Spaces:
Sleeping
Sleeping
File size: 18,442 Bytes
b9a2f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# =============================================================================
# COPYRIGHT NOTICE
# -----------------------------------------------------------------------------
# This source code is the intellectual property of Aditya Pandey.
# Any unauthorized reproduction, distribution, or modification of this code
# is strictly prohibited.
# If you wish to use or modify this code for your project, please ensure
# to give full credit to Aditya Pandey.
#
# PROJECT DESCRIPTION
# -----------------------------------------------------------------------------
# This code is for a chatbot crafted with powerful prompts, designed to
# utilize the Gemini API. It is tailored to assist cybersecurity researchers.
#
# Author: Aditya Pandey
# =============================================================================
# Import library
import os
import faiss
import numpy as np
import pandas as pd
import requests
from PIL import Image
from PyPDF2 import PdfReader
import streamlit as st
from gtts import gTTS
from io import BytesIO
import google.generativeai as genai
from constants import gemini_key
from bs4 import BeautifulSoup
import urllib.request
import re
import json
from google.api_core.exceptions import GoogleAPIError
import speech_recognition as sr
from collections import defaultdict
# Streamlit configuration
st.set_page_config(
page_title="OxSecure RAG",
page_icon="π€Ώ",
layout="wide"
)
def load_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Load the CSS file
load_css("ui/Style.css")
# API configuration
os.environ["GOOGLE_API_KEY"] = gemini_key
genai.configure(api_key=os.environ['GOOGLE_API_KEY'])
# Function to query Gemini model
def query_gemini(context, prompt, image=None):
try:
if image:
model = genai.GenerativeModel('gemini-1.5-pro-latest')
response = model.generate_content([context + prompt, image])
else:
model = genai.GenerativeModel('gemini-1.5-pro-latest')
response = model.generate_content(context + prompt)
if hasattr(response, 'candidates') and response.candidates:
return ' '.join(part.text for part in response.candidates[0].content.parts)
else:
st.error("Unexpected response format from Gemini API.")
return None
except GoogleAPIError as e:
st.error(f"An error occurred while querying the Gemini API: {e}")
return None
# Function to extract text from PDF
def extract_text_from_pdf(file):
try:
pdf_reader = PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
st.error(f"An error occurred while extracting text from PDF: {e}")
return ""
# Function to extract text from URL
def extract_text_from_url(url):
try:
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
request = urllib.request.Request(url, headers=headers)
response = urllib.request.urlopen(request)
html = response.read()
soup = BeautifulSoup(html, 'html.parser')
paragraphs = soup.find_all('p')
text = ' '.join([para.get_text() for para in paragraphs])
return text
except Exception as e:
st.error(f"An error occurred while extracting text from URL: {e}")
return ""
# Function to extract text from CSV
def extract_text_from_csv(file):
try:
df = pd.read_csv(file)
return df.to_string(index=False)
except Exception as e:
st.error(f"An error occurred while extracting text from CSV: {e}")
return ""
# Function to extract text from Excel
def extract_text_from_excel(file):
try:
df = pd.read_excel(file)
return df.to_string(index=False)
except Exception as e:
st.error(f"An error occurred while extracting text from Excel: {e}")
return ""
# Function to extract text from JSON
def extract_text_from_json(file):
try:
json_data = json.load(file)
formatted_text = json.dumps(json_data, indent=4)
return formatted_text
except Exception as e:
st.error(f"An error occurred while extracting text from JSON: {e}")
return ""
# Remove special characters and improve formatting
def clean_text(text):
# Retain only alphabetic characters, numbers, punctuation, and spaces
clean_text = re.sub(r'[^a-zA-Z0-9.,!?;:()\'\" \n]', '', text)
return re.sub(r'\s+', ' ', clean_text).strip()
# Placeholder function to create embeddings
def embed_text(text):
# This should be replaced with the actual embedding generation logic
# For demonstration, return a dummy vector
return np.random.rand(512).astype('float32')
# Function to create embeddings and store in FAISS
def store_embeddings(text):
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
vectors = [embed_text(chunk) for chunk in chunks]
dimension = vectors[0].shape[0]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(vectors))
return index, chunks
# Function to search embeddings and retrieve relevant text
def search_embeddings(index, query, top_k):
query_vector = embed_text(query) # Replace with actual embedding generation
D, I = index.search(np.array([query_vector]), k=top_k)
return I[0]
# Function to handle Q&A
def handle_qa(query, faiss_index, document_chunks, top_k):
if faiss_index:
retrieved_indices = search_embeddings(faiss_index, query, top_k)
context = " ".join([document_chunks[i] for i in retrieved_indices])
response = query_gemini(context, query)
else:
response = query_gemini(st.session_state.context, query)
return response
# Function for speech recognition
def recognize_speech():
r = sr.Recognizer()
try:
with sr.Microphone() as source:
st.info("Listening...")
audio = r.listen(source)
text = r.recognize_google(audio)
st.success(f"You said: {text}")
return text
except sr.UnknownValueError:
st.error("Could not understand audio")
return None
except sr.RequestError as e:
st.error(f"Could not request results from Google Speech Recognition service; {e}")
return None
except Exception as e:
st.error(f"An error occurred: {e}")
return None
# Function to analyze log file
def analyze_log_file(file):
log_summary = {
'total_lines': 0,
'error_count': 0,
'warning_count': 0,
'info_count': 0,
'error_details': defaultdict(int),
'warning_details': defaultdict(int),
'info_details': defaultdict(int),
}
error_pattern = re.compile(r'\bERROR\b')
warning_pattern = re.compile(r'\bWARNING\b')
info_pattern = re.compile(r'\bINFO\b')
with open(file, 'r') as file:
for line in file:
log_summary['total_lines'] += 1
if error_pattern.search(line):
log_summary['error_count'] += 1
log_summary['error_details'][line.strip()] += 1
elif warning_pattern.search(line):
log_summary['warning_count'] += 1
log_summary['warning_details'][line.strip()] += 1
elif info_pattern.search(line):
log_summary['info_count'] += 1
log_summary['info_details'][line.strip()] += 1
return log_summary
# Main App Function
def render_main_app():
st.title('OxSecure RAG β¨οΈ')
st.divider()
st.markdown('**By :- Aditya Pandey π§π»βπ»**')
input_prompt = st.text_input("Input Prompt: ", key="input")
uploaded_file = st.file_uploader("Choose a file (image, PDF, CSV, Excel, JSON, or LOG)...", type=["jpg", "jpeg", "png", "pdf", "csv", "xlsx", "json", "log"])
uploaded_url = st.text_input("Or enter an article URL:")
image = None
file_text = ""
if uploaded_file is not None:
if uploaded_file.type in ["image/jpeg", "image/png", "image/jpg", "image/webp"]:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
elif uploaded_file.type == "application/pdf":
file_text = extract_text_from_pdf(uploaded_file)
st.text_area("Extracted Text from PDF:", file_text, height=300)
elif uploaded_file.type == "text/csv":
df = pd.read_csv(uploaded_file)
st.dataframe(df)
file_text = df.to_string(index=False)
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
st.dataframe(df)
file_text = df.to_string(index=False)
elif uploaded_file.type == "application/json":
df = pd.read_json(uploaded_file)
st.json(df.to_dict())
file_text = df.to_string(index=False)
elif uploaded_file.type == "text/plain":
if uploaded_file.name.endswith(".log"):
file_text = uploaded_file.read().decode("utf-8")
log_summary = analyze_log_file(file_text.splitlines())
st.write("Log Summary:")
st.write(f"Total Lines: {log_summary['total_lines']}")
st.write(f"Error Count: {log_summary['error_count']}")
st.write(f"Warning Count: {log_summary['warning_count']}")
st.write(f"Info Count: {log_summary['info_count']}")
st.write("\nError Details:")
for error, count in log_summary['error_details'].items():
st.write(f"{count} occurrence(s): {error}")
st.write("\nWarning Details:")
for warning, count in log_summary['warning_details'].items():
st.write(f"{count} occurrence(s): {warning}")
st.write("\nInfo Details:")
for info, count in log_summary['info_details'].items():
st.write(f"{count} occurrence(s): {info}")
else:
st.error("Please upload a valid log file.")
else:
st.error("Unsupported file type.")
elif uploaded_url:
file_text = extract_text_from_url(uploaded_url)
st.text_area("Extracted Text from URL:", file_text, height=300)
# Initialize or update session state for context
if "context" not in st.session_state:
st.session_state.context = ""
if "faiss_index" not in st.session_state:
st.session_state.faiss_index = None
if "document_chunks" not in st.session_state:
st.session_state.document_chunks = []
def clear_previous_data():
st.session_state.faiss_index = None
st.session_state.document_chunks = []
st.session_state.context = ""
submit = st.button("Start Deep Diving π€Ώ", key="start_button")
if submit:
if input_prompt or file_text:
clear_previous_data()
prompt = input_prompt if input_prompt else ""
st.session_state.context += " " + file_text # Update the context with new extracted text
if file_text:
st.session_state.faiss_index, st.session_state.document_chunks = store_embeddings(file_text)
# Start spinner before processing
spinner = st.spinner("Processing..... Getting Results β³")
with spinner:
response = query_gemini(st.session_state.context, prompt, image)
# Stop spinner after processing
if response:
st.subheader("Extracted Data π‘")
st.write(response)
clean_response = clean_text(response)
# Text-to-Speech conversion
tts = gTTS(clean_response)
audio_file = BytesIO()
tts.write_to_fp(audio_file)
st.audio(audio_file, format='audio/mp3')
else:
st.warning("Please provide an input prompt or upload a file.")
# Q&A section with slider and radio button
st.markdown("-----")
st.markdown("**Q/A Section π€**")
query = st.text_input("Enter your query:", key="qa_query")
top_k = st.slider("Select the number of document chunks to retrieve:", min_value=1, max_value=10, value=5, step=1)
response_mode = st.radio("Select response mode:", ("Text", "Text-to-Speech"))
qa_button = st.button("Ask", key="qa_button")
if qa_button:
if query:
spinner = st.spinner("Processing your query...")
with spinner:
response = handle_qa(query, st.session_state.faiss_index, st.session_state.document_chunks, top_k)
if response:
st.divider()
st.markdown("**Q&A Response π€**")
clean_response = clean_text(response)
if response_mode == "Text":
st.write(response)
else:
st.write(response)
tts = gTTS(clean_response)
audio_file = BytesIO()
tts.write_to_fp(audio_file)
st.audio(audio_file, format='audio/mp3')
else:
st.warning("Please enter a query to ask.")
st.markdown("-----")
# Voice recognition section
# st.markdown("**Voice Input π£οΈ**")
# query = recognize_speech()
# if st.button("Start Voice Recognition") and query:
# with st.spinner("Processing your voice query..."):
# response = handle_qa(query, st.session_state.faiss_index, st.session_state.document_chunks, top_k)
# if response:
# st.divider()
# st.markdown("**Voice Q&A Response π€**")
# clean_response = clean_text(response)
# st.write(clean_response)
# tts = gTTS(clean_response)
# audio_file = BytesIO()
# tts.write_to_fp(audio_file)
# st.audio(audio_file, format='audio/mp3')
# st.markdown("---")
linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
st.markdown(f"Created with π€ π By Aditya Pandey [ LinkedIn π ]({linkedin_url})")
# Description and Framework Section
def render_description_and_framework():
st.title("OxSecure RAG - Description and Framework")
st.markdown("----")
st.markdown("""
## π ***Project Description***
----------------
**OxSecure RAG** is your cybersecurity research companion! Powered by the Gemini API and crafted with smart prompts, it can analyze various documents, extract key insights, create embeddings, and support question-answering (Q&A) like never before. ππ‘οΈ
π οΈ ***Framework Used***
- **Streamlit**: The sleek and interactive interface π¨.
- **FAISS**: Super-efficient similarity search and clustering for dense vectors β‘.
- **Pandas**: Handling and processing data files like a pro (CSV, Excel) π.
- **PyPDF2**: Extracting text from PDFs with ease π.
- **BeautifulSoup**: Scraping web data with precision π.
- **gTTS**: Giving the bot a voice with text-to-speech ποΈ.
- **Google Generative AI (genai)**: Querying the powerful Gemini API π§ .
- **SpeechRecognition**: Turning your voice into input for hands-free interaction π§.
----------------
ποΈ ***Architecture***
1. **Input Handling**:
- Upload various file types (PDF, CSV, Excel, JSON) or provide a URL π.
- Input text prompts directly π.
- Speak your query using voice recognition π€.
2. **Text Extraction**:
- Extract text from uploaded files or URLs using the right tools ππ.
3. **Text Embedding**:
- Split extracted text into chunks and convert them into embeddings π§©.
- Store embeddings in a FAISS index for fast, relevant search results π.
4. **Q&A System**:
- Ask questions based on uploaded or entered context β.
- Retrieve relevant text chunks from the FAISS index and query the Gemini API π.
5. **Response Generation**:
- View the response from the Gemini API π§βπ».
- Convert the response to speech for audio playback π.
----------------
π ***Instructions for Use***
1. **Input**:
- Upload a file (PDF, CSV, Excel, or JSON), provide a URL, or enter a text prompt π».
2. **Processing**:
- Click "Start Deep Diving" to process the input and extract valuable insights π‘.
3. **Q&A**:
- Enter a query, choose how many document chunks to retrieve, and select response mode (Text or Text-to-Speech) π―.
- Click "Ask" to get your answer π§ .
4. **Voice Input**:
- Use "Start Voice Recognition" to ask a question verbally ποΈ.
- The answer will be generated and spoken aloud π£οΈ.
5. **Results**:
- View extracted data and responses in a clear, readable format π.
- If Text-to-Speech is selected, listen to the response π§.
""")
if st.button("Go to Main App", key="description_go_to_main_app"):
st.session_state.show_main_app = True
st.experimental_rerun()
st.markdown("---")
linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
st.markdown(f"Created with π€ π By Aditya Pandey [ LinkedIn π ]({linkedin_url})")
# Initialize the app with the description and framework
if "show_main_app" not in st.session_state:
st.session_state.show_main_app = False
if st.session_state.show_main_app:
render_main_app()
else:
render_description_and_framework()
|