:-------------|:-------------|:-------------|--------:|-------------------:|
| 19729 | PDEzZdebLSn3 | aBpYjaBcwz6e | bzfcwRPnZzVO | 55.83 | 27.8 |
| 6001 | R7bIPjjYqlHP | ZM2JJXV5m9hl | Ivbw25fb5t2Z | 100 | 42.05 |
| 282 | Biqo21nETaMO | XqmdGKRbTetH | P2nCHWuo0HC0 | 113.49 | 91.32 |
Rows: 38279, Columns: 5
---
### **orders**
| | order_id | customer_id | order_purchase_timestamp | order_approved_at |
|------:|:-------------|:--------------|:---------------------------|:--------------------|
| 7294 | PMqwQc01iDTJ | c9ueC6k6V5WS | 2018-06-19 21:23:48 | 2018-06-20 08:38:30 |
| 13800 | P4l8R2Qat5n7 | ovKkGaXi5TmN | 2018-01-05 08:26:03 | 2018-01-05 08:47:20 |
| 17679 | NxIseZjAQCdC | o9qzmUQVJOxA | 2018-01-28 23:46:53 | 2018-01-28 23:58:31 |
Rows: 38279, Columns: 4
---
### **payments**
| | order_id | payment_sequential | payment_type | payment_installments | payment_value |
|------:|:-------------|---------------------:|:---------------|-----------------------:|----------------:|
| 35526 | cQXl0pQtiMad | 1 | wallet | 1 | 172.58 |
| 35799 | olImD2k316Gz | 1 | credit_card | 3 | 16.78 |
| 13278 | G9MJYXXtPZSz | 1 | credit_card | 10 | 221.86 |
Rows: 38279, Columns: 5
---
### **products**
| | product_id | product_category_name | product_weight_g | product_length_cm | product_height_cm | product_width_cm |
|------:|:-------------|:------------------------|-------------------:|--------------------:|--------------------:|-------------------:|
| 18191 | hpiXwRzTkhkL | bed_bath_table | 1150 | 40 | 9 | 50 |
| 2202 | iPoRkE7dkmlc | toys | 15800 | 38 | 62 | 57 |
| 27442 | hrjNaMt3Wyo5 | toys | 1850 | 37 | 22 | 40 |
Rows: 38279, Columns: 6
"""
# Improved SQL generation prompt
sql_system_prompt = """You are a highly skilled natural language to SQL translator. Your goal is to generate accurate SQL queries based on the provided database schema. You must only return the SQL query and no other text or explanations.
DATABASE SCHEMA:
{db_schema}
The timestamp columns are of type 'VarChar'. I am using DuckDB to execute the queries.
"""
sql_chat_template = """
Translate the following natural language question into an accurate SQL query. Return only the SQL query.
QUESTION: {question}
### assistant:
"""
# Improved prompt for classifying the question
classification_system_prompt = """You are an expert at classifying user questions as requiring a SQL query or being generic based on the provided database schema. Your response should be ONLY 'SQL' or 'GENERIC'.
A question requires a SQL query if it asks for specific data that can be retrieved from the tables in the schema. A question is generic if it asks for explanations, definitions, or information not directly retrievable through a SQL query on the given schema.
Consider the following database schema:
{db_schema}
Here are some examples:
Question: What are the names of all customers?
Response: SQL
Question: Tell me about the sales table.
Response: GENERIC
Question: How much did product 'Product A' sell for?
Response: SQL
Question: What is a primary key?
Response: GENERIC
"""
classification_chat_template = """
Determine if the following question requires a SQL query based on the database schema. Respond with 'SQL' or 'GENERIC'.
QUESTION: {question}
### assistant:
"""
def classify_question(question: str, llm, use_default_schema: bool = True):
classification_system_prompt_local = classification_system_prompt # Initialize here
if use_default_schema:
classification_system_prompt_local = classification_system_prompt_local.format(
db_schema=db_schema
)
else:
uploaded_schema = st.session_state.uploaded_df_schema
classification_system_prompt_local = classification_system_prompt_local.format(
db_schema=uploaded_schema
)
classification_messages = [
SystemMessage(content=classification_system_prompt_local),
HumanMessage(content=classification_chat_template.format(question=question)),
]
response = llm.invoke(classification_messages)
return response.content.strip().upper()
def generate_llm_response(prompt: str, llm: str, use_default_schema: bool = True):
if llm == "gemini":
llm = gemini_llm
else:
llm = local_llm
question_type = classify_question(prompt, llm, use_default_schema)
chosen_schema = None
if use_default_schema:
chosen_schema = db_schema
sql_system_prompt_local = sql_system_prompt.format(db_schema=chosen_schema)
else:
uploaded_schema = st.session_state.uploaded_df_schema
chosen_schema = uploaded_schema
sql_system_prompt_local = sql_system_prompt.format(db_schema=chosen_schema)
# Retrieve the chat history from the session state
chat_history = st.session_state.get("chat_history", [])
if "SQL" in question_type:
print("SQL question detected")
st.toast("Detected Task: SQL Query Generation", icon="🚨")
formatted_prompt = sql_chat_template.format(question=prompt)
# Create the messages list, including the system prompt and the chat history
messages_for_llm = [SystemMessage(content=sql_system_prompt_local)]
for message in chat_history:
if isinstance(message, HumanMessage):
messages_for_llm.append(HumanMessage(content=message.content))
elif isinstance(message, AIMessage):
# Only include the assistant's text response, not the additional kwargs
messages_for_llm.append(AIMessage(content=message.content))
messages_for_llm.append(HumanMessage(content=formatted_prompt))
full_response = ""
for chunk in llm.stream(messages_for_llm):
full_response += chunk.content
yield f"<sql>\n```sql\n{full_response.strip()}\n```\n</sql>"
elif "GENERIC" in question_type:
print("Generic question detected")
st.toast("Detected Task: Generic QA", icon="🚨")
generic_prompt = f"Answer the following question related to SQL or coding:\n\nQUESTION: {prompt}\n\n### assistant:"
# Create the messages list, including the system prompt and the chat history
messages_for_generic = [
SystemMessage(
content=f"You are a helpful assistant finetuned from Qwen2.5-coder:3B-Instruct for answering questions about SQL.\nYou have a database with the Database Schema:\n{chosen_schema}.\n"
)
]
for message in chat_history:
if isinstance(message, HumanMessage):
messages_for_generic.append(HumanMessage(content=message.content))
elif isinstance(message, AIMessage):
# Only include the assistant's text response, not the additional kwargs
messages_for_generic.append(AIMessage(content=message.content))
messages_for_generic.append(HumanMessage(content=generic_prompt))
generic_response = ""
for chunk in llm.stream(messages_for_generic):
generic_response += chunk.content
yield generic_response
else:
yield "I am sorry, I am small language model fine-tuned specifically to answer questions that can be solved using SQL. I won't be able to answer this question."