File size: 18,442 Bytes
b9a2f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# =============================================================================
# COPYRIGHT NOTICE
# -----------------------------------------------------------------------------
# This source code is the intellectual property of Aditya Pandey.
# Any unauthorized reproduction, distribution, or modification of this code
# is strictly prohibited.
# If you wish to use or modify this code for your project, please ensure
# to give full credit to Aditya Pandey.
#
# PROJECT DESCRIPTION
# -----------------------------------------------------------------------------
# This code is for a chatbot crafted with powerful prompts, designed to
# utilize the Gemini API. It is tailored to assist cybersecurity researchers.
#
# Author: Aditya Pandey
# =============================================================================

# Import library
import os
import faiss
import numpy as np
import pandas as pd
import requests
from PIL import Image
from PyPDF2 import PdfReader
import streamlit as st
from gtts import gTTS
from io import BytesIO
import google.generativeai as genai
from constants import gemini_key
from bs4 import BeautifulSoup
import urllib.request
import re
import json
from google.api_core.exceptions import GoogleAPIError
import speech_recognition as sr
from collections import defaultdict

# Streamlit configuration
st.set_page_config(
    page_title="OxSecure RAG",
    page_icon="🀿",
    layout="wide"
)

def load_css(file_name):
    with open(file_name) as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)

# Load the CSS file
load_css("ui/Style.css")

# API configuration
os.environ["GOOGLE_API_KEY"] = gemini_key
genai.configure(api_key=os.environ['GOOGLE_API_KEY'])

# Function to query Gemini model
def query_gemini(context, prompt, image=None):
    try:
        if image:
            model = genai.GenerativeModel('gemini-1.5-pro-latest')
            response = model.generate_content([context + prompt, image])
        else:
            model = genai.GenerativeModel('gemini-1.5-pro-latest')
            response = model.generate_content(context + prompt)
        
        if hasattr(response, 'candidates') and response.candidates:
            return ' '.join(part.text for part in response.candidates[0].content.parts)
        else:
            st.error("Unexpected response format from Gemini API.")
            return None
    except GoogleAPIError as e:
        st.error(f"An error occurred while querying the Gemini API: {e}")
        return None

# Function to extract text from PDF
def extract_text_from_pdf(file):
    try:
        pdf_reader = PdfReader(file)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text()
        return text
    except Exception as e:
        st.error(f"An error occurred while extracting text from PDF: {e}")
        return ""

# Function to extract text from URL
def extract_text_from_url(url):
    try:
        headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
        request = urllib.request.Request(url, headers=headers)
        response = urllib.request.urlopen(request)
        html = response.read()
        soup = BeautifulSoup(html, 'html.parser')
        paragraphs = soup.find_all('p')
        text = ' '.join([para.get_text() for para in paragraphs])
        return text
    except Exception as e:
        st.error(f"An error occurred while extracting text from URL: {e}")
        return ""

# Function to extract text from CSV
def extract_text_from_csv(file):
    try:
        df = pd.read_csv(file)
        return df.to_string(index=False)
    except Exception as e:
        st.error(f"An error occurred while extracting text from CSV: {e}")
        return ""

# Function to extract text from Excel
def extract_text_from_excel(file):
    try:
        df = pd.read_excel(file)
        return df.to_string(index=False)
    except Exception as e:
        st.error(f"An error occurred while extracting text from Excel: {e}")
        return ""

# Function to extract text from JSON
def extract_text_from_json(file):
    try:
        json_data = json.load(file)
        formatted_text = json.dumps(json_data, indent=4)
        return formatted_text
    except Exception as e:
        st.error(f"An error occurred while extracting text from JSON: {e}")
        return ""

# Remove special characters and improve formatting
def clean_text(text):
    # Retain only alphabetic characters, numbers, punctuation, and spaces
    clean_text = re.sub(r'[^a-zA-Z0-9.,!?;:()\'\" \n]', '', text)
    return re.sub(r'\s+', ' ', clean_text).strip()

# Placeholder function to create embeddings
def embed_text(text):
    # This should be replaced with the actual embedding generation logic
    # For demonstration, return a dummy vector
    return np.random.rand(512).astype('float32')

# Function to create embeddings and store in FAISS
def store_embeddings(text):
    chunks = [text[i:i+512] for i in range(0, len(text), 512)]
    vectors = [embed_text(chunk) for chunk in chunks]
    dimension = vectors[0].shape[0]
    index = faiss.IndexFlatL2(dimension)
    index.add(np.array(vectors))
    return index, chunks

# Function to search embeddings and retrieve relevant text
def search_embeddings(index, query, top_k):
    query_vector = embed_text(query)  # Replace with actual embedding generation
    D, I = index.search(np.array([query_vector]), k=top_k)
    return I[0]

# Function to handle Q&A
def handle_qa(query, faiss_index, document_chunks, top_k):
    if faiss_index:
        retrieved_indices = search_embeddings(faiss_index, query, top_k)
        context = " ".join([document_chunks[i] for i in retrieved_indices])
        response = query_gemini(context, query)
    else:
        response = query_gemini(st.session_state.context, query)
    return response

# Function for speech recognition
def recognize_speech():
    r = sr.Recognizer()
    try:
        with sr.Microphone() as source:
            st.info("Listening...")
            audio = r.listen(source)
            text = r.recognize_google(audio)
            st.success(f"You said: {text}")
            return text
    except sr.UnknownValueError:
        st.error("Could not understand audio")
        return None
    except sr.RequestError as e:
        st.error(f"Could not request results from Google Speech Recognition service; {e}")
        return None
    except Exception as e:
        st.error(f"An error occurred: {e}")
        return None

# Function to analyze log file
def analyze_log_file(file):
    log_summary = {
        'total_lines': 0,
        'error_count': 0,
        'warning_count': 0,
        'info_count': 0,
        'error_details': defaultdict(int),
        'warning_details': defaultdict(int),
        'info_details': defaultdict(int),
    }

    error_pattern = re.compile(r'\bERROR\b')
    warning_pattern = re.compile(r'\bWARNING\b')
    info_pattern = re.compile(r'\bINFO\b')

    with open(file, 'r') as file:
        for line in file:
            log_summary['total_lines'] += 1

            if error_pattern.search(line):
                log_summary['error_count'] += 1
                log_summary['error_details'][line.strip()] += 1
            elif warning_pattern.search(line):
                log_summary['warning_count'] += 1
                log_summary['warning_details'][line.strip()] += 1
            elif info_pattern.search(line):
                log_summary['info_count'] += 1
                log_summary['info_details'][line.strip()] += 1

    return log_summary

# Main App Function
def render_main_app():
    st.title('OxSecure RAG ♨️')
    st.divider()
    st.markdown('**By :- Aditya Pandey πŸ§‘πŸ»β€πŸ’»**')

    input_prompt = st.text_input("Input Prompt: ", key="input")

    uploaded_file = st.file_uploader("Choose a file (image, PDF, CSV, Excel, JSON, or LOG)...", type=["jpg", "jpeg", "png", "pdf", "csv", "xlsx", "json", "log"])
    uploaded_url = st.text_input("Or enter an article URL:")

    image = None
    file_text = ""

    if uploaded_file is not None:
        if uploaded_file.type in ["image/jpeg", "image/png", "image/jpg", "image/webp"]:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image.", use_column_width=True)
        elif uploaded_file.type == "application/pdf":
            file_text = extract_text_from_pdf(uploaded_file)
            st.text_area("Extracted Text from PDF:", file_text, height=300)
        elif uploaded_file.type == "text/csv":
            df = pd.read_csv(uploaded_file)
            st.dataframe(df)
            file_text = df.to_string(index=False)
        elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
            df = pd.read_excel(uploaded_file)
            st.dataframe(df)
            file_text = df.to_string(index=False)
        elif uploaded_file.type == "application/json":
            df = pd.read_json(uploaded_file)
            st.json(df.to_dict())
            file_text = df.to_string(index=False)
        elif uploaded_file.type == "text/plain":
            if uploaded_file.name.endswith(".log"):
                file_text = uploaded_file.read().decode("utf-8")
                log_summary = analyze_log_file(file_text.splitlines())
                st.write("Log Summary:")
                st.write(f"Total Lines: {log_summary['total_lines']}")
                st.write(f"Error Count: {log_summary['error_count']}")
                st.write(f"Warning Count: {log_summary['warning_count']}")
                st.write(f"Info Count: {log_summary['info_count']}")

                st.write("\nError Details:")
                for error, count in log_summary['error_details'].items():
                    st.write(f"{count} occurrence(s): {error}")

                st.write("\nWarning Details:")
                for warning, count in log_summary['warning_details'].items():
                    st.write(f"{count} occurrence(s): {warning}")

                st.write("\nInfo Details:")
                for info, count in log_summary['info_details'].items():
                    st.write(f"{count} occurrence(s): {info}")
            else:
                st.error("Please upload a valid log file.")
        else:
            st.error("Unsupported file type.")
    elif uploaded_url:
        file_text = extract_text_from_url(uploaded_url)
        st.text_area("Extracted Text from URL:", file_text, height=300)

    # Initialize or update session state for context
    if "context" not in st.session_state:
        st.session_state.context = ""
    if "faiss_index" not in st.session_state:
        st.session_state.faiss_index = None
    if "document_chunks" not in st.session_state:
        st.session_state.document_chunks = []

    def clear_previous_data():
        st.session_state.faiss_index = None
        st.session_state.document_chunks = []
        st.session_state.context = ""

    submit = st.button("Start Deep Diving 🀿", key="start_button")

    if submit:
        if input_prompt or file_text:
            clear_previous_data()
            
            prompt = input_prompt if input_prompt else ""
            st.session_state.context += " " + file_text  # Update the context with new extracted text
            
            if file_text:
                st.session_state.faiss_index, st.session_state.document_chunks = store_embeddings(file_text)
            
            # Start spinner before processing
            spinner = st.spinner("Processing..... Getting Results ⏳")
            with spinner:
                response = query_gemini(st.session_state.context, prompt, image)
            
            # Stop spinner after processing
            if response:
                st.subheader("Extracted Data πŸ“‘")
                st.write(response)
                
                clean_response = clean_text(response)

                # Text-to-Speech conversion
                tts = gTTS(clean_response)
                audio_file = BytesIO()
                tts.write_to_fp(audio_file)
                st.audio(audio_file, format='audio/mp3')
        else:
            st.warning("Please provide an input prompt or upload a file.")

    # Q&A section with slider and radio button
    st.markdown("-----")
    st.markdown("**Q/A Section πŸ€”**")

    query = st.text_input("Enter your query:", key="qa_query")
    top_k = st.slider("Select the number of document chunks to retrieve:", min_value=1, max_value=10, value=5, step=1)
    response_mode = st.radio("Select response mode:", ("Text", "Text-to-Speech"))

    qa_button = st.button("Ask", key="qa_button")
    
    if qa_button:
        if query:
            spinner = st.spinner("Processing your query...")
            with spinner:
                response = handle_qa(query, st.session_state.faiss_index, st.session_state.document_chunks, top_k)
            if response:
                st.divider()
                st.markdown("**Q&A Response πŸ€–**")
                
                clean_response = clean_text(response)
                
                if response_mode == "Text":
                    st.write(response)
                else:
                    st.write(response)
                    tts = gTTS(clean_response)
                    audio_file = BytesIO()
                    tts.write_to_fp(audio_file)
                    st.audio(audio_file, format='audio/mp3')
        else:
            st.warning("Please enter a query to ask.")
    
    st.markdown("-----")
    
    # Voice recognition section
#    st.markdown("**Voice Input πŸ—£οΈ**")
#    query = recognize_speech()
#    if st.button("Start Voice Recognition") and query:
#        with st.spinner("Processing your voice query..."):
#            response = handle_qa(query, st.session_state.faiss_index, st.session_state.document_chunks, top_k)
#        if response:
#            st.divider()
#            st.markdown("**Voice Q&A Response πŸ€–**")
            
#            clean_response = clean_text(response)
#            st.write(clean_response)
#            tts = gTTS(clean_response)
#            audio_file = BytesIO()
#            tts.write_to_fp(audio_file)
#            st.audio(audio_file, format='audio/mp3')
#    st.markdown("---")
    linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
    st.markdown(f"Created with πŸ€— πŸ’– By Aditya Pandey [ LinkedIn πŸ”— ]({linkedin_url})")

# Description and Framework Section
def render_description_and_framework():
    st.title("OxSecure RAG - Description and Framework")
    st.markdown("----")
    st.markdown("""

    ## πŸš€ ***Project Description*** 

    ----------------

    **OxSecure RAG** is your cybersecurity research companion! Powered by the Gemini API and crafted with smart prompts, it can analyze various documents, extract key insights, create embeddings, and support question-answering (Q&A) like never before. πŸ”πŸ›‘οΈ

    

     πŸ› οΈ ***Framework Used***

    - **Streamlit**: The sleek and interactive interface 🎨.

    - **FAISS**: Super-efficient similarity search and clustering for dense vectors ⚑.

    - **Pandas**: Handling and processing data files like a pro (CSV, Excel) πŸ“Š.

    - **PyPDF2**: Extracting text from PDFs with ease πŸ“„.

    - **BeautifulSoup**: Scraping web data with precision 🌐.

    - **gTTS**: Giving the bot a voice with text-to-speech πŸŽ™οΈ.

    - **Google Generative AI (genai)**: Querying the powerful Gemini API 🧠.

    - **SpeechRecognition**: Turning your voice into input for hands-free interaction 🎧.

                

    ----------------



     πŸ—οΈ ***Architecture***

    1. **Input Handling**:

        - Upload various file types (PDF, CSV, Excel, JSON) or provide a URL πŸ”—.

        - Input text prompts directly πŸ“.

        - Speak your query using voice recognition 🎀.

    2. **Text Extraction**:

        - Extract text from uploaded files or URLs using the right tools πŸ“„πŸŒ.

    3. **Text Embedding**:

        - Split extracted text into chunks and convert them into embeddings 🧩.

        - Store embeddings in a FAISS index for fast, relevant search results πŸš€.

    4. **Q&A System**:

        - Ask questions based on uploaded or entered context ❓.

        - Retrieve relevant text chunks from the FAISS index and query the Gemini API πŸ”.

    5. **Response Generation**:

        - View the response from the Gemini API πŸ§‘β€πŸ’».

        - Convert the response to speech for audio playback πŸ”Š.

                

    ----------------



     πŸ“‹ ***Instructions for Use***

    1. **Input**:

        - Upload a file (PDF, CSV, Excel, or JSON), provide a URL, or enter a text prompt πŸ’».

    2. **Processing**:

        - Click "Start Deep Diving" to process the input and extract valuable insights πŸ’‘.

    3. **Q&A**:

        - Enter a query, choose how many document chunks to retrieve, and select response mode (Text or Text-to-Speech) 🎯.

        - Click "Ask" to get your answer 🧠.

    4. **Voice Input**:

        - Use "Start Voice Recognition" to ask a question verbally πŸŽ™οΈ.

        - The answer will be generated and spoken aloud πŸ—£οΈ.

    5. **Results**:

        - View extracted data and responses in a clear, readable format πŸ“‘.

        - If Text-to-Speech is selected, listen to the response 🎧.

    """)

    if st.button("Go to Main App", key="description_go_to_main_app"):
        st.session_state.show_main_app = True
        st.experimental_rerun()
        
    st.markdown("---")
    linkedin_url = "https://www.linkedin.com/in/aditya-pandey-896109224"
    st.markdown(f"Created with πŸ€— πŸ’– By Aditya Pandey [ LinkedIn πŸ”— ]({linkedin_url})")

# Initialize the app with the description and framework
if "show_main_app" not in st.session_state:
    st.session_state.show_main_app = False

if st.session_state.show_main_app:
    render_main_app()
else:
    render_description_and_framework()