Spaces:
Sleeping
Sleeping
File size: 37,456 Bytes
b9a2f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
# =============================================================================
# COPYRIGHT NOTICE
# -----------------------------------------------------------------------------
# This source code is the intellectual property of Aditya Pandey.
# Any unauthorized reproduction, distribution, or modification of this code
# is strictly prohibited.
# If you wish to use or modify this code for your project, please ensure
# to give full credit to Aditya Pandey.
#
# PROJECT DESCRIPTION
# -----------------------------------------------------------------------------
# This code is for a chatbot crafted with powerful prompts, designed to
# utilize the Gemini API. It is tailored to assist cybersecurity researchers.
#
# Author: Aditya Pandey
# =============================================================================
import os
import streamlit as st
from PIL import Image
import textwrap
from io import BytesIO
import io
import chardet
from constants import gemini_key
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.llms import OpenAI
from langchain import PromptTemplate
from langchain.chains import LLMChain
import google.generativeai as genai
from langchain.memory import ConversationBufferMemory
from google.generativeai.types import HarmCategory, HarmBlockThreshold, HarmProbability
from google.generativeai import GenerativeModel
from langchain.chains import SequentialChain
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import requests
from pefile import PE, PEFormatError
import re
import hashlib
# VirusTotal API details
VIRUSTOTAL_API_KEY = 'ed48e6407e0b7975be7d19c797e1217f500183c9ae84d1119af8628ba4c98c3d'
# API configuration
os.environ["GOOGLE_API_KEY"] = gemini_key
genai.configure(api_key=os.environ['GOOGLE_API_KEY'])
# Define correct username and password
CORRECT_USERNAME = "Oxsecure"
CORRECT_PASSWORD = "Oxsecure@123"
# Streamlit framework
st.set_page_config(
page_title="OxSecure",
page_icon="π",
layout="wide"
)
# Load custom CSS
def load_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Load the CSS file
load_css("ui/Style.css")
def render_login_page():
st.title("Oxsecure π§ - Your Companion! π")
st.markdown("---")
st.image('ui/Ox.jpg', width=200, use_column_width='always')
st.write("Unlock the realm of cybersecurity expertise with OxSecure π§ π Safeguarding your data. π Let's chat about security topics and empower your knowledge! Product of CyberBULL ποΈ")
st.markdown("---")
st.write("Please log in to continue.")
st.write("π³ Default Credentials Username = Oxsecure , Password = Oxsecure@123 ")
st.divider()
st.markdown("""
**Welcome to OxSecure Intelligence** π your ultimate destination for comprehensive and up-to-date information on cybersecurity. Whether you're a professional, student, or enthusiast, this app is designed to empower you with the knowledge and tools needed to navigate the complex world of cybersecurity.
**Features**
**π In-Depth Information on Cybersecurity Topics:**
Explore a wide range of topics in cybersecurity with detailed articles and guides. This app covers everything from basic concepts to advanced techniques, ensuring you have access to the information you need to stay informed and secure.
**π» Secure Coding Principles:**
Learn the best practices for secure coding to protect your software from vulnerabilities. These guides provide practical tips and examples to help you write code that is both functional and secure.
**π¨ Major Cyberattacks:**
Stay updated on major cyberattacks and learn from real-world cases. Understand the methods used by attackers, the impact of these attacks, and the measures you can take to protect yourself and your organization.
**βοΈ Security Misconfiguration:**
Identify common security misconfigurations and learn how to fix them. These resources help you ensure that your systems are configured correctly to prevent breaches and unauthorized access.
**π VirusTotal File Analysis:**
Upload your files for in-depth malware scanning using the VirusTotal API. Instantly analyze your files and receive reports with threat intelligence on potential malware, ensuring your files are clean and secure.
**π Comprehensive File Analysis:**
Use this app to scan a variety of file types like PDFs, images, executables, and logs. From extracting metadata to analyzing file content, OxSecure Intelligence ensures thorough and real-time security analysis.
**π€ Powered by Gemini LLM:**
This app leverages the powerful Gemini LLM to provide you with accurate and relevant information. Gemini LLM enhances the content with cutting-edge insights and helps you get the answers you need quickly and efficiently.
**πΌοΈ Image Analysis with Imagen:**
Utilize the Imagen feature to extract detailed information from images. Simply upload an image, and our app will analyze it and provide responses tailored to your queries. Perfect for identifying vulnerabilities, assessing security measures, and more.
**Why Choose OxSecure Intelligence?**
- **π Comprehensive Coverage:** From basic concepts to advanced practices, this app covers all aspects of cybersecurity.
- **π Expert Guidance:** Learn from detailed articles and guides written by cybersecurity experts.
- **β‘ Advanced Tools:** Use powerful AI tools like Gemini LLM, Imagen, and VirusTotal to enhance your learning and problem-solving capabilities.
- **π Stay Updated:** Keep up with the latest trends, threats, and best practices in the cybersecurity field.
Join OxSecure Intelligence today and take your cybersecurity knowledge to the next level! π
""")
st.markdown("---")
linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
st.markdown(" Created with π€π By Aditya Pandey " f"[ LinkedIn π]({linkedin_url})")
username = st.sidebar.text_input("Username π€")
password = st.sidebar.text_input("Password π", type="password")
login_button = st.sidebar.button("Login π«’")
if login_button:
if username == CORRECT_USERNAME and password == CORRECT_PASSWORD:
st.session_state.authenticated = True
st.success("Login successful!")
st.experimental_rerun()
render_main_program()
else:
st.error("Invalid username or password. Please try again.")
def features():
st.write("***π Key Features of OxSecure Intelligence***")
with st.expander("π In-Depth Information on Cybersecurity Topics"):
st.write("""
**Expand Your Cybersecurity Knowledge**
Stay informed with detailed articles and guides covering a wide range of cybersecurity topics. Whether you're
learning basic concepts or exploring advanced techniques, this resource ensures you're well-equipped to handle
the latest cybersecurity challenges.
""")
with st.expander("π» Secure Coding Principles"):
st.write("""
**Write Code that Stands the Test of Time**
Learn essential best practices for writing secure, reliable code. Our secure coding guides offer practical tips
and real-world examples to help you minimize vulnerabilities in your software.
""")
with st.expander("π¨ Major Cyberattacks"):
st.write("""
**Stay Informed on Critical Threats**
Keep up-to-date on the most significant cyberattacks around the world. Analyze real-world incidents, learn the
attack vectors used, and discover defensive strategies to protect against similar threats.
""")
with st.expander("βοΈ Security Misconfiguration"):
st.write("""
**Configure with Confidence**
Learn how to avoid common misconfigurations that leave systems exposed. This section provides a comprehensive
guide to correctly configuring security settings, protecting your organization from unnecessary risks.
""")
with st.expander("π VirusTotal File Analysis"):
st.write("""
**Instant Malware Scanning**
Upload your files to run advanced malware scans via VirusTotal API. Get real-time reports with detailed threat
intelligence and analysis, ensuring your files are secure before you use or share them.
""")
with st.expander("π Comprehensive File Analysis"):
st.write("""
**Analyze Multiple File Types**
OxSecure Intelligence allows you to scan PDFs, images, executables, and logs with ease. From extracting metadata
to conducting thorough file content analysis, you'll have all the tools you need to secure your files.
""")
with st.expander("π€ Powered by Gemini LLM"):
st.write("""
**AI-Powered Insights**
Harness the cutting-edge power of Gemini LLM to get instant, accurate answers to your cybersecurity queries.
With AI-driven insights, you can navigate complex data and extract valuable knowledge faster than ever before.
""")
with st.expander("πΌοΈ Image Analysis with Imagen"):
st.write("""
**Visual Intelligence at Your Fingertips**
Upload images for detailed analysis using the Imagen feature. Whether you're assessing a security measure or
scanning for vulnerabilities, this tool ensures you get the most out of every image.
""")
def use_app():
st.write("***π How to Use OxSecure Intelligence***")
st.write("""
π **OxSecure Intelligence: Use Cases**
OxSecure Intelligence is a comprehensive cybersecurity tool designed to provide in-depth information on various security topics, analyze images, and perform detailed file analysis. The app consists of three powerful tools:
π‘οΈ **1. OxSecure Chat**
***Use Case:***
**OxSecure Chat** allows users to gain a deep understanding of cybersecurity topics by generating detailed outputs based on the entered topics. This tool is ideal for:
- **Learning and Research:** Enter any cybersecurity topic to receive a thorough explanation, including secure coding principles and major attack vectors.
- **Training and Development:** Use the detailed outputs to educate teams or individuals about specific security concepts and practices.
- **Consultation and Advisory:** Provide clients or stakeholders with well-researched and comprehensive information on cybersecurity issues.
**How It Works:**
1. Enter a security topic related to cybersecurity.
2. Receive a detailed response including:
- **Secure Coding Principles:** Best practices and guidelines.
- **Major Attacks:** Common threats and attack methods.
πΌοΈ **2. OxSecure ImaGen**
***Use Case:***
**OxSecure ImaGen** offers advanced image analysis by allowing users to input prompts and retrieve detailed information about the image. This tool is perfect for:
- **Image Verification:** Analyze images to extract metadata and ensure they are authentic and unaltered.
- **Content Analysis:** Understand the content and context of images through custom prompts.
- **Forensic Analysis:** Utilize the tool in digital forensics to scrutinize image details for investigative purposes.
**How It Works:**
1. Upload an image.
2. Enter prompts to specify the desired output.
3. Receive detailed information and insights based on the image content.
π **3. File Analysis**
***Use Case:***
**File Analysis** is designed for thorough examination of files, providing essential metadata, hash information, and integrating with VirusTotal for comprehensive security analysis. This tool is valuable for:
- **File Verification:** Extract metadata and hash information to verify file integrity and authenticity.
- **Threat Detection:** Communicate with VirusTotal API to assess the fileβs security status and identify potential threats.
- **Visual Analytics:** Obtain graphical representations of file analysis results to visualize threat levels and security metrics.
**How It Works:**
1. Upload a file.
2. Extract metadata and hash information.
3. Integrate with VirusTotal API for detailed security analysis.
4. View graphical reports and insights about the file.
---
**OxSecure Intelligence** empowers you with detailed insights and robust analysis tools to enhance your cybersecurity practices and ensure data integrity. Explore these tools to stay ahead of potential threats and make informed decisions!
""")
## Function to load Gemini vision model and get response
def get_gemini_response(input_prompt, image):
Model = genai.GenerativeModel('gemini-1.5-pro')
if input_prompt != "":
response = Model.generate_content([input_prompt, image])
else:
response = Model.generate_content(image)
return response.text
def render_main_program():
st.markdown("# π Unlock the Future of Cybersecurity with OxSecure")
st.divider()
st.markdown("**Where Knowledge Meets Innovation! π Dive into Cyber Brilliance with OxSecure** π€ π")
st.markdown("----")
# Sidebar for navigation
app_choice = st.sidebar.radio("Choose App",
("Features π€Ήπ»ββοΈ",
"OxSecure Chat π€",
"OxSecure ImaGen π¨",
"File Analysis π",
"Help & Uses ππ»"))
#Main content selector
# app_choice = st.selectbox(
# "Choose App",
# ["Features π€Ήπ»ββοΈ", "OxSecure Chat π€", "OxSecure ImaGen π¨", "File Analysis π", "Help & Uses ππ»"]
# )
# Render the selected app based on user's choice
if app_choice == "OxSecure Chat π€":
render_gemini_api_app()
elif app_choice == "OxSecure ImaGen π¨":
render_gemini_vision_app()
elif app_choice == "File Analysis π":
render_file_analysis_app()
elif app_choice == "Features π€Ήπ»ββοΈ":
features()
elif app_choice == "Help & Uses ππ»":
use_app()
def render_gemini_api_app():
st.caption("π Empower Tomorrow, π‘οΈ Secure Today: Unleash the Power of Cybersecurity Brilliance! π»β¨ π‘οΈπ¬ ")
st.markdown("---")
st.title("OxSecure Intelligence π§ ")
st.markdown("-----")
input_text = st.text_input("Search your Security Related Topic π")
# Prompt Templates
first_input_prompt = PromptTemplate(
input_variables=['Topic'],
template=textwrap.dedent("""
As an experienced cybersecurity researcher, provide a comprehensive and detailed explanation about {Topic}. Cover the following aspects:
1. Introduction and Importance in well informative
2. Key Concepts and Terminologies
3. Historical Background and Evolution
4. Its Architecture and Types
5. Current Trends and Best Practices
6. Major Threats and Vulnerabilities
7. Case Studies and Real-world Examples
8. Future Outlook and Predictions
Ensure the information is professional, well-structured, key conceptual and suitable for someone with an advanced understanding and Beginner of cybersecurity.
""")
)
# Select the model
model = genai.GenerativeModel('gemini-1.5-pro')
safety_settings = {
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUAL: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_TOXICITY: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmProbability.HIGH
}
# Memory
Topic_memory = ConversationBufferMemory(input_key='Topic', memory_key='chat_history')
Policy_memory = ConversationBufferMemory(input_key='secure coding', memory_key='chat_history')
Practice_memory = ConversationBufferMemory(input_key='Practice', memory_key='description_history')
## GEMINI LLMS
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro")
chain = LLMChain(
llm=llm, prompt=first_input_prompt, verbose=True, output_key='secure coding', memory=Topic_memory)
safety_settings = {
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUAL: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_TOXICITY: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmProbability.HIGH
}
# Prompt Templates
second_input_prompt = PromptTemplate(
input_variables=['secure coding'],
template="write best {secure coding} and perfect code snippet for implementing secure coding to this {Topic} in well detailed and descriptive way use code snippets for each point and describe code."
)
chain2 = LLMChain(
llm=llm, prompt=second_input_prompt, verbose=True, output_key='Practice', memory=Policy_memory)
# Prompt Templates
third_input_prompt = PromptTemplate(
input_variables=['Practice'],
template="Implement major best Cybersecurity {Practice} for this {Topic} that helps better security postures into any business. illustrate Major cyberattack which is done by misconfiguration of {Topic} and give the informative info about the malware which caused this"
)
chain3 = LLMChain(llm=llm, prompt=third_input_prompt, verbose=True, output_key='description', memory=Practice_memory)
parent_chain = SequentialChain(
chains=[chain, chain2, chain3], input_variables=['Topic'], output_variables=['secure coding', 'Practice',
'description'], verbose=True)
if input_text:
with st.spinner('Processing.... β³'):
st.text(parent_chain({'Topic': input_text}))
with st.expander('Your Topic'):
st.info(Topic_memory.buffer)
with st.expander('Major Practices'):
st.info(Practice_memory.buffer)
st.markdown("---")
linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
st.markdown(" Created with π€π By Aditya Pandey " f"[ LinkedIn π]({linkedin_url})")
def render_gemini_vision_app():
st.title('OxSecure ImaGen π¨')
st.markdown("----")
input_prompt = st.text_input("Input Prompt: ", key="input")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
image = ""
submit = False # Initialize submit variable
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
submit = st.button("Tell me about the image")
if submit:
response = get_gemini_response(input_prompt, image)
st.subheader("The Response is")
st.write(response)
st.markdown("---")
linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
st.markdown(" Created with π€π By Aditya Pandey " f"[ LinkedIn π]({linkedin_url})")
def get_file_hash(file):
file.seek(0) # Reset file pointer to the beginning
file_hash = hashlib.sha256(file.read()).hexdigest()
file.seek(0) # Reset file pointer to the beginning
return file_hash
# Function to analyze the file using VirusTotal
def virustotal_analysis(file_hash):
url = f"https://www.virustotal.com/api/v3/files/{file_hash}"
headers = {"x-apikey": VIRUSTOTAL_API_KEY}
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.json()
else:
st.error("Error with VirusTotal API request. Please check your API key or the file hash.")
return None
# Function to extract metadata from PE files
def extract_metadata(file):
try:
pe = PE(data=file.read())
metadata = {
"Number of Sections": pe.FILE_HEADER.NumberOfSections,
"Time Date Stamp": pe.FILE_HEADER.TimeDateStamp,
"Characteristics": pe.FILE_HEADER.Characteristics,
}
return metadata
except PEFormatError:
st.error("Uploaded file is not a valid PE format.")
return None
def analyze_log_file(log_content):
# Data storage structures for IPs, Domains, Headers, Sessions
ip_data = []
domain_data = []
header_data = []
id_data = []
# Regular expressions for matching
ip_regex = re.compile(r'\b(?:[0-9]{1,3}\.){3}[0-9]{1,3}\b')
domain_regex = re.compile(r'\b[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}\b')
header_regex = re.compile(r'(User-Agent|Content-Type|Authorization):\s*(.*)', re.IGNORECASE)
id_regex = re.compile(r'\b(?:SessionID|UserID|ID|id|sessionid|userid)\s*[:=\s]\s*([a-zA-Z0-9-]+)', re.IGNORECASE)
log_entries = []
for line in log_content.splitlines():
# Match IPs
ips = ip_regex.findall(line)
if ips:
ip_data.extend(ips)
# Match Domains
domains = domain_regex.findall(line)
if domains:
domain_data.extend(domains)
# Match Headers
headers = header_regex.findall(line)
if headers:
header_data.extend(headers)
# Match IDs (Session IDs, User IDs, etc.)
ids = id_regex.findall(line)
if ids:
id_data.extend(ids)
log_entries.append(line)
# Convert to DataFrame
log_df = pd.DataFrame(log_entries, columns=["Log Entries"])
# Additional DataFrames for captured data
ip_df = pd.DataFrame(ip_data, columns=["IP Addresses"])
domain_df = pd.DataFrame(domain_data, columns=["Domains"])
header_df = pd.DataFrame(header_data, columns=["Header Name", "Header Value"])
id_df = pd.DataFrame(id_data, columns=["IDs"])
# Summary of findings
summary = {
"log_dataframe": log_df,
"ip_dataframe": ip_df,
"domain_dataframe": domain_df,
"header_dataframe": header_df,
"id_dataframe": id_df
}
return summary
# Function to create charts from VirusTotal results with theme selection
def create_virus_total_charts(virus_total_results, theme="light"):
if not virus_total_results:
return None
# Extract the data for the charts
stats = virus_total_results['data']['attributes']['last_analysis_stats']
labels = list(stats.keys())
values = list(stats.values())
# Convert data to DataFrame for better handling
df = pd.DataFrame({'Analysis Types': labels, 'Count': values})
# Set the background color theme based on user input
if theme == "dark":
plt.style.use("dark_background")
text_color = 'white'
else:
plt.style.use("default")
text_color = 'black'
# Create a container (figure) with 3 rows and 2 columns of charts
fig, axs = plt.subplots(3, 2, figsize=(18, 18)) # 3 rows and 2 columns of charts
# --- Bar Chart ---
sns.barplot(x='Analysis Types', y='Count', data=df, palette="coolwarm", ax=axs[0, 0])
axs[0, 0].set_title("VirusTotal Analysis Results (Bar Chart)", fontsize=14, fontweight='bold', color=text_color)
axs[0, 0].tick_params(axis='x', rotation=45, labelsize=10, labelcolor=text_color) # Rotate x-axis labels
# Add value labels on the bar chart
for p in axs[0, 0].patches:
axs[0, 0].annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='baseline', fontsize=10, color=text_color, xytext=(0, 3),
textcoords='offset points')
# --- Horizontal Bar Chart ---
sns.barplot(y='Analysis Types', x='Count', data=df, palette="magma", ax=axs[0, 1], orient='h')
axs[0, 1].set_title("VirusTotal Analysis Results (Horizontal Bar)", fontsize=14, fontweight='bold', color=text_color)
axs[0, 1].tick_params(axis='y', labelsize=10, labelcolor=text_color)
# Add value labels on horizontal bar chart
for p in axs[0, 1].patches:
axs[0, 1].annotate(f'{int(p.get_width())}', (p.get_width(), p.get_y() + p.get_height() / 2),
ha='center', va='center_baseline', fontsize=10, color=text_color, xytext=(5, 0),
textcoords='offset points')
# --- Pie Chart ---
wedges, texts, autotexts = axs[1, 0].pie(values, labels=labels, autopct='%1.1f%%', startangle=90,
colors=sns.color_palette("coolwarm", len(labels)),
wedgeprops=dict(edgecolor=text_color))
# Format the text and labels
for text in texts:
text.set_fontsize(10)
text.set_color(text_color)
for autotext in autotexts:
autotext.set_color(text_color)
axs[1, 0].set_title("VirusTotal Analysis Results (Pie Chart)", fontsize=14, fontweight='bold', color=text_color)
axs[1, 0].axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
# --- Donut Chart ---
wedges, texts, autotexts = axs[1, 1].pie(values, labels=labels, autopct='%1.1f%%', startangle=90,
pctdistance=0.85, colors=sns.color_palette("Set2", len(labels)),
wedgeprops=dict(width=0.4, edgecolor=text_color)) # Donut chart
# Format the text and labels for Donut Chart
for text in texts:
text.set_fontsize(10)
text.set_color(text_color)
for autotext in autotexts:
autotext.set_color(text_color)
axs[1, 1].set_title("VirusTotal Analysis Results (Donut Chart)", fontsize=14, fontweight='bold', color=text_color)
axs[1, 1].axis('equal') # Equal aspect ratio for donut shape
# --- Heatmap (Random Example) ---
random_data = np.random.rand(len(labels), len(labels)) # Create a dummy heatmap based on the stats
sns.heatmap(random_data, annot=True, cmap="Blues", ax=axs[2, 0], cbar_kws={'label': 'Intensity'})
axs[2, 0].set_title("Random Heatmap (Dummy)", fontsize=14, fontweight='bold', color=text_color)
axs[2, 0].set_xticklabels(labels, rotation=45, color=text_color)
axs[2, 0].set_yticklabels(labels, rotation=0, color=text_color)
# --- Scatter Plot ---
sns.scatterplot(x=labels, y=values, hue=values, palette="deep", s=100, ax=axs[2, 1], legend=False)
axs[2, 1].set_title("VirusTotal Analysis Results (Scatter Plot)", fontsize=14, fontweight='bold', color=text_color)
axs[2, 1].set_xlabel("Analysis Types", fontsize=12, color=text_color)
axs[2, 1].set_ylabel("Count", fontsize=12, color=text_color)
axs[2, 1].tick_params(axis='x', rotation=45, labelcolor=text_color)
axs[2, 1].tick_params(axis='y', labelcolor=text_color)
# Adjust layout for better spacing and clarity
fig.tight_layout(pad=4.0)
# Set background based on theme
fig.patch.set_facecolor('black' if theme == "dark" else 'white')
return fig
# Function to create detailed tables from JSON data
def create_detailed_table(data, title):
st.write(f"{title}")
# Normalize JSON data into a DataFrame
df = pd.json_normalize(data)
# Debug: Show raw data and DataFrame
st.write("Raw Data:", data)
if df.empty:
st.write("No data available.")
else:
# Apply minimal styling for debugging
styled_df = df.style.background_gradient(cmap='viridis') \
.format(na_rep='N/A', precision=2)
# Display the styled DataFrame
st.dataframe(styled_df)
# Function to display the analysis results on the dashboard
def display_analysis_results(metadata, virus_total_results, log_analysis=None):
st.write("## Analysis Results")
# Metadata
if metadata:
st.write("### π PE File Metadata")
create_detailed_table(metadata, "PE File Metadata")
# VirusTotal Results
if virus_total_results:
st.write("### π¦ VirusTotal Results")
create_detailed_table(virus_total_results['data'], "VirusTotal Results")
st.write("#### π VirusTotal Analysis Stats")
st.markdown("------")
fig = create_virus_total_charts(virus_total_results)
if fig:
st.pyplot(fig)
# Log Analysis
if log_analysis is not None:
st.write("### π Log Analysis")
st.markdown("------")
col1, col2 = st.columns(2)
with col1:
st.write("**IP Addresses:**")
st.dataframe(log_analysis.get("ip_dataframe"))
with col2:
st.write("**Domains:**")
st.dataframe(log_analysis.get("domain_dataframe"))
col3, col4, col5 = st.columns([2, 1, 1])
st.markdown("----------")
with col3:
st.write("**Log Entries:**")
st.dataframe(log_analysis.get("log_dataframe"))
with col4:
st.write("**IDs (Session/User/Generic):**")
if not log_analysis.get("id_dataframe").empty:
st.dataframe(log_analysis.get("id_dataframe"))
else:
st.write("No IDs found.")
with col5:
st.write("**Headers:**")
if not log_analysis.get("header_dataframe").empty:
st.dataframe(log_analysis.get("header_dataframe"))
else:
st.write("No headers found.")
def read_file_with_fallback(byte_data):
try:
# Attempt to read the file with UTF-8 encoding
return byte_data.decode("utf-8")
except UnicodeDecodeError:
# If UTF-8 decoding fails, try to detect encoding
byte_stream = io.BytesIO(byte_data)
detected_encoding = chardet.detect(byte_data)['encoding']
byte_stream.seek(0) # Reset stream pointer
return byte_stream.read().decode(detected_encoding, errors='replace')
def render_file_analysis_app():
st.title("π File Analysis Dashboard")
st.markdown("---")
st.image('ui/antivirus.png', width=80, use_column_width='none')
uploaded_file = st.file_uploader("Upload any file for analysis", type=["exe", "dll", "log", "pdf", "png", "jpg", "jpeg", "gif", "txt", "zip", "rar", "apk"])
if uploaded_file:
file_hash = get_file_hash(uploaded_file)
st.write(f"SHA-256 Hash: {file_hash}")
file_extension = uploaded_file.name.split('.')[-1].lower()
# Handle different file types
if file_extension in ['png', 'jpg', 'jpeg', 'gif']:
st.write("### π Image Preview")
image = Image.open(uploaded_file)
image.thumbnail((512, 512)) # Resize for preview
st.image(image, width=240, caption='Uploaded Image', use_column_width=True)
# Save uploaded file temporarily
file_path = f"./temp/{uploaded_file.name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
try:
with open(file_path, "rb") as file:
file_hash = get_file_hash(file)
metadata = extract_metadata(file)
virus_total_results = virustotal_analysis(file_hash)
finally:
# Clean up
os.remove(file_path)
log_analysis = None
elif file_extension == 'pdf':
st.write("### π PDF File")
st.write("PDF preview is not supported. Please use other tools to view.")
st.download_button(label="Download PDF", data=uploaded_file, file_name=uploaded_file.name)
# Save uploaded file temporarily
file_path = f"./temp/{uploaded_file.name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
try:
with open(file_path, "rb") as file:
file_hash = get_file_hash(file)
metadata = extract_metadata(file)
virus_total_results = virustotal_analysis(file_hash)
finally:
# Clean up
os.remove(file_path)
log_analysis = None
elif file_extension in ['txt', 'log']:
st.write("### π Log File Content")
log_content = read_file_with_fallback(uploaded_file.getvalue())
log_analysis = analyze_log_file(log_content)
# Save uploaded file temporarily
file_path = f"./temp/{uploaded_file.name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
try:
with open(file_path, "rb") as file:
file_hash = get_file_hash(file)
metadata = extract_metadata(file)
virus_total_results = virustotal_analysis(file_hash)
finally:
# Clean up
os.remove(file_path)
log_analysis = analyze_log_file(log_content)
elif file_extension in ['zip', 'rar']:
st.write("### π¦ Compressed File")
st.write("Compressed files require further extraction and analysis.")
# Save uploaded file temporarily
file_path = f"./temp/{uploaded_file.name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
try:
with open(file_path, "rb") as file:
file_hash = get_file_hash(file)
metadata = extract_metadata(file)
virus_total_results = virustotal_analysis(file_hash)
finally:
# Clean up
os.remove(file_path)
log_analysis = None
elif file_extension in ['apk', 'exe', 'dll']:
# Save uploaded file temporarily
file_path = f"./temp/{uploaded_file.name}"
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
try:
with open(file_path, "rb") as file:
file_hash = get_file_hash(file)
metadata = extract_metadata(file)
virus_total_results = virustotal_analysis(file_hash)
finally:
# Clean up
os.remove(file_path)
log_analysis = None
else:
st.error("Unsupported file type.")
metadata = None
virus_total_results = None
log_analysis = None
display_analysis_results(metadata, virus_total_results, log_analysis)
st.markdown("---")
linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
st.markdown(" Created with π€π By Aditya Pandey " f"[ LinkedIn π]({linkedin_url})")
def main():
if 'authenticated' not in st.session_state:
st.session_state.authenticated = False
if st.session_state.authenticated:
render_main_program()
else:
render_login_page()
if __name__ == "__main__":
main()
|