import os
import logging
from fastapi import FastAPI, Request
import subprocess
from huggingface_hub import InferenceClient, login  #, configure_http_backend, get_session
import langid
# import requests


# # Create a factory function that returns a requests.Session object
# def backend_factory() -> requests.Session:
#     session = requests.Session()
#     # session.proxies = {"http": "http://your-proxy-host:your-proxy-port", 
#     #                    "https": "http://your-proxy-host:your-proxy-port"}
#     return session

# # Set our custom backend factory as the default HTTP backend
# configure_http_backend(backend_factory=backend_factory)

# # For debugging
# session = get_session()
# print("Configured session:", session)

# Configure logging
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
logger = logging.getLogger(__name__)


# Get Hugging Face API token from environment variable
HF_HUB_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not HF_HUB_TOKEN:
    raise ValueError("Missing Hugging Face API token. Please set HUGGINGFACEHUB_API_TOKEN.")


# Login and initialize the InferenceClient
login(token=HF_HUB_TOKEN)
client = InferenceClient(token=HF_HUB_TOKEN)


# Create FastAPI app instance
app = FastAPI()


def detect_language(user_input):
    """
    Detect the language of the input text.
    Returns "hebrew" if Hebrew, "english" if English, or "unsupported" otherwise.
    """
    try:
        lang, _ = langid.classify(user_input)
        if lang == "he":
            return "hebrew"
        elif lang == "en":
            return "english"
        else:
            return "unsupported"
    except Exception as e:
        logger.error(f"Language detection error: {e}")
        return "unsupported"


def generate_response(text):
    """
    Generate a response based on the input text.
    Selects a prompt and model according to the detected language,
    and calls the Hugging Face chat completion API.
    """
    language = detect_language(text)
    if language == "hebrew":
        content = "תשמור על תשובה קצרה, אבל תספר איך קיבלת את ההחלטה, " + text
        model = "huggingface/mistralai/Mistral-Nemo-Instruct-2407"  # "yam-peleg/Hebrew-Gemma-11B-Instruct" 
    elif language == "english":
        content = "keep it short but tell your decision making process, " + text
        model = "huggingface/mistralai/Mistral-Nemo-Instruct-2407"
    else:
        return "Sorry, I only support Hebrew and English."

    messages = [{"role": "user", "content": content}]

    try:
        completion = client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=2048,
            temperature=0.5,
            top_p=0.7
        )
        return completion.choices[0].message.content
    except Exception as e:
        logger.error(f"Error generating response: {e}")
        return "Error: Could not generate response."


@app.post("/generate_response")
async def generate_text(request: Request):
    """
    API endpoint to generate a response from the chat model.
    Expects a JSON with a "text" field.
    """
    try:
        data = await request.json()
        text = data.get("text", "").strip()
        if not text:
            return {"error": "No text provided"}
        response = generate_response(text)
        return {"response": response}
    except Exception as e:
        logger.error(f"Error processing request: {e}")
        return {"error": "An unexpected error occurred."}


@app.get("/")
async def root():
    """
    Root endpoint to check that the API is running.
    """
    return {"message": "Decision Helper API is running!"}


def run_bot():
    """
    Start the Telegram bot by running bot.py as a subprocess.
    """
    logger.info("Starting Telegram bot...")
    subprocess.Popen(["python3", "bot.py"])


if __name__ == "__main__":
    # When running app.py directly, start the bot as well.
    run_bot()
    # Uncomment the next lines to run the FastAPI server standalone.
    # Start the FastAPI server with uvicorn
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)