File size: 12,779 Bytes
208f0d8 c1157e4 208f0d8 3cea541 208f0d8 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 44af237 3cea541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
---
title: Banking Dispute Resolution System
emoji: π€
colorFrom: green
colorTo: gray
pinned: false
sdk: docker
---
# AI-Powered Dispute Resolution
[](https://github.com/DebopamParam/AI-Powered_Dispute_Resolution/actions)
[](https://github.com/DebopamParam/AI-Powered_Dispute_Resolution/releases)
[](https://github.com/DebopamParam/AI-Powered_Dispute_Resolution/blob/main/LICENSE)
[](https://www.python.org/)
[](https://fastapi.tiangolo.com/)
[](https://streamlit.io/)
[](https://langchain.com/)
[](https://ai.google.dev/)
[](https://huggingface.co/spaces)
## π Table of Contents
- [Overview](#overview)
- [Key Features](#key-features)
- [Architecture Overview](#architecture-overview)
- [Technologies Used](#technologies-used)
- [Prerequisites](#prerequisites)
- [Installation](#installation)
- [Configuration](#configuration)
- [Usage](#usage)
- [API Documentation](#api-documentation)
- [Testing](#testing)
- [Deployment](#deployment)
- [Contributing](#contributing)
- [License](#license)
- [Acknowledgments](#acknowledgments)
- [Contact/Support](#contactsupport)
- [Disclaimer](#disclaimer)
## π Overview
The AI-Powered Dispute Resolution system is designed to streamline the process of analyzing and resolving disputes using advanced AI technologies. This application leverages large language models to analyze dispute details, identify key issues, suggest potential solutions, and provide legal references. The system is primarily designed to operate as a standalone application on Hugging Face Spaces, combining a user-friendly Streamlit frontend with a robust FastAPI backend.
## β¨ Key Features
### AI-Powered Analysis
- **Intelligent Dispute Processing**: Analyzes dispute details using Gemini API to extract key information
- **Solution Recommendation**: Suggests potential resolutions based on similar historical cases
- **Legal Reference Integration**: Provides relevant legal references and precedents
- **Continuous Learning**: System improves over time by incorporating feedback from resolved cases
### Frontend Capabilities
- **Intuitive Interface**: User-friendly Streamlit interface for submitting and tracking disputes
- **Dashboard**: Real-time visualization of dispute status and analytics
- **Document Upload**: Support for uploading relevant documents in various formats
- **Explainable AI**: Clear explanations of how the AI reached its conclusions
### Backend Robustness
- **Secure API**: FastAPI backend ensuring secure data processing
- **Efficient Data Management**: Optimized database schema for quick retrieval and analysis
- **Scalable Architecture**: Designed to handle increasing volumes of disputes
- **Comprehensive Logging**: Detailed activity logs for auditing purposes
### Deployment Strategy
- **Hugging Face Integration**: Seamless deployment on Hugging Face Spaces
- **Single Container Solution**: Entire application packaged in a single Docker container
- **Environment Variable Configuration**: Easy configuration through environment variables
## ποΈ Architecture Overview
### High-Level System Diagram
```mermaid
graph TD
A[User] -->|Submits Dispute| B[Streamlit Frontend]
B -->|API Request| C[FastAPI Backend]
C -->|Query| D[Database]
C -->|Analysis Request| E[Gemini API]
E -->|Analysis Results| C
C -->|Response| B
B -->|Display Results| A
style A fill:#f9f,stroke:#333,stroke-width:2px
style B fill:#bbf,stroke:#333,stroke-width:2px
style C fill:#bfb,stroke:#333,stroke-width:2px
style D fill:#fbb,stroke:#333,stroke-width:2px
style E fill:#bff,stroke:#333,stroke-width:2px
```
The diagram above illustrates the flow of data through the system, from user input to AI analysis and result presentation.
### Component Interaction Diagram
```mermaid
sequenceDiagram
participant User
participant Frontend as Streamlit Frontend
participant Backend as FastAPI Backend
participant DB as Database
participant AI as Gemini API
User->>Frontend: Submit dispute details
Frontend->>Backend: POST /api/disputes
Backend->>DB: Store dispute data
Backend->>AI: Request analysis
AI->>Backend: Return analysis results
Backend->>DB: Update with analysis
Backend->>Frontend: Return dispute ID & status
Frontend->>User: Display confirmation
User->>Frontend: View analysis results
Frontend->>Backend: GET /api/disputes/{id}
Backend->>DB: Retrieve dispute data
DB->>Backend: Return dispute data
Backend->>Frontend: Return complete dispute info
Frontend->>User: Display analysis results
```
This sequence diagram shows the typical flow when a user submits a dispute for analysis.
### Deployment Architecture Diagram
```mermaid
graph TD
A[Hugging Face Space] -->|Container| B[Docker Container]
B -->|Port 8000| C[FastAPI Backend]
B -->|Port 8501| D[Streamlit Frontend]
C -->|Internal Communication| D
C -->|Database| E[SQLite]
style A fill:#f9f,stroke:#333,stroke-width:2px
style B fill:#bbf,stroke:#333,stroke-width:2px
style C fill:#bfb,stroke:#333,stroke-width:2px
style D fill:#fbb,stroke:#333,stroke-width:2px
style E fill:#bff,stroke:#333,stroke-width:2px
```
The deployment architecture shows how the application is packaged in a single Docker container for deployment on Hugging Face Spaces.
### Database Schema Diagram
```mermaid
erDiagram
DISPUTES {
string id PK
string title
string description
datetime created_at
string status
string user_id FK
}
ANALYSIS {
string id PK
string dispute_id FK
string key_issues
string suggested_solutions
string legal_references
datetime created_at
}
USERS {
string id PK
string username
string email
datetime created_at
}
FEEDBACK {
string id PK
string analysis_id FK
int rating
string comments
datetime created_at
}
DISPUTES ||--o{ ANALYSIS : has
USERS ||--o{ DISPUTES : submits
ANALYSIS ||--o{ FEEDBACK : receives
```
This ER diagram shows the database structure used to store dispute information, analysis results, user data, and feedback.
### User Flow Diagram
```mermaid
graph TD
A[Start] --> B[Create Account/Login]
B --> C[Submit New Dispute]
C --> D[Upload Supporting Documents]
D --> E[View Initial AI Analysis]
E --> F{Satisfied with Analysis?}
F -->|Yes| G[Accept Recommendations]
F -->|No| H[Request Detailed Analysis]
H --> I[Review Detailed Analysis]
I --> J{Accept Solution?}
J -->|Yes| K[Implement Solution]
J -->|No| L[Provide Feedback]
L --> M[Receive Refined Analysis]
M --> J
G --> N[Provide Feedback on Process]
K --> N
N --> O[End]
style A fill:#f9f,stroke:#333,stroke-width:2px
style F fill:#bbf,stroke:#333,stroke-width:2px
style J fill:#bbf,stroke:#333,stroke-width:2px
style O fill:#f9f,stroke:#333,stroke-width:2px
```
This diagram illustrates the typical user journey through the dispute resolution process.
## π οΈ Technologies Used
- [Python 3.9+](https://www.python.org/) - Programming language
- [FastAPI](https://fastapi.tiangolo.com/) - Backend API framework
- [Streamlit](https://streamlit.io/) - Frontend framework
- [LangChain](https://langchain.com/) - AI integration framework
- [Gemini API](https://ai.google.dev/) - AI language model
- [SQLite](https://www.sqlite.org/) - Database
- [Docker](https://www.docker.com/) - Containerization
- [Hugging Face Spaces](https://huggingface.co/spaces) - Deployment platform
## π Prerequisites
To run this application, you need:
- Python 3.9 or higher
- Docker and Docker Compose
- Gemini API key
- Hugging Face account (for deployment)
## π§ Installation
1. Clone the repository:
```bash
git clone https://github.com/DebopamParam/AI-Powered_Dispute_Resolution.git
cd AI-Powered_Dispute_Resolution
```
2. Create a `.env` file in the root directory with the following variables:
```
GEMINI_API_KEY=your_gemini_api_key
DATABASE_URL=sqlite:///./app.db
DEBUG=False
```
3. Build the Docker image:
```bash
docker build -t dispute-resolution-app .
```
## βοΈ Configuration
### Environment Variables
The application can be configured using the following environment variables:
- `GEMINI_API_KEY` - Your Gemini API key
- `DATABASE_URL` - Database connection string (defaults to SQLite)
- `DEBUG` - Enable debug mode (True/False)
- `LOG_LEVEL` - Logging level (INFO, DEBUG, ERROR)
- `MAX_UPLOAD_SIZE` - Maximum file upload size in MB
### Optional Configuration Files
You can also create the following configuration files:
- `config/app_config.json` - Application-specific settings
- `config/model_config.json` - AI model parameters
## π Usage
### Running Locally
1. Start the application using Docker Compose:
```bash
docker-compose up
```
2. Navigate to http://localhost:8501 in your web browser
### Quickstart Guide
1. Create an account or log in
2. Click on "Create New Dispute"
3. Fill in the dispute details:
- Title
- Description
- Parties involved
- Relevant dates
4. Upload any supporting documents
5. Click "Submit for Analysis"
6. Wait for the AI to analyze the dispute
7. Review the analysis results, which include:
- Key issues identified
- Suggested solutions
- Legal references
8. Provide feedback on the analysis
9. Implement the recommended solutions
## π API Documentation
The API documentation is automatically generated and available at `/docs` when running the application. It provides:
- Complete list of endpoints
- Request and response schemas
- Authentication requirements
- Example requests
- Interactive testing capabilities
## π§ͺ Testing
To run the tests:
```bash
# Run all tests
python -m pytest
# Run specific test file
python -m pytest tests/test_api.py
# Run with coverage report
python -m pytest --cov=app tests/
```
## π Deployment
### Deploying to Hugging Face Spaces
1. Fork this repository
2. Create a new Space on Hugging Face:
- Type: Docker
- Repository: Your forked repository
3. Add the following secrets to your Space:
- `GEMINI_API_KEY` - Your Gemini API key
4. The Space will automatically build and deploy the application
### Deploying Locally with Docker Compose
1. Make sure Docker and Docker Compose are installed
2. Create the `.env` file as described in the Installation section
3. Run the following command:
```bash
docker-compose up -d
```
4. Access the application at http://localhost:8501
## π€ Contributing
Contributions are welcome! Please follow these steps:
1. Fork the repository
2. Create a new branch (`git checkout -b feature/amazing-feature`)
3. Make your changes
4. Commit your changes (`git commit -m 'Add some amazing feature'`)
5. Push to the branch (`git push origin feature/amazing-feature`)
6. Open a Pull Request
Please make sure your code follows the project's coding standards and includes appropriate tests.
## π License
This project is licensed under the MIT License - see the [LICENSE](https://github.com/DebopamParam/AI-Powered_Dispute_Resolution/blob/main/LICENSE) file for details.
## π Acknowledgments
- [FastAPI](https://fastapi.tiangolo.com/) for the efficient API framework
- [Streamlit](https://streamlit.io/) for the intuitive frontend framework
- [LangChain](https://langchain.com/) for simplifying AI integration
- [Gemini API](https://ai.google.dev/) for the powerful language model
- [Hugging Face Spaces](https://huggingface.co/spaces) for the deployment platform
## π Contact/Support
- For bug reports and feature requests, please [open an issue](https://github.com/DebopamParam/AI-Powered_Dispute_Resolution/issues)
## β οΈ Disclaimer
This project is a prototype and should be used with caution. The AI-generated recommendations should not be considered legal advice. Always consult with a qualified legal professional for legal matters. |