Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Upload 6 files
Browse files- .gitattributes +1 -0
 - app.py +89 -411
 - functional_zone_identifier.py +68 -25
 - room_04.jpg +3 -0
 - scene_analysis_coordinator.py +11 -15
 - spatial_analyzer.py +6 -103
 - ui_manager.py +683 -0
 
    	
        .gitattributes
    CHANGED
    
    | 
         @@ -41,3 +41,4 @@ room_02.jpg filter=lfs diff=lfs merge=lfs -text 
     | 
|
| 41 | 
         
             
            street_04.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 42 | 
         
             
            landmark_Louvre_01.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 43 | 
         
             
            street_05.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 
         | 
| 
         | 
|
| 41 | 
         
             
            street_04.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 42 | 
         
             
            landmark_Louvre_01.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 43 | 
         
             
            street_05.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
| 44 | 
         
            +
            room_04.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        app.py
    CHANGED
    
    | 
         @@ -17,12 +17,20 @@ from style import Style 
     | 
|
| 17 | 
         
             
            from image_processor import ImageProcessor
         
     | 
| 18 | 
         
             
            from video_processor import VideoProcessor
         
     | 
| 19 | 
         
             
            from llm_enhancer import LLMEnhancer
         
     | 
| 
         | 
|
| 20 | 
         | 
| 21 | 
         
             
            # Initialize Processors with LLM support
         
     | 
| 22 | 
         
             
            image_processor = None
         
     | 
| 23 | 
         
             
            video_processor = None
         
     | 
| 
         | 
|
| 24 | 
         | 
| 25 | 
         
             
            def initialize_processors():
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 26 | 
         
             
                global image_processor, video_processor
         
     | 
| 27 | 
         | 
| 28 | 
         
             
                try:
         
     | 
| 
         @@ -30,7 +38,7 @@ def initialize_processors(): 
     | 
|
| 30 | 
         
             
                    image_processor = ImageProcessor(use_llm=True, llm_model_path="meta-llama/Llama-3.2-3B-Instruct")
         
     | 
| 31 | 
         
             
                    print("ImageProcessor initialized successfully with LLM")
         
     | 
| 32 | 
         | 
| 33 | 
         
            -
                    #  
     | 
| 34 | 
         
             
                    if hasattr(image_processor, 'scene_analyzer'):
         
     | 
| 35 | 
         
             
                        if image_processor.scene_analyzer is not None:
         
     | 
| 36 | 
         
             
                            print(f"scene_analyzer initialized: {type(image_processor.scene_analyzer)}")
         
     | 
| 
         @@ -66,49 +74,41 @@ def initialize_processors(): 
     | 
|
| 66 | 
         
             
                        video_processor = None
         
     | 
| 67 | 
         
             
                        return False
         
     | 
| 68 | 
         | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                 
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                 
     | 
| 77 | 
         
            -
                 
     | 
| 78 | 
         
            -
                 
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
                               except Exception as e:
         
     | 
| 86 | 
         
            -
                                    print(f"Error getting class names from model: {e}")
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                # Fallback to standard COCO (ensure keys are ints)
         
     | 
| 89 | 
         
            -
                default_classes = {
         
     | 
| 90 | 
         
            -
                    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
         
     | 
| 91 | 
         
            -
                    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
         
     | 
| 92 | 
         
            -
                    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
         
     | 
| 93 | 
         
            -
                    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
         
     | 
| 94 | 
         
            -
                    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
         
     | 
| 95 | 
         
            -
                    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
         
     | 
| 96 | 
         
            -
                    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
         
     | 
| 97 | 
         
            -
                    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
         
     | 
| 98 | 
         
            -
                    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
         
     | 
| 99 | 
         
            -
                    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
         
     | 
| 100 | 
         
            -
                    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair',
         
     | 
| 101 | 
         
            -
                    57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet',
         
     | 
| 102 | 
         
            -
                    62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
         
     | 
| 103 | 
         
            -
                    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
         
     | 
| 104 | 
         
            -
                    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
         
     | 
| 105 | 
         
            -
                    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
         
     | 
| 106 | 
         
            -
                }
         
     | 
| 107 | 
         
            -
                return sorted(default_classes.items())
         
     | 
| 108 | 
         | 
| 109 | 
         
             
            @spaces.GPU(duration=180)
         
     | 
| 110 | 
         
             
            def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None, use_llm=True, enable_landmark=True):
         
     | 
| 111 | 
         
            -
                """ 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 112 | 
         
             
                # Enhanced safety check for image_processor
         
     | 
| 113 | 
         
             
                if image_processor is None:
         
     | 
| 114 | 
         
             
                    error_msg = "Image processor is not initialized. Please restart the application or check system dependencies."
         
     | 
| 
         @@ -140,6 +140,7 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes= 
     | 
|
| 140 | 
         | 
| 141 | 
         
             
                print(f"DIAGNOSTIC: Image upload handled with enable_landmark={enable_landmark}, use_llm={use_llm}")
         
     | 
| 142 | 
         
             
                print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}, use_llm: {use_llm}, enable_landmark: {enable_landmark}")
         
     | 
| 
         | 
|
| 143 | 
         
             
                try:
         
     | 
| 144 | 
         
             
                    image_processor.use_llm = use_llm
         
     | 
| 145 | 
         | 
| 
         @@ -155,19 +156,19 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes= 
     | 
|
| 155 | 
         
             
                            image_processor.scene_analyzer.use_landmark_detection = enable_landmark
         
     | 
| 156 | 
         
             
                            image_processor.scene_analyzer.enable_landmark = enable_landmark
         
     | 
| 157 | 
         | 
| 158 | 
         
            -
                            # 確保處理器也設置了這選項
         
     | 
| 159 | 
         
             
                            image_processor.enable_landmark = enable_landmark
         
     | 
| 160 | 
         | 
| 161 | 
         
             
                            # 檢查並設置更深層次的組件
         
     | 
| 162 | 
         
             
                            if hasattr(image_processor.scene_analyzer, 'scene_describer') and image_processor.scene_analyzer.scene_describer is not None:
         
     | 
| 163 | 
         
             
                                image_processor.scene_analyzer.scene_describer.enable_landmark = enable_landmark
         
     | 
| 164 | 
         | 
| 165 | 
         
            -
                            # 檢查並設置CLIP 
     | 
| 166 | 
         
             
                            if hasattr(image_processor.scene_analyzer, 'clip_analyzer') and image_processor.scene_analyzer.clip_analyzer is not None:
         
     | 
| 167 | 
         
             
                                if hasattr(image_processor.scene_analyzer.clip_analyzer, 'enable_landmark'):
         
     | 
| 168 | 
         
             
                                    image_processor.scene_analyzer.clip_analyzer.enable_landmark = enable_landmark
         
     | 
| 169 | 
         | 
| 170 | 
         
            -
                            # 檢查並設置LLM 
     | 
| 171 | 
         
             
                            if hasattr(image_processor.scene_analyzer, 'llm_enhancer') and image_processor.scene_analyzer.llm_enhancer is not None:
         
     | 
| 172 | 
         
             
                                if hasattr(image_processor.scene_analyzer.llm_enhancer, 'enable_landmark'):
         
     | 
| 173 | 
         
             
                                    image_processor.scene_analyzer.llm_enhancer.enable_landmark = enable_landmark
         
     | 
| 
         @@ -198,7 +199,7 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes= 
     | 
|
| 198 | 
         
             
                    class_ids_to_filter = None
         
     | 
| 199 | 
         
             
                    if filter_classes:
         
     | 
| 200 | 
         
             
                        class_ids_to_filter = []
         
     | 
| 201 | 
         
            -
                        available_classes_dict = dict(get_all_classes())
         
     | 
| 202 | 
         
             
                        name_to_id = {name: id for id, name in available_classes_dict.items()}
         
     | 
| 203 | 
         
             
                        for class_str in filter_classes:
         
     | 
| 204 | 
         
             
                            class_name_or_id = class_str.split(":")[0].strip()
         
     | 
| 
         @@ -235,7 +236,7 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes= 
     | 
|
| 235 | 
         
             
                    # Prepare visualization data for the plot
         
     | 
| 236 | 
         
             
                    plot_figure = None
         
     | 
| 237 | 
         
             
                    if stats and "class_statistics" in stats and stats["class_statistics"]:
         
     | 
| 238 | 
         
            -
                        available_classes_dict = dict(get_all_classes())
         
     | 
| 239 | 
         
             
                        viz_data = image_processor.prepare_visualization_data(stats, available_classes_dict)
         
     | 
| 240 | 
         
             
                        if "error" not in viz_data:
         
     | 
| 241 | 
         
             
                             plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
         
     | 
| 
         @@ -485,8 +486,20 @@ def download_video_from_url(video_url, max_duration_minutes=10): 
     | 
|
| 485 | 
         | 
| 486 | 
         
             
            @spaces.GPU
         
     | 
| 487 | 
         
             
            def handle_video_upload(video_input, video_url, input_type, model_name, confidence_threshold, process_interval):
         
     | 
| 488 | 
         
            -
                """ 
     | 
| 489 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 490 | 
         
             
                print(f"Received video request: input_type={input_type}")
         
     | 
| 491 | 
         
             
                video_path = None
         
     | 
| 492 | 
         | 
| 
         @@ -534,369 +547,34 @@ def handle_video_upload(video_input, video_url, input_type, model_name, confiden 
     | 
|
| 534 | 
         
             
                    return None, error_html, {"error": str(e)}
         
     | 
| 535 | 
         | 
| 536 | 
         | 
| 537 | 
         
            -
             
     | 
| 538 | 
         
            -
             
     | 
| 539 | 
         
            -
                 
     | 
| 540 | 
         
            -
                 
     | 
| 541 | 
         
            -
                 
     | 
| 542 | 
         
            -
                 
     | 
| 543 | 
         
            -
                 
     | 
| 544 | 
         
            -
             
     | 
| 545 | 
         
            -
                 
     | 
| 546 | 
         
            -
             
     | 
| 547 | 
         
            -
                     
     | 
| 548 | 
         
            -
                     
     | 
| 549 | 
         
            -
             
     | 
| 550 | 
         
            -
             
     | 
| 551 | 
         
            -
             
     | 
| 552 | 
         
            -
             
     | 
| 553 | 
         
            -
             
     | 
| 554 | 
         
            -
             
     | 
| 555 | 
         
            -
             
     | 
| 556 | 
         
            -
             
     | 
| 557 | 
         
            -
             
     | 
| 558 | 
         
            -
             
     | 
| 559 | 
         
            -
             
     | 
| 560 | 
         
            -
             
     | 
| 561 | 
         
            -
             
     | 
| 562 | 
         
            -
             
     | 
| 563 | 
         
            -
             
     | 
| 564 | 
         
            -
                                </div>
         
     | 
| 565 | 
         
            -
                            """)
         
     | 
| 566 | 
         
            -
             
     | 
| 567 | 
         
            -
                    # Main Content with Tabs
         
     | 
| 568 | 
         
            -
                    with gr.Tabs(elem_classes="tabs"):
         
     | 
| 569 | 
         
            -
             
     | 
| 570 | 
         
            -
                        # Tab 1: Image Processing
         
     | 
| 571 | 
         
            -
                        with gr.Tab("Image Processing"):
         
     | 
| 572 | 
         
            -
                            current_image_model = gr.State("yolov8m.pt") # State for image model selection
         
     | 
| 573 | 
         
            -
                            with gr.Row(equal_height=False): # Allow columns to have different heights
         
     | 
| 574 | 
         
            -
                                # Left Column: Image Input & Controls
         
     | 
| 575 | 
         
            -
                                with gr.Column(scale=4, elem_classes="input-panel"):
         
     | 
| 576 | 
         
            -
                                    with gr.Group():
         
     | 
| 577 | 
         
            -
                                        gr.HTML('<div class="section-heading">Upload Image</div>')
         
     | 
| 578 | 
         
            -
                                        image_input = gr.Image(type="pil", label="Upload an image", elem_classes="upload-box")
         
     | 
| 579 | 
         
            -
             
     | 
| 580 | 
         
            -
                                        with gr.Accordion("Image Analysis Settings", open=False):
         
     | 
| 581 | 
         
            -
                                            image_model_dropdown = gr.Dropdown(
         
     | 
| 582 | 
         
            -
                                                choices=model_choices,
         
     | 
| 583 | 
         
            -
                                                value="yolov8m.pt", # Default for images
         
     | 
| 584 | 
         
            -
                                                label="Select Model",
         
     | 
| 585 | 
         
            -
                                                info="Choose speed vs. accuracy (n=fast, m=balanced, x=accurate)"
         
     | 
| 586 | 
         
            -
                                            )
         
     | 
| 587 | 
         
            -
                                            # Display model info
         
     | 
| 588 | 
         
            -
                                            image_model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
         
     | 
| 589 | 
         
            -
             
     | 
| 590 | 
         
            -
                                            image_confidence = gr.Slider(
         
     | 
| 591 | 
         
            -
                                                minimum=0.1, maximum=0.9, value=0.25, step=0.05,
         
     | 
| 592 | 
         
            -
                                                label="Confidence Threshold",
         
     | 
| 593 | 
         
            -
                                                info="Minimum confidence for displaying a detected object"
         
     | 
| 594 | 
         
            -
                                            )
         
     | 
| 595 | 
         
            -
             
     | 
| 596 | 
         
            -
                                            use_llm = gr.Checkbox(
         
     | 
| 597 | 
         
            -
                                                label="Use LLM for enhanced scene descriptions",
         
     | 
| 598 | 
         
            -
                                                value=True,
         
     | 
| 599 | 
         
            -
                                                info="Provides more detailed and natural language descriptions (may increase processing time)"
         
     | 
| 600 | 
         
            -
                                            )
         
     | 
| 601 | 
         
            -
             
     | 
| 602 | 
         
            -
                                            use_landmark_detection = gr.Checkbox(
         
     | 
| 603 | 
         
            -
                                                label="Use CLIP for Landmark Detection",
         
     | 
| 604 | 
         
            -
                                                value=False,
         
     | 
| 605 | 
         
            -
                                                info="Detect famous landmarks, monuments, and tourist attractions that standard object detection cannot recognize (increases processing time)"
         
     | 
| 606 | 
         
            -
                                            )
         
     | 
| 607 | 
         
            -
             
     | 
| 608 | 
         
            -
                                            with gr.Accordion("Filter Classes", open=False):
         
     | 
| 609 | 
         
            -
                                                 gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
         
     | 
| 610 | 
         
            -
                                                 with gr.Row():
         
     | 
| 611 | 
         
            -
                                                     people_btn = gr.Button("People", size="sm")
         
     | 
| 612 | 
         
            -
                                                     vehicles_btn = gr.Button("Vehicles", size="sm")
         
     | 
| 613 | 
         
            -
                                                     animals_btn = gr.Button("Animals", size="sm")
         
     | 
| 614 | 
         
            -
                                                     objects_btn = gr.Button("Common Objects", size="sm")
         
     | 
| 615 | 
         
            -
                                                 image_class_filter = gr.Dropdown(
         
     | 
| 616 | 
         
            -
                                                     choices=class_choices_formatted, # Use formatted choices
         
     | 
| 617 | 
         
            -
                                                     multiselect=True,
         
     | 
| 618 | 
         
            -
                                                     label="Select Classes to Display",
         
     | 
| 619 | 
         
            -
                                                     info="Leave empty to show all detected objects"
         
     | 
| 620 | 
         
            -
                                                 )
         
     | 
| 621 | 
         
            -
             
     | 
| 622 | 
         
            -
                                    image_detect_btn = gr.Button("Analyze Image", variant="primary", elem_classes="detect-btn")
         
     | 
| 623 | 
         
            -
             
     | 
| 624 | 
         
            -
                                    with gr.Group(elem_classes="how-to-use"):
         
     | 
| 625 | 
         
            -
                                         gr.HTML('<div class="section-heading">How to Use (Image)</div>')
         
     | 
| 626 | 
         
            -
                                         gr.Markdown("""
         
     | 
| 627 | 
         
            -
                                            1. Upload an image or use the camera
         
     | 
| 628 | 
         
            -
                                            2. *(Optional)* Adjust settings like confidence threshold or model size (n, m = balanced, x = accurate)
         
     | 
| 629 | 
         
            -
                                            3. In **Analysis Settings**, you can:
         
     | 
| 630 | 
         
            -
                                                * Uncheck **Use LLM** to skip enhanced descriptions (faster)
         
     | 
| 631 | 
         
            -
                                                * Check **Use CLIP for Landmark Detection** to identify famous landmarks like museums, monuments, and tourist attractions *(may take longer)*
         
     | 
| 632 | 
         
            -
                                                * Filter object classes to focus on specific types of objects *(optional)*
         
     | 
| 633 | 
         
            -
                                            4. Click **Analyze Image** button
         
     | 
| 634 | 
         
            -
             
     | 
| 635 | 
         
            -
                                            **💡 Tip:** For landmark recognition (e.g. Louvre Museum), make sure to enable **CLIP for Landmark Detection** in the settings above.
         
     | 
| 636 | 
         
            -
                                            """)
         
     | 
| 637 | 
         
            -
             
     | 
| 638 | 
         
            -
             
     | 
| 639 | 
         
            -
                                    # Image Examples
         
     | 
| 640 | 
         
            -
                                    gr.Examples(
         
     | 
| 641 | 
         
            -
                                        examples=[
         
     | 
| 642 | 
         
            -
                                            "room_01.jpg",
         
     | 
| 643 | 
         
            -
                                            "street_04.jpg",
         
     | 
| 644 | 
         
            -
                                            "street_05.jpg",
         
     | 
| 645 | 
         
            -
                                            "landmark_Louvre_01.jpg"
         
     | 
| 646 | 
         
            -
                                            ],
         
     | 
| 647 | 
         
            -
                                        inputs=image_input,
         
     | 
| 648 | 
         
            -
                                        label="Example Images"
         
     | 
| 649 | 
         
            -
                                     )
         
     | 
| 650 | 
         
            -
             
     | 
| 651 | 
         
            -
                                    gr.HTML("""
         
     | 
| 652 | 
         
            -
                                        <div style="text-align: center; margin-top: 8px; padding: 6px; background-color: #f8f9fa; border-radius: 4px; border: 1px solid #e2e8f0;">
         
     | 
| 653 | 
         
            -
                                            <p style="font-size: 12px; color: #718096; margin: 0;">
         
     | 
| 654 | 
         
            -
                                                📷 Sample images sourced from <a href="https://unsplash.com" target="_blank" style="color: #3182ce; text-decoration: underline;">Unsplash</a>
         
     | 
| 655 | 
         
            -
                                            </p>
         
     | 
| 656 | 
         
            -
                                        </div>
         
     | 
| 657 | 
         
            -
                                    """)
         
     | 
| 658 | 
         
            -
             
     | 
| 659 | 
         
            -
                                # Right Column: Image Results
         
     | 
| 660 | 
         
            -
                                with gr.Column(scale=6, elem_classes="output-panel"):
         
     | 
| 661 | 
         
            -
                                    with gr.Tabs(elem_classes="tabs"):
         
     | 
| 662 | 
         
            -
                                        with gr.Tab("Detection Result"):
         
     | 
| 663 | 
         
            -
                                            image_result_image = gr.Image(type="pil", label="Detection Result")
         
     | 
| 664 | 
         
            -
                                            gr.HTML('<div class="section-heading">Detection Details</div>')
         
     | 
| 665 | 
         
            -
                                            image_result_text = gr.Textbox(label=None, lines=10, elem_id="detection-details", container=False)
         
     | 
| 666 | 
         
            -
             
     | 
| 667 | 
         
            -
                                        with gr.Tab("Scene Understanding"):
         
     | 
| 668 | 
         
            -
                                            gr.HTML('<div class="section-heading">Scene Analysis</div>')
         
     | 
| 669 | 
         
            -
                                            gr.HTML("""
         
     | 
| 670 | 
         
            -
                                                <details class="info-details" style="margin: 5px 0 15px 0;">
         
     | 
| 671 | 
         
            -
                                                    <summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
         
     | 
| 672 | 
         
            -
                                                        🔍 The AI Vision Scout Report: Click for important notes about this analysis
         
     | 
| 673 | 
         
            -
                                                    </summary>
         
     | 
| 674 | 
         
            -
                                                    <div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
         
     | 
| 675 | 
         
            -
                                                        <p style="font-size: 13px; color: #718096; margin: 0;">
         
     | 
| 676 | 
         
            -
                                                            <b>About this analysis:</b> This analysis is the model's best guess based on visible objects.
         
     | 
| 677 | 
         
            -
                                                            Like human scouts, it sometimes gets lost or sees things that aren't there (but don't we all?).
         
     | 
| 678 | 
         
            -
                                                            Consider this an educated opinion rather than absolute truth. For critical applications, always verify with human eyes! 🧐
         
     | 
| 679 | 
         
            -
                                                        </p>
         
     | 
| 680 | 
         
            -
                                                    </div>
         
     | 
| 681 | 
         
            -
                                                </details>
         
     | 
| 682 | 
         
            -
                                            """)
         
     | 
| 683 | 
         
            -
             
     | 
| 684 | 
         
            -
                                            gr.HTML('''
         
     | 
| 685 | 
         
            -
                                                <div style="margin-top: 5px; padding: 6px 10px; background-color: #f0f9ff; border-radius: 4px; border-left: 3px solid #63b3ed; font-size: 12px; margin-bottom: 10px;">
         
     | 
| 686 | 
         
            -
                                                    <p style="margin: 0; color: #4a5568;">
         
     | 
| 687 | 
         
            -
                                                        <b>Note:</b> AI descriptions may vary slightly with each generation, reflecting the creative nature of AI. This is similar to how a person might use different words each time they describe the same image. Processing time may be longer during first use or when analyzing complex scenes, as the LLM enhancement requires additional computational resources.
         
     | 
| 688 | 
         
            -
                                                    </p>
         
     | 
| 689 | 
         
            -
                                                </div>
         
     | 
| 690 | 
         
            -
                                                ''')
         
     | 
| 691 | 
         
            -
                                            image_scene_description_html = gr.HTML(label=None, elem_id="scene_analysis_description_text")
         
     | 
| 692 | 
         
            -
             
     | 
| 693 | 
         
            -
                                            # 使用LLM增強敘述時也會顯示原本敘述內容
         
     | 
| 694 | 
         
            -
                                            with gr.Accordion("Original Scene Analysis", open=False, elem_id="original_scene_analysis_accordion"):
         
     | 
| 695 | 
         
            -
                                                image_llm_description = gr.HTML(label=None, elem_id="original_scene_description_text")
         
     | 
| 696 | 
         
            -
             
     | 
| 697 | 
         
            -
                                            with gr.Row():
         
     | 
| 698 | 
         
            -
                                                 with gr.Column(scale=1):
         
     | 
| 699 | 
         
            -
                                                     gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Possible Activities</div>')
         
     | 
| 700 | 
         
            -
                                                     image_activities_list = gr.Dataframe(headers=["Activity"], datatype=["str"], row_count=5, col_count=1, wrap=True)
         
     | 
| 701 | 
         
            -
             
     | 
| 702 | 
         
            -
                                                 with gr.Column(scale=1):
         
     | 
| 703 | 
         
            -
                                                     gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Safety Concerns</div>')
         
     | 
| 704 | 
         
            -
                                                     image_safety_list = gr.Dataframe(headers=["Concern"], datatype=["str"], row_count=5, col_count=1, wrap=True)
         
     | 
| 705 | 
         
            -
             
     | 
| 706 | 
         
            -
                                            gr.HTML('<div class="section-heading">Functional Zones</div>')
         
     | 
| 707 | 
         
            -
                                            image_zones_json = gr.JSON(label=None, elem_classes="json-box")
         
     | 
| 708 | 
         
            -
             
     | 
| 709 | 
         
            -
                                            gr.HTML('<div class="section-heading">Lighting Conditions</div>')
         
     | 
| 710 | 
         
            -
                                            image_lighting_info = gr.JSON(label=None, elem_classes="json-box")
         
     | 
| 711 | 
         
            -
             
     | 
| 712 | 
         
            -
                                        with gr.Tab("Statistics"):
         
     | 
| 713 | 
         
            -
                                            with gr.Row():
         
     | 
| 714 | 
         
            -
                                                with gr.Column(scale=3, elem_classes="plot-column"):
         
     | 
| 715 | 
         
            -
                                                    gr.HTML('<div class="section-heading">Object Distribution</div>')
         
     | 
| 716 | 
         
            -
                                                    image_plot_output = gr.Plot(label=None, elem_classes="large-plot-container")
         
     | 
| 717 | 
         
            -
                                                with gr.Column(scale=2, elem_classes="stats-column"):
         
     | 
| 718 | 
         
            -
                                                    gr.HTML('<div class="section-heading">Detection Statistics</div>')
         
     | 
| 719 | 
         
            -
                                                    image_stats_json = gr.JSON(label=None, elem_classes="enhanced-json-display")
         
     | 
| 720 | 
         
            -
             
     | 
| 721 | 
         
            -
                        # Tab 2: Video Processing
         
     | 
| 722 | 
         
            -
                        with gr.Tab("Video Processing"):
         
     | 
| 723 | 
         
            -
                            with gr.Row(equal_height=False):
         
     | 
| 724 | 
         
            -
                                # Left Column: Video Input & Controls
         
     | 
| 725 | 
         
            -
                                with gr.Column(scale=4, elem_classes="input-panel"):
         
     | 
| 726 | 
         
            -
                                    with gr.Group():
         
     | 
| 727 | 
         
            -
                                        gr.HTML('<div class="section-heading">Video Input</div>')
         
     | 
| 728 | 
         
            -
             
     | 
| 729 | 
         
            -
                                        # Add input type selection
         
     | 
| 730 | 
         
            -
                                        video_input_type = gr.Radio(
         
     | 
| 731 | 
         
            -
                                            ["upload", "url"],
         
     | 
| 732 | 
         
            -
                                            label="Input Method",
         
     | 
| 733 | 
         
            -
                                            value="upload",
         
     | 
| 734 | 
         
            -
                                            info="Choose how to provide the video"
         
     | 
| 735 | 
         
            -
                                        )
         
     | 
| 736 | 
         
            -
             
     | 
| 737 | 
         
            -
                                        # File upload (will be shown/hidden based on selection)
         
     | 
| 738 | 
         
            -
                                        with gr.Group(elem_id="upload-video-group"):
         
     | 
| 739 | 
         
            -
                                            video_input = gr.Video(
         
     | 
| 740 | 
         
            -
                                                label="Upload a video file (MP4, AVI, MOV)",
         
     | 
| 741 | 
         
            -
                                                sources=["upload"],
         
     | 
| 742 | 
         
            -
                                                visible=True
         
     | 
| 743 | 
         
            -
                                            )
         
     | 
| 744 | 
         
            -
             
     | 
| 745 | 
         
            -
                                        # URL input (will be shown/hidden based on selection)
         
     | 
| 746 | 
         
            -
                                        with gr.Group(elem_id="url-video-group"):
         
     | 
| 747 | 
         
            -
                                            video_url_input = gr.Textbox(
         
     | 
| 748 | 
         
            -
                                                label="Enter video URL (YouTube or direct video link)",
         
     | 
| 749 | 
         
            -
                                                placeholder="https://www.youtube.com/watch?v=...",
         
     | 
| 750 | 
         
            -
                                                visible=False,
         
     | 
| 751 | 
         
            -
                                                elem_classes="custom-video-url-input"
         
     | 
| 752 | 
         
            -
                                            )
         
     | 
| 753 | 
         
            -
                                            gr.HTML("""
         
     | 
| 754 | 
         
            -
                                                <div style="padding: 8px; margin-top: 5px; background-color: #fff8f8; border-radius: 4px; border-left: 3px solid #f87171; font-size: 12px;">
         
     | 
| 755 | 
         
            -
                                                    <p style="margin: 0; color: #4b5563;">
         
     | 
| 756 | 
         
            -
                                                        Note: Currently only YouTube URLs are supported. Maximum video duration is 10 minutes. Due to YouTube's anti-bot protection, some videos may not be downloadable. For protected videos, please upload a local video file instead.
         
     | 
| 757 | 
         
            -
                                                    </p>
         
     | 
| 758 | 
         
            -
                                                </div>
         
     | 
| 759 | 
         
            -
                                            """)
         
     | 
| 760 | 
         
            -
             
     | 
| 761 | 
         
            -
                                        with gr.Accordion("Video Analysis Settings", open=True):
         
     | 
| 762 | 
         
            -
                                            video_model_dropdown = gr.Dropdown(
         
     | 
| 763 | 
         
            -
                                                choices=model_choices,
         
     | 
| 764 | 
         
            -
                                                value="yolov8n.pt", # Default 'n' for video
         
     | 
| 765 | 
         
            -
                                                label="Select Model (Video)",
         
     | 
| 766 | 
         
            -
                                                info="Faster models (like 'n') are recommended"
         
     | 
| 767 | 
         
            -
                                            )
         
     | 
| 768 | 
         
            -
                                            video_confidence = gr.Slider(
         
     | 
| 769 | 
         
            -
                                                minimum=0.1, maximum=0.9, value=0.4, step=0.05,
         
     | 
| 770 | 
         
            -
                                                label="Confidence Threshold (Video)"
         
     | 
| 771 | 
         
            -
                                            )
         
     | 
| 772 | 
         
            -
                                            video_process_interval = gr.Slider(
         
     | 
| 773 | 
         
            -
                                                minimum=1, maximum=60, value=10, step=1, # Allow up to 60 frame interval
         
     | 
| 774 | 
         
            -
                                                label="Processing Interval (Frames)",
         
     | 
| 775 | 
         
            -
                                                info="Analyze every Nth frame (higher value = faster)"
         
     | 
| 776 | 
         
            -
                                            )
         
     | 
| 777 | 
         
            -
                                    video_process_btn = gr.Button("Process Video", variant="primary", elem_classes="detect-btn")
         
     | 
| 778 | 
         
            -
             
     | 
| 779 | 
         
            -
                                    with gr.Group(elem_classes="how-to-use"):
         
     | 
| 780 | 
         
            -
                                        gr.HTML('<div class="section-heading">How to Use (Video)</div>')
         
     | 
| 781 | 
         
            -
                                        gr.Markdown("""
         
     | 
| 782 | 
         
            -
                                        1. Choose your input method: Upload a file or enter a URL.
         
     | 
| 783 | 
         
            -
                                        2. Adjust settings if needed (using a faster model and larger interval is recommended for longer videos).
         
     | 
| 784 | 
         
            -
                                        3. Click "Process Video". **Processing can take a significant amount of time.**
         
     | 
| 785 | 
         
            -
                                        4. The annotated video and summary will appear on the right when finished.
         
     | 
| 786 | 
         
            -
                                        """)
         
     | 
| 787 | 
         
            -
             
     | 
| 788 | 
         
            -
                                    # Add video examples
         
     | 
| 789 | 
         
            -
                                    gr.HTML('<div class="section-heading">Example Videos</div>')
         
     | 
| 790 | 
         
            -
                                    gr.HTML("""
         
     | 
| 791 | 
         
            -
                                        <div style="padding: 10px; background-color: #f0f7ff; border-radius: 6px; margin-bottom: 15px;">
         
     | 
| 792 | 
         
            -
                                            <p style="font-size: 14px; color: #4A5568; margin: 0;">
         
     | 
| 793 | 
         
            -
                                                Upload any video containing objects that YOLO can detect. For testing, find sample videos
         
     | 
| 794 | 
         
            -
                                                <a href="https://www.pexels.com/search/videos/street/" target="_blank" style="color: #3182ce; text-decoration: underline;">here</a>.
         
     | 
| 795 | 
         
            -
                                            </p>
         
     | 
| 796 | 
         
            -
                                        </div>
         
     | 
| 797 | 
         
            -
                                    """)
         
     | 
| 798 | 
         
            -
             
     | 
| 799 | 
         
            -
                                # Right Column: Video Results
         
     | 
| 800 | 
         
            -
                                with gr.Column(scale=6, elem_classes="output-panel video-result-panel"):
         
     | 
| 801 | 
         
            -
                                    gr.HTML("""
         
     | 
| 802 | 
         
            -
                                        <div class="section-heading">Video Result</div>
         
     | 
| 803 | 
         
            -
                                        <details class="info-details" style="margin: 5px 0 15px 0;">
         
     | 
| 804 | 
         
            -
                                            <summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
         
     | 
| 805 | 
         
            -
                                                🎬 Video Processing Notes
         
     | 
| 806 | 
         
            -
                                            </summary>
         
     | 
| 807 | 
         
            -
                                            <div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
         
     | 
| 808 | 
         
            -
                                                <p style="font-size: 13px; color: #718096; margin: 0;">
         
     | 
| 809 | 
         
            -
                                                    The processed video includes bounding boxes around detected objects. For longer videos,
         
     | 
| 810 | 
         
            -
                                                    consider using a faster model (like YOLOv8n) and a higher frame interval to reduce processing time.
         
     | 
| 811 | 
         
            -
                                                </p>
         
     | 
| 812 | 
         
            -
                                            </div>
         
     | 
| 813 | 
         
            -
                                        </details>
         
     | 
| 814 | 
         
            -
                                    """)
         
     | 
| 815 | 
         
            -
                                    video_output = gr.Video(label="Processed Video", elem_classes="video-output-container") # Output for the processed video file
         
     | 
| 816 | 
         
            -
             
     | 
| 817 | 
         
            -
                                    gr.HTML('<div class="section-heading">Processing Summary</div>')
         
     | 
| 818 | 
         
            -
                                    # 使用HTML顯示影片的摘要
         
     | 
| 819 | 
         
            -
                                    video_summary_text = gr.HTML(
         
     | 
| 820 | 
         
            -
                                        label=None,
         
     | 
| 821 | 
         
            -
                                        elem_id="video-summary-html-output"
         
     | 
| 822 | 
         
            -
                                    )
         
     | 
| 823 | 
         
            -
             
     | 
| 824 | 
         
            -
                                    gr.HTML('<div class="section-heading">Aggregated Statistics</div>')
         
     | 
| 825 | 
         
            -
                                    video_stats_json = gr.JSON(label=None, elem_classes="video-stats-display") # Display statistics
         
     | 
| 826 | 
         
            -
             
     | 
| 827 | 
         
            -
                    # Event Listeners
         
     | 
| 828 | 
         
            -
                    # Image Model Change Handler
         
     | 
| 829 | 
         
            -
                    image_model_dropdown.change(
         
     | 
| 830 | 
         
            -
                        fn=lambda model: (model, DetectionModel.get_model_description(model)),
         
     | 
| 831 | 
         
            -
                        inputs=[image_model_dropdown],
         
     | 
| 832 | 
         
            -
                        outputs=[current_image_model, image_model_info] # Update state and description
         
     | 
| 833 | 
         
            -
                    )
         
     | 
| 834 | 
         
            -
             
     | 
| 835 | 
         
            -
                    # Image Filter Buttons
         
     | 
| 836 | 
         
            -
                    available_classes_list = get_all_classes() # Get list of (id, name)
         
     | 
| 837 | 
         
            -
                    people_classes_ids = [0]
         
     | 
| 838 | 
         
            -
                    vehicles_classes_ids = [1, 2, 3, 4, 5, 6, 7, 8]
         
     | 
| 839 | 
         
            -
                    animals_classes_ids = list(range(14, 24))
         
     | 
| 840 | 
         
            -
                    common_objects_ids = [39, 41, 42, 43, 44, 45, 56, 57, 60, 62, 63, 67, 73] # Bottle, cup, fork, knife, spoon, bowl, chair, couch, table, tv, laptop, phone, book
         
     | 
| 841 | 
         
            -
             
     | 
| 842 | 
         
            -
                    people_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in people_classes_ids], outputs=image_class_filter)
         
     | 
| 843 | 
         
            -
                    vehicles_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in vehicles_classes_ids], outputs=image_class_filter)
         
     | 
| 844 | 
         
            -
                    animals_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in animals_classes_ids], outputs=image_class_filter)
         
     | 
| 845 | 
         
            -
                    objects_btn.click(lambda: [f"{id}: {name}" for id, name in available_classes_list if id in common_objects_ids], outputs=image_class_filter)
         
     | 
| 846 | 
         
            -
             
     | 
| 847 | 
         
            -
                    video_input_type.change(
         
     | 
| 848 | 
         
            -
                        fn=lambda input_type: [
         
     | 
| 849 | 
         
            -
                            # Show/hide file upload
         
     | 
| 850 | 
         
            -
                            gr.update(visible=(input_type == "upload")),
         
     | 
| 851 | 
         
            -
                            # Show/hide URL input
         
     | 
| 852 | 
         
            -
                            gr.update(visible=(input_type == "url"))
         
     | 
| 853 | 
         
            -
                        ],
         
     | 
| 854 | 
         
            -
                        inputs=[video_input_type],
         
     | 
| 855 | 
         
            -
                        outputs=[video_input, video_url_input]
         
     | 
| 856 | 
         
            -
                    )
         
     | 
| 857 | 
         
            -
             
     | 
| 858 | 
         
            -
                    image_detect_btn.click(
         
     | 
| 859 | 
         
            -
                        fn=handle_image_upload,
         
     | 
| 860 | 
         
            -
                        inputs=[image_input, image_model_dropdown, image_confidence, image_class_filter, use_llm, use_landmark_detection ],
         
     | 
| 861 | 
         
            -
                        outputs=[
         
     | 
| 862 | 
         
            -
                            image_result_image, image_result_text, image_stats_json, image_plot_output,
         
     | 
| 863 | 
         
            -
                            image_scene_description_html, image_llm_description, image_activities_list, image_safety_list, image_zones_json,
         
     | 
| 864 | 
         
            -
                            image_lighting_info
         
     | 
| 865 | 
         
            -
                        ]
         
     | 
| 866 | 
         
            -
                    )
         
     | 
| 867 | 
         
            -
             
     | 
| 868 | 
         
            -
                    video_process_btn.click(
         
     | 
| 869 | 
         
            -
                        fn=handle_video_upload,
         
     | 
| 870 | 
         
            -
                        inputs=[
         
     | 
| 871 | 
         
            -
                            video_input,
         
     | 
| 872 | 
         
            -
                            video_url_input,
         
     | 
| 873 | 
         
            -
                            video_input_type,
         
     | 
| 874 | 
         
            -
                            video_model_dropdown,
         
     | 
| 875 | 
         
            -
                            video_confidence,
         
     | 
| 876 | 
         
            -
                            video_process_interval
         
     | 
| 877 | 
         
            -
                        ],
         
     | 
| 878 | 
         
            -
                        outputs=[video_output, video_summary_text, video_stats_json]
         
     | 
| 879 | 
         
            -
                    )
         
     | 
| 880 | 
         
            -
             
     | 
| 881 | 
         
            -
                    # Footer
         
     | 
| 882 | 
         
            -
                    gr.HTML("""
         
     | 
| 883 | 
         
            -
                        <div class="footer" style="padding: 25px 0; text-align: center; background: linear-gradient(to right, #f5f9fc, #e1f5fe); border-top: 1px solid #e2e8f0; margin-top: 30px;">
         
     | 
| 884 | 
         
            -
                            <div style="margin-bottom: 15px;">
         
     | 
| 885 | 
         
            -
                                <p style="font-size: 14px; color: #4A5568; margin: 5px 0;">Powered by YOLOv8, CLIP, Places365, Meta Llama3.2 and Ultralytics • Created with Gradio</p>
         
     | 
| 886 | 
         
            -
                            </div>
         
     | 
| 887 | 
         
            -
                            <div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-top: 15px;">
         
     | 
| 888 | 
         
            -
                                <p style="font-family: 'Arial', sans-serif; font-size: 14px; font-weight: 500; letter-spacing: 2px; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0; text-transform: uppercase; display: inline-block;">EXPLORE THE CODE →</p>
         
     | 
| 889 | 
         
            -
                                <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/VisionScout" target="_blank" style="text-decoration: none;">
         
     | 
| 890 | 
         
            -
                                    <img src="https://img.shields.io/badge/GitHub-VisionScout-4299e1?logo=github&style=for-the-badge">
         
     | 
| 891 | 
         
            -
                                </a>
         
     | 
| 892 | 
         
            -
                            </div>
         
     | 
| 893 | 
         
            -
                        </div>
         
     | 
| 894 | 
         
            -
                    """)
         
     | 
| 895 | 
         
            -
             
     | 
| 896 | 
         
            -
                return demo
         
     | 
| 897 | 
         | 
| 898 | 
         | 
| 899 | 
         
             
            if __name__ == "__main__":
         
     | 
| 900 | 
         
            -
                 
     | 
| 901 | 
         
            -
             
     | 
| 902 | 
         
            -
                demo_interface.launch(debug=True)
         
     | 
| 
         | 
|
| 17 | 
         
             
            from image_processor import ImageProcessor
         
     | 
| 18 | 
         
             
            from video_processor import VideoProcessor
         
     | 
| 19 | 
         
             
            from llm_enhancer import LLMEnhancer
         
     | 
| 20 | 
         
            +
            from ui_manager import UIManager
         
     | 
| 21 | 
         | 
| 22 | 
         
             
            # Initialize Processors with LLM support
         
     | 
| 23 | 
         
             
            image_processor = None
         
     | 
| 24 | 
         
             
            video_processor = None
         
     | 
| 25 | 
         
            +
            ui_manager = None
         
     | 
| 26 | 
         | 
| 27 | 
         
             
            def initialize_processors():
         
     | 
| 28 | 
         
            +
                """
         
     | 
| 29 | 
         
            +
                Initialize the image and video processors with LLM support.
         
     | 
| 30 | 
         
            +
                
         
     | 
| 31 | 
         
            +
                Returns:
         
     | 
| 32 | 
         
            +
                    bool: True if initialization was successful, False otherwise
         
     | 
| 33 | 
         
            +
                """
         
     | 
| 34 | 
         
             
                global image_processor, video_processor
         
     | 
| 35 | 
         | 
| 36 | 
         
             
                try:
         
     | 
| 
         | 
|
| 38 | 
         
             
                    image_processor = ImageProcessor(use_llm=True, llm_model_path="meta-llama/Llama-3.2-3B-Instruct")
         
     | 
| 39 | 
         
             
                    print("ImageProcessor initialized successfully with LLM")
         
     | 
| 40 | 
         | 
| 41 | 
         
            +
                    # 檢查狀態
         
     | 
| 42 | 
         
             
                    if hasattr(image_processor, 'scene_analyzer'):
         
     | 
| 43 | 
         
             
                        if image_processor.scene_analyzer is not None:
         
     | 
| 44 | 
         
             
                            print(f"scene_analyzer initialized: {type(image_processor.scene_analyzer)}")
         
     | 
| 
         | 
|
| 74 | 
         
             
                        video_processor = None
         
     | 
| 75 | 
         
             
                        return False
         
     | 
| 76 | 
         | 
| 77 | 
         
            +
            def initialize_ui_manager():
         
     | 
| 78 | 
         
            +
                """
         
     | 
| 79 | 
         
            +
                Initialize the UI manager and set up references to processors.
         
     | 
| 80 | 
         
            +
                
         
     | 
| 81 | 
         
            +
                Returns:
         
     | 
| 82 | 
         
            +
                    UIManager: Initialized UI manager instance
         
     | 
| 83 | 
         
            +
                """
         
     | 
| 84 | 
         
            +
                global ui_manager, image_processor
         
     | 
| 85 | 
         
            +
                
         
     | 
| 86 | 
         
            +
                ui_manager = UIManager()
         
     | 
| 87 | 
         
            +
                
         
     | 
| 88 | 
         
            +
                # Set image processor reference for dynamic class retrieval
         
     | 
| 89 | 
         
            +
                if image_processor:
         
     | 
| 90 | 
         
            +
                    ui_manager.set_image_processor(image_processor)
         
     | 
| 91 | 
         
            +
                
         
     | 
| 92 | 
         
            +
                return ui_manager
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 93 | 
         | 
| 94 | 
         
             
            @spaces.GPU(duration=180)
         
     | 
| 95 | 
         
             
            def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None, use_llm=True, enable_landmark=True):
         
     | 
| 96 | 
         
            +
                """
         
     | 
| 97 | 
         
            +
                Processes a single uploaded image.
         
     | 
| 98 | 
         
            +
                
         
     | 
| 99 | 
         
            +
                Args:
         
     | 
| 100 | 
         
            +
                    image: PIL Image object
         
     | 
| 101 | 
         
            +
                    model_name: Name of the YOLO model to use
         
     | 
| 102 | 
         
            +
                    confidence_threshold: Confidence threshold for detections
         
     | 
| 103 | 
         
            +
                    filter_classes: List of class names/IDs to filter
         
     | 
| 104 | 
         
            +
                    use_llm: Whether to use LLM for enhanced descriptions
         
     | 
| 105 | 
         
            +
                    enable_landmark: Whether to enable landmark detection
         
     | 
| 106 | 
         
            +
                    
         
     | 
| 107 | 
         
            +
                Returns:
         
     | 
| 108 | 
         
            +
                    Tuple: (result_image, result_text, formatted_stats, plot_figure, 
         
     | 
| 109 | 
         
            +
                            scene_description_html, original_desc_html, activities_list_data, 
         
     | 
| 110 | 
         
            +
                            safety_data, zones, lighting)
         
     | 
| 111 | 
         
            +
                """
         
     | 
| 112 | 
         
             
                # Enhanced safety check for image_processor
         
     | 
| 113 | 
         
             
                if image_processor is None:
         
     | 
| 114 | 
         
             
                    error_msg = "Image processor is not initialized. Please restart the application or check system dependencies."
         
     | 
| 
         | 
|
| 140 | 
         | 
| 141 | 
         
             
                print(f"DIAGNOSTIC: Image upload handled with enable_landmark={enable_landmark}, use_llm={use_llm}")
         
     | 
| 142 | 
         
             
                print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}, use_llm: {use_llm}, enable_landmark: {enable_landmark}")
         
     | 
| 143 | 
         
            +
                
         
     | 
| 144 | 
         
             
                try:
         
     | 
| 145 | 
         
             
                    image_processor.use_llm = use_llm
         
     | 
| 146 | 
         | 
| 
         | 
|
| 156 | 
         
             
                            image_processor.scene_analyzer.use_landmark_detection = enable_landmark
         
     | 
| 157 | 
         
             
                            image_processor.scene_analyzer.enable_landmark = enable_landmark
         
     | 
| 158 | 
         | 
| 159 | 
         
            +
                            # 確保處理器也設置了這選項(檢測地標用)
         
     | 
| 160 | 
         
             
                            image_processor.enable_landmark = enable_landmark
         
     | 
| 161 | 
         | 
| 162 | 
         
             
                            # 檢查並設置更深層次的組件
         
     | 
| 163 | 
         
             
                            if hasattr(image_processor.scene_analyzer, 'scene_describer') and image_processor.scene_analyzer.scene_describer is not None:
         
     | 
| 164 | 
         
             
                                image_processor.scene_analyzer.scene_describer.enable_landmark = enable_landmark
         
     | 
| 165 | 
         | 
| 166 | 
         
            +
                            # 檢查並設置CLIP Analyzer
         
     | 
| 167 | 
         
             
                            if hasattr(image_processor.scene_analyzer, 'clip_analyzer') and image_processor.scene_analyzer.clip_analyzer is not None:
         
     | 
| 168 | 
         
             
                                if hasattr(image_processor.scene_analyzer.clip_analyzer, 'enable_landmark'):
         
     | 
| 169 | 
         
             
                                    image_processor.scene_analyzer.clip_analyzer.enable_landmark = enable_landmark
         
     | 
| 170 | 
         | 
| 171 | 
         
            +
                            # 檢查並設置LLM方面
         
     | 
| 172 | 
         
             
                            if hasattr(image_processor.scene_analyzer, 'llm_enhancer') and image_processor.scene_analyzer.llm_enhancer is not None:
         
     | 
| 173 | 
         
             
                                if hasattr(image_processor.scene_analyzer.llm_enhancer, 'enable_landmark'):
         
     | 
| 174 | 
         
             
                                    image_processor.scene_analyzer.llm_enhancer.enable_landmark = enable_landmark
         
     | 
| 
         | 
|
| 199 | 
         
             
                    class_ids_to_filter = None
         
     | 
| 200 | 
         
             
                    if filter_classes:
         
     | 
| 201 | 
         
             
                        class_ids_to_filter = []
         
     | 
| 202 | 
         
            +
                        available_classes_dict = dict(ui_manager.get_all_classes())
         
     | 
| 203 | 
         
             
                        name_to_id = {name: id for id, name in available_classes_dict.items()}
         
     | 
| 204 | 
         
             
                        for class_str in filter_classes:
         
     | 
| 205 | 
         
             
                            class_name_or_id = class_str.split(":")[0].strip()
         
     | 
| 
         | 
|
| 236 | 
         
             
                    # Prepare visualization data for the plot
         
     | 
| 237 | 
         
             
                    plot_figure = None
         
     | 
| 238 | 
         
             
                    if stats and "class_statistics" in stats and stats["class_statistics"]:
         
     | 
| 239 | 
         
            +
                        available_classes_dict = dict(ui_manager.get_all_classes())
         
     | 
| 240 | 
         
             
                        viz_data = image_processor.prepare_visualization_data(stats, available_classes_dict)
         
     | 
| 241 | 
         
             
                        if "error" not in viz_data:
         
     | 
| 242 | 
         
             
                             plot_figure = EvaluationMetrics.create_enhanced_stats_plot(viz_data)
         
     | 
| 
         | 
|
| 486 | 
         | 
| 487 | 
         
             
            @spaces.GPU
         
     | 
| 488 | 
         
             
            def handle_video_upload(video_input, video_url, input_type, model_name, confidence_threshold, process_interval):
         
     | 
| 489 | 
         
            +
                """
         
     | 
| 490 | 
         
            +
                Handles video upload or URL input and calls the VideoProcessor.
         
     | 
| 491 | 
         
            +
                
         
     | 
| 492 | 
         
            +
                Args:
         
     | 
| 493 | 
         
            +
                    video_input: Uploaded video file
         
     | 
| 494 | 
         
            +
                    video_url: Video URL (if using URL input)
         
     | 
| 495 | 
         
            +
                    input_type: Type of input ("upload" or "url")
         
     | 
| 496 | 
         
            +
                    model_name: Name of the YOLO model to use
         
     | 
| 497 | 
         
            +
                    confidence_threshold: Confidence threshold for detections
         
     | 
| 498 | 
         
            +
                    process_interval: Frame processing interval
         
     | 
| 499 | 
         
            +
                    
         
     | 
| 500 | 
         
            +
                Returns:
         
     | 
| 501 | 
         
            +
                    Tuple: (output_video_path, summary_html, formatted_stats)
         
     | 
| 502 | 
         
            +
                """
         
     | 
| 503 | 
         
             
                print(f"Received video request: input_type={input_type}")
         
     | 
| 504 | 
         
             
                video_path = None
         
     | 
| 505 | 
         | 
| 
         | 
|
| 547 | 
         
             
                    return None, error_html, {"error": str(e)}
         
     | 
| 548 | 
         | 
| 549 | 
         | 
| 550 | 
         
            +
            def main():
         
     | 
| 551 | 
         
            +
                """
         
     | 
| 552 | 
         
            +
                Main function to initialize processors and launch the Gradio interface.
         
     | 
| 553 | 
         
            +
                """
         
     | 
| 554 | 
         
            +
                global ui_manager
         
     | 
| 555 | 
         
            +
                
         
     | 
| 556 | 
         
            +
                # Initialize processors
         
     | 
| 557 | 
         
            +
                print("Initializing processors...")
         
     | 
| 558 | 
         
            +
                initialization_success = initialize_processors()
         
     | 
| 559 | 
         
            +
                if not initialization_success:
         
     | 
| 560 | 
         
            +
                    print("WARNING: Failed to initialize processors. Application may not function correctly.")
         
     | 
| 561 | 
         
            +
                    return
         
     | 
| 562 | 
         
            +
                
         
     | 
| 563 | 
         
            +
                # Initialize UI manager
         
     | 
| 564 | 
         
            +
                print("Initializing UI manager...")
         
     | 
| 565 | 
         
            +
                ui_manager = initialize_ui_manager()
         
     | 
| 566 | 
         
            +
                
         
     | 
| 567 | 
         
            +
                # Create and launch the Gradio interface
         
     | 
| 568 | 
         
            +
                print("Creating Gradio interface...")
         
     | 
| 569 | 
         
            +
                demo_interface = ui_manager.create_interface(
         
     | 
| 570 | 
         
            +
                    handle_image_upload_fn=handle_image_upload,
         
     | 
| 571 | 
         
            +
                    handle_video_upload_fn=handle_video_upload,
         
     | 
| 572 | 
         
            +
                    download_video_from_url_fn=download_video_from_url
         
     | 
| 573 | 
         
            +
                )
         
     | 
| 574 | 
         
            +
                
         
     | 
| 575 | 
         
            +
                print("Launching application...")
         
     | 
| 576 | 
         
            +
                demo_interface.launch(debug=True)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 577 | 
         | 
| 578 | 
         | 
| 579 | 
         
             
            if __name__ == "__main__":
         
     | 
| 580 | 
         
            +
                main()
         
     | 
| 
         | 
|
| 
         | 
    	
        functional_zone_identifier.py
    CHANGED
    
    | 
         @@ -11,7 +11,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 11 | 
         
             
                整合區域評估和場景特定的區域辨識邏輯,提供統一的功能區域辨識接口
         
     | 
| 12 | 
         
             
                """
         
     | 
| 13 | 
         | 
| 14 | 
         
            -
                def __init__(self, zone_evaluator=None, scene_zone_identifier=None, scene_viewpoint_analyzer=None):
         
     | 
| 15 | 
         
             
                    """
         
     | 
| 16 | 
         
             
                    初始化功能區域識別器
         
     | 
| 17 | 
         | 
| 
         @@ -26,6 +26,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 26 | 
         | 
| 27 | 
         
             
                        self.scene_viewpoint_analyzer = scene_viewpoint_analyzer
         
     | 
| 28 | 
         
             
                        self.viewpoint_detector = scene_viewpoint_analyzer
         
     | 
| 
         | 
|
| 29 | 
         | 
| 30 | 
         
             
                        logger.info("FunctionalZoneIdentifier initialized successfully with SceneViewpointAnalyzer")
         
     | 
| 31 | 
         | 
| 
         @@ -68,7 +69,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 68 | 
         
             
                                logger.info("Insufficient objects for zone identification")
         
     | 
| 69 | 
         
             
                                return {}
         
     | 
| 70 | 
         | 
| 71 | 
         
            -
                        # 5. 建立 category_regions 
     | 
| 72 | 
         
             
                        category_regions = self._build_category_regions_mapping(detected_objects)
         
     | 
| 73 | 
         
             
                        zones = {}
         
     | 
| 74 | 
         | 
| 
         @@ -247,7 +248,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 247 | 
         
             
                        objects = zone_data.get("objects", [])
         
     | 
| 248 | 
         
             
                        region = zone_data.get("region", "")
         
     | 
| 249 | 
         | 
| 250 | 
         
            -
                        # 優先檢查是否含有 traffic light 
     | 
| 251 | 
         
             
                        if any(obj == "traffic light" or "traffic light" in obj for obj in objects):
         
     | 
| 252 | 
         
             
                            return "traffic control zone"
         
     | 
| 253 | 
         | 
| 
         @@ -438,36 +439,42 @@ class FunctionalZoneIdentifier: 
     | 
|
| 438 | 
         
             
                def _categorize_object(self, obj: Dict) -> str:
         
     | 
| 439 | 
         
             
                    """
         
     | 
| 440 | 
         
             
                    將檢測到的物件分類到功能類別中,用於區域識別
         
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
                    Args:
         
     | 
| 443 | 
         
            -
                        obj: 物件字典
         
     | 
| 444 | 
         
            -
             
     | 
| 445 | 
         
            -
                    Returns:
         
     | 
| 446 | 
         
            -
                        物件功能類別字串
         
     | 
| 447 | 
         
             
                    """
         
     | 
| 448 | 
         
             
                    try:
         
     | 
| 449 | 
         
             
                        class_id = obj.get("class_id", -1)
         
     | 
| 450 | 
         
            -
                        class_name = obj.get("class_name", "").lower()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 451 | 
         | 
| 452 | 
         
            -
                        #  
     | 
| 453 | 
         
             
                        if hasattr(self, 'OBJECT_CATEGORIES') and self.OBJECT_CATEGORIES:
         
     | 
| 454 | 
         
             
                            for category, ids in self.OBJECT_CATEGORIES.items():
         
     | 
| 455 | 
         
             
                                if class_id in ids:
         
     | 
| 456 | 
         
            -
                                     
     | 
| 
         | 
|
| 457 | 
         | 
| 458 | 
         
            -
                        #  
     | 
| 459 | 
         
             
                        furniture_items = ["chair", "couch", "bed", "dining table", "toilet"]
         
     | 
| 460 | 
         
             
                        plant_items = ["potted plant"]
         
     | 
| 461 | 
         
             
                        electronic_items = ["tv", "laptop", "mouse", "remote", "keyboard", "cell phone"]
         
     | 
| 462 | 
         
             
                        vehicle_items = ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat"]
         
     | 
| 463 | 
         
             
                        person_items = ["person"]
         
     | 
| 464 | 
         
            -
                        kitchen_items = [ 
     | 
| 465 | 
         
            -
             
     | 
| 466 | 
         
            -
             
     | 
| 467 | 
         
            -
             
     | 
| 468 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 469 | 
         
             
                        personal_items = ["handbag", "tie", "suitcase", "umbrella", "backpack"]
         
     | 
| 470 | 
         | 
| 
         | 
|
| 471 | 
         
             
                        if any(item in class_name for item in furniture_items):
         
     | 
| 472 | 
         
             
                            return "furniture"
         
     | 
| 473 | 
         
             
                        elif any(item in class_name for item in plant_items):
         
     | 
| 
         @@ -479,11 +486,11 @@ class FunctionalZoneIdentifier: 
     | 
|
| 479 | 
         
             
                        elif any(item in class_name for item in person_items):
         
     | 
| 480 | 
         
             
                            return "person"
         
     | 
| 481 | 
         
             
                        elif any(item in class_name for item in kitchen_items):
         
     | 
| 482 | 
         
            -
                            return " 
     | 
| 483 | 
         
             
                        elif any(item in class_name for item in sports_items):
         
     | 
| 484 | 
         
             
                            return "sports"
         
     | 
| 485 | 
         
             
                        elif any(item in class_name for item in personal_items):
         
     | 
| 486 | 
         
            -
                            return " 
     | 
| 487 | 
         
             
                        else:
         
     | 
| 488 | 
         
             
                            return "misc"
         
     | 
| 489 | 
         | 
| 
         @@ -492,6 +499,42 @@ class FunctionalZoneIdentifier: 
     | 
|
| 492 | 
         
             
                        logger.error(traceback.format_exc())
         
     | 
| 493 | 
         
             
                        return "misc"
         
     | 
| 494 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 495 | 
         
             
                def _identify_default_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
         
     | 
| 496 | 
         
             
                    """
         
     | 
| 497 | 
         
             
                    當沒有匹配到特定場景類型時的一般功能區域識別
         
     | 
| 
         @@ -791,7 +834,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 791 | 
         | 
| 792 | 
         
             
                    }
         
     | 
| 793 | 
         | 
| 794 | 
         
            -
                    # 1. 統計 current_zones 裡,已使用掉的 (class_name, region) 次數 
     | 
| 795 | 
         
             
                    used_count = {}
         
     | 
| 796 | 
         
             
                    for zone_info in current_zones.values():
         
     | 
| 797 | 
         
             
                        rg = zone_info.get("region", "")
         
     | 
| 
         @@ -799,7 +842,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 799 | 
         
             
                            key = (obj_name, rg)
         
     | 
| 800 | 
         
             
                            used_count[key] = used_count.get(key, 0) + 1
         
     | 
| 801 | 
         | 
| 802 | 
         
            -
                    # 2. 統計 all_detected_objects 裡的 (class_name, region) 總次數 
     | 
| 803 | 
         
             
                    total_count = {}
         
     | 
| 804 | 
         
             
                    for obj in all_detected_objects:
         
     | 
| 805 | 
         
             
                        cname = obj.get("class_name", "")
         
     | 
| 
         @@ -807,7 +850,7 @@ class FunctionalZoneIdentifier: 
     | 
|
| 807 | 
         
             
                        key = (cname, rg)
         
     | 
| 808 | 
         
             
                        total_count[key] = total_count.get(key, 0) + 1
         
     | 
| 809 | 
         | 
| 810 | 
         
            -
                    # 3. 把 default_classes 轉換成「class_name → fallback 區域 type」的對照表 
     | 
| 811 | 
         
             
                    category_to_fallback = {
         
     | 
| 812 | 
         
             
                        # 行人與交通工具
         
     | 
| 813 | 
         
             
                        "person":        "pedestrian area",
         
     | 
| 
         @@ -906,12 +949,12 @@ class FunctionalZoneIdentifier: 
     | 
|
| 906 | 
         
             
                        "potted plant":  "decorative area",
         
     | 
| 907 | 
         
             
                    }
         
     | 
| 908 | 
         | 
| 909 | 
         
            -
                    # 4. 計算缺少的 (class_name, region) 並建立 fallback zone 
     | 
| 910 | 
         
             
                    for (cname, rg), total in total_count.items():
         
     | 
| 911 | 
         
             
                        used = used_count.get((cname, rg), 0)
         
     | 
| 912 | 
         
             
                        missing = total - used
         
     | 
| 913 | 
         
             
                        if missing <= 0:
         
     | 
| 914 | 
         
            -
                            continue 
     | 
| 915 | 
         | 
| 916 | 
         
             
                        # (A) 決定這個 cname 在 fallback 裡屬於哪個大 class(zone_type)
         
     | 
| 917 | 
         
             
                        zone_type = category_to_fallback.get(cname, "miscellaneous area")
         
     | 
| 
         | 
|
| 11 | 
         
             
                整合區域評估和場景特定的區域辨識邏輯,提供統一的功能區域辨識接口
         
     | 
| 12 | 
         
             
                """
         
     | 
| 13 | 
         | 
| 14 | 
         
            +
                def __init__(self, zone_evaluator=None, scene_zone_identifier=None, scene_viewpoint_analyzer=None, object_categories=None):
         
     | 
| 15 | 
         
             
                    """
         
     | 
| 16 | 
         
             
                    初始化功能區域識別器
         
     | 
| 17 | 
         | 
| 
         | 
|
| 26 | 
         | 
| 27 | 
         
             
                        self.scene_viewpoint_analyzer = scene_viewpoint_analyzer
         
     | 
| 28 | 
         
             
                        self.viewpoint_detector = scene_viewpoint_analyzer
         
     | 
| 29 | 
         
            +
                        self.OBJECT_CATEGORIES = object_categories or {}
         
     | 
| 30 | 
         | 
| 31 | 
         
             
                        logger.info("FunctionalZoneIdentifier initialized successfully with SceneViewpointAnalyzer")
         
     | 
| 32 | 
         | 
| 
         | 
|
| 69 | 
         
             
                                logger.info("Insufficient objects for zone identification")
         
     | 
| 70 | 
         
             
                                return {}
         
     | 
| 71 | 
         | 
| 72 | 
         
            +
                        # 5. 建立 category_regions
         
     | 
| 73 | 
         
             
                        category_regions = self._build_category_regions_mapping(detected_objects)
         
     | 
| 74 | 
         
             
                        zones = {}
         
     | 
| 75 | 
         | 
| 
         | 
|
| 248 | 
         
             
                        objects = zone_data.get("objects", [])
         
     | 
| 249 | 
         
             
                        region = zone_data.get("region", "")
         
     | 
| 250 | 
         | 
| 251 | 
         
            +
                        # 優先檢查是否含有 traffic light
         
     | 
| 252 | 
         
             
                        if any(obj == "traffic light" or "traffic light" in obj for obj in objects):
         
     | 
| 253 | 
         
             
                            return "traffic control zone"
         
     | 
| 254 | 
         | 
| 
         | 
|
| 439 | 
         
             
                def _categorize_object(self, obj: Dict) -> str:
         
     | 
| 440 | 
         
             
                    """
         
     | 
| 441 | 
         
             
                    將檢測到的物件分類到功能類別中,用於區域識別
         
     | 
| 442 | 
         
            +
                    確保所有返回值都使用自然語言格式,避免底線或技術性標識符
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 443 | 
         
             
                    """
         
     | 
| 444 | 
         
             
                    try:
         
     | 
| 445 | 
         
             
                        class_id = obj.get("class_id", -1)
         
     | 
| 446 | 
         
            +
                        class_name = obj.get("class_name", "").lower().strip()
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                        # 優先處理 traffic light
         
     | 
| 449 | 
         
            +
                        # 只要 class_id == 9 或 class_name 包含 "traffic light",就分類為 "traffic light"
         
     | 
| 450 | 
         
            +
                        if class_id == 9 or "traffic light" in class_name:
         
     | 
| 451 | 
         
            +
                            return "traffic light"
         
     | 
| 452 | 
         | 
| 453 | 
         
            +
                        # 如果有自訂的 OBJECT_CATEGORIES 映射,優先使用它
         
     | 
| 454 | 
         
             
                        if hasattr(self, 'OBJECT_CATEGORIES') and self.OBJECT_CATEGORIES:
         
     | 
| 455 | 
         
             
                            for category, ids in self.OBJECT_CATEGORIES.items():
         
     | 
| 456 | 
         
             
                                if class_id in ids:
         
     | 
| 457 | 
         
            +
                                    # 確保返回的類別名稱使用自然語言格式
         
     | 
| 458 | 
         
            +
                                    return self._clean_category_name(category)
         
     | 
| 459 | 
         | 
| 460 | 
         
            +
                        # COCO class default name
         
     | 
| 461 | 
         
             
                        furniture_items = ["chair", "couch", "bed", "dining table", "toilet"]
         
     | 
| 462 | 
         
             
                        plant_items = ["potted plant"]
         
     | 
| 463 | 
         
             
                        electronic_items = ["tv", "laptop", "mouse", "remote", "keyboard", "cell phone"]
         
     | 
| 464 | 
         
             
                        vehicle_items = ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat"]
         
     | 
| 465 | 
         
             
                        person_items = ["person"]
         
     | 
| 466 | 
         
            +
                        kitchen_items = [
         
     | 
| 467 | 
         
            +
                            "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
         
     | 
| 468 | 
         
            +
                            "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog",
         
     | 
| 469 | 
         
            +
                            "pizza", "donut", "cake", "refrigerator", "oven", "toaster", "sink", "microwave"
         
     | 
| 470 | 
         
            +
                        ]
         
     | 
| 471 | 
         
            +
                        sports_items = [
         
     | 
| 472 | 
         
            +
                            "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
         
     | 
| 473 | 
         
            +
                            "baseball glove", "skateboard", "surfboard", "tennis racket"
         
     | 
| 474 | 
         
            +
                        ]
         
     | 
| 475 | 
         
             
                        personal_items = ["handbag", "tie", "suitcase", "umbrella", "backpack"]
         
     | 
| 476 | 
         | 
| 477 | 
         
            +
                        # fallback natural language
         
     | 
| 478 | 
         
             
                        if any(item in class_name for item in furniture_items):
         
     | 
| 479 | 
         
             
                            return "furniture"
         
     | 
| 480 | 
         
             
                        elif any(item in class_name for item in plant_items):
         
     | 
| 
         | 
|
| 486 | 
         
             
                        elif any(item in class_name for item in person_items):
         
     | 
| 487 | 
         
             
                            return "person"
         
     | 
| 488 | 
         
             
                        elif any(item in class_name for item in kitchen_items):
         
     | 
| 489 | 
         
            +
                            return "kitchen items"  # 移除底線
         
     | 
| 490 | 
         
             
                        elif any(item in class_name for item in sports_items):
         
     | 
| 491 | 
         
             
                            return "sports"
         
     | 
| 492 | 
         
             
                        elif any(item in class_name for item in personal_items):
         
     | 
| 493 | 
         
            +
                            return "personal items"  # 移除底線
         
     | 
| 494 | 
         
             
                        else:
         
     | 
| 495 | 
         
             
                            return "misc"
         
     | 
| 496 | 
         | 
| 
         | 
|
| 499 | 
         
             
                        logger.error(traceback.format_exc())
         
     | 
| 500 | 
         
             
                        return "misc"
         
     | 
| 501 | 
         | 
| 502 | 
         
            +
                def _clean_category_name(self, category: str) -> str:
         
     | 
| 503 | 
         
            +
                    """
         
     | 
| 504 | 
         
            +
                    清理類別名稱,移除底線並轉換為較自然的格式
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                    Args:
         
     | 
| 507 | 
         
            +
                        category: 原始類別名稱
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    Returns:
         
     | 
| 510 | 
         
            +
                        str: 清理後的類別名稱
         
     | 
| 511 | 
         
            +
                    """
         
     | 
| 512 | 
         
            +
                    try:
         
     | 
| 513 | 
         
            +
                        if not category:
         
     | 
| 514 | 
         
            +
                            return "misc"
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                        # 將底線替換為空格
         
     | 
| 517 | 
         
            +
                        cleaned = category.replace('_', ' ')
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                        # 處理常見的技術性命名模式
         
     | 
| 520 | 
         
            +
                        replacements = {
         
     | 
| 521 | 
         
            +
                            'kitchen items': 'kitchen items',
         
     | 
| 522 | 
         
            +
                            'personal items': 'personal items',
         
     | 
| 523 | 
         
            +
                            'traffic light': 'traffic light',
         
     | 
| 524 | 
         
            +
                            'misc items': 'misc'
         
     | 
| 525 | 
         
            +
                        }
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                        # 應用特定的替換規則
         
     | 
| 528 | 
         
            +
                        for old_term, new_term in replacements.items():
         
     | 
| 529 | 
         
            +
                            if cleaned == old_term:
         
     | 
| 530 | 
         
            +
                                return new_term
         
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
                        return cleaned.strip()
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    except Exception as e:
         
     | 
| 535 | 
         
            +
                        logger.warning(f"Error cleaning category name '{category}': {str(e)}")
         
     | 
| 536 | 
         
            +
                        return "misc"
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
             
                def _identify_default_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
         
     | 
| 539 | 
         
             
                    """
         
     | 
| 540 | 
         
             
                    當沒有匹配到特定場景類型時的一般功能區域識別
         
     | 
| 
         | 
|
| 834 | 
         | 
| 835 | 
         
             
                    }
         
     | 
| 836 | 
         | 
| 837 | 
         
            +
                    # 1. 統計 current_zones 裡,已使用掉的 (class_name, region) 次數
         
     | 
| 838 | 
         
             
                    used_count = {}
         
     | 
| 839 | 
         
             
                    for zone_info in current_zones.values():
         
     | 
| 840 | 
         
             
                        rg = zone_info.get("region", "")
         
     | 
| 
         | 
|
| 842 | 
         
             
                            key = (obj_name, rg)
         
     | 
| 843 | 
         
             
                            used_count[key] = used_count.get(key, 0) + 1
         
     | 
| 844 | 
         | 
| 845 | 
         
            +
                    # 2. 統計 all_detected_objects 裡的 (class_name, region) 總次數
         
     | 
| 846 | 
         
             
                    total_count = {}
         
     | 
| 847 | 
         
             
                    for obj in all_detected_objects:
         
     | 
| 848 | 
         
             
                        cname = obj.get("class_name", "")
         
     | 
| 
         | 
|
| 850 | 
         
             
                        key = (cname, rg)
         
     | 
| 851 | 
         
             
                        total_count[key] = total_count.get(key, 0) + 1
         
     | 
| 852 | 
         | 
| 853 | 
         
            +
                    # 3. 把 default_classes 轉換成「class_name → fallback 區域 type」的對照表
         
     | 
| 854 | 
         
             
                    category_to_fallback = {
         
     | 
| 855 | 
         
             
                        # 行人與交通工具
         
     | 
| 856 | 
         
             
                        "person":        "pedestrian area",
         
     | 
| 
         | 
|
| 949 | 
         
             
                        "potted plant":  "decorative area",
         
     | 
| 950 | 
         
             
                    }
         
     | 
| 951 | 
         | 
| 952 | 
         
            +
                    # 4. 計算缺少的 (class_name, region) 並建立 fallback zone
         
     | 
| 953 | 
         
             
                    for (cname, rg), total in total_count.items():
         
     | 
| 954 | 
         
             
                        used = used_count.get((cname, rg), 0)
         
     | 
| 955 | 
         
             
                        missing = total - used
         
     | 
| 956 | 
         
             
                        if missing <= 0:
         
     | 
| 957 | 
         
            +
                            continue
         
     | 
| 958 | 
         | 
| 959 | 
         
             
                        # (A) 決定這個 cname 在 fallback 裡屬於哪個大 class(zone_type)
         
     | 
| 960 | 
         
             
                        zone_type = category_to_fallback.get(cname, "miscellaneous area")
         
     | 
    	
        room_04.jpg
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        scene_analysis_coordinator.py
    CHANGED
    
    | 
         @@ -333,6 +333,9 @@ class SceneAnalysisCoordinator: 
     | 
|
| 333 | 
         
             
                        scene_confidence, lighting_info, functional_zones, landmark_results, image_dims_val
         
     | 
| 334 | 
         
             
                    )
         
     | 
| 335 | 
         
             
                    possible_activities = self._extract_possible_activities(detected_objects_from_landmarks_list, landmark_results)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 336 | 
         | 
| 337 | 
         
             
                    # 準備最終結果
         
     | 
| 338 | 
         
             
                    return {
         
     | 
| 
         @@ -345,6 +348,7 @@ class SceneAnalysisCoordinator: 
     | 
|
| 345 | 
         
             
                        "object_count": len(detected_objects_from_landmarks_list),
         
     | 
| 346 | 
         
             
                        "regions": region_analysis,
         
     | 
| 347 | 
         
             
                        "possible_activities": possible_activities,
         
     | 
| 
         | 
|
| 348 | 
         
             
                        "functional_zones": functional_zones,
         
     | 
| 349 | 
         
             
                        "detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
         
     | 
| 350 | 
         
             
                        "primary_landmark": primary_landmark,
         
     | 
| 
         @@ -463,26 +467,18 @@ class SceneAnalysisCoordinator: 
     | 
|
| 463 | 
         
             
                    # 空間分析
         
     | 
| 464 | 
         
             
                    region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)
         
     | 
| 465 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 466 | 
         
             
                    # 地標處理和整合
         
     | 
| 467 | 
         
             
                    landmark_objects_identified = []
         
     | 
| 468 | 
         
             
                    landmark_specific_activities = []
         
     | 
| 469 | 
         
             
                    final_landmark_info = {}
         
     | 
| 470 | 
         | 
| 471 | 
         
            -
                    if self.use_clip and current_run_enable_landmark:
         
     | 
| 472 | 
         
            -
                        detected_objects_main, landmark_objects_identified = self.landmark_processing_manager.process_unknown_objects(
         
     | 
| 473 | 
         
            -
                            detection_result, detected_objects_main, self.clip_analyzer
         
     | 
| 474 | 
         
            -
                        )
         
     | 
| 475 | 
         
            -
             
     | 
| 476 | 
         
            -
                        if landmark_objects_identified:
         
     | 
| 477 | 
         
            -
                            landmark_specific_activities = self.landmark_processing_manager.extract_landmark_specific_activities(
         
     | 
| 478 | 
         
            -
                                landmark_objects_identified
         
     | 
| 479 | 
         
            -
                            )
         
     | 
| 480 | 
         
            -
                            final_landmark_info = {
         
     | 
| 481 | 
         
            -
                                "detected_landmarks": landmark_objects_identified,
         
     | 
| 482 | 
         
            -
                                "primary_landmark": max(landmark_objects_identified, key=lambda x: x.get("confidence", 0.0), default=None),
         
     | 
| 483 | 
         
            -
                                "detailed_landmarks": landmark_objects_identified
         
     | 
| 484 | 
         
            -
                            }
         
     | 
| 485 | 
         
            -
             
     | 
| 486 | 
         
             
                    # 如果當前運行禁用地標檢測,清理地標物體
         
     | 
| 487 | 
         
             
                    if not current_run_enable_landmark:
         
     | 
| 488 | 
         
             
                        detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
         
     | 
| 
         | 
|
| 333 | 
         
             
                        scene_confidence, lighting_info, functional_zones, landmark_results, image_dims_val
         
     | 
| 334 | 
         
             
                    )
         
     | 
| 335 | 
         
             
                    possible_activities = self._extract_possible_activities(detected_objects_from_landmarks_list, landmark_results)
         
     | 
| 336 | 
         
            +
                    safety_concerns = []
         
     | 
| 337 | 
         
            +
                    if self.descriptor and hasattr(self.descriptor, '_identify_safety_concerns'):
         
     | 
| 338 | 
         
            +
                        safety_concerns = self.descriptor._identify_safety_concerns(detected_objects_from_landmarks_list, best_scene_val)
         
     | 
| 339 | 
         | 
| 340 | 
         
             
                    # 準備最終結果
         
     | 
| 341 | 
         
             
                    return {
         
     | 
| 
         | 
|
| 348 | 
         
             
                        "object_count": len(detected_objects_from_landmarks_list),
         
     | 
| 349 | 
         
             
                        "regions": region_analysis,
         
     | 
| 350 | 
         
             
                        "possible_activities": possible_activities,
         
     | 
| 351 | 
         
            +
                        "safety_concerns": safety_concerns,
         
     | 
| 352 | 
         
             
                        "functional_zones": functional_zones,
         
     | 
| 353 | 
         
             
                        "detected_landmarks": [lm for lm in detected_objects_from_landmarks_list if lm.get("is_landmark", False)],
         
     | 
| 354 | 
         
             
                        "primary_landmark": primary_landmark,
         
     | 
| 
         | 
|
| 467 | 
         
             
                    # 空間分析
         
     | 
| 468 | 
         
             
                    region_analysis_val = self.spatial_analyzer._analyze_regions(detected_objects_main)
         
     | 
| 469 | 
         | 
| 470 | 
         
            +
                    if current_run_enable_landmark:
         
     | 
| 471 | 
         
            +
                        self.logger.info("Using landmark detection logic for YOLO scene")
         
     | 
| 472 | 
         
            +
                        return self._handle_no_yolo_detections(
         
     | 
| 473 | 
         
            +
                            original_image_pil, image_dims_val, current_run_enable_landmark,
         
     | 
| 474 | 
         
            +
                            lighting_info, places365_info
         
     | 
| 475 | 
         
            +
                        )
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
             
                    # 地標處理和整合
         
     | 
| 478 | 
         
             
                    landmark_objects_identified = []
         
     | 
| 479 | 
         
             
                    landmark_specific_activities = []
         
     | 
| 480 | 
         
             
                    final_landmark_info = {}
         
     | 
| 481 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 482 | 
         
             
                    # 如果當前運行禁用地標檢測,清理地標物體
         
     | 
| 483 | 
         
             
                    if not current_run_enable_landmark:
         
     | 
| 484 | 
         
             
                        detected_objects_main = [obj for obj in detected_objects_main if not obj.get("is_landmark", False)]
         
     | 
    	
        spatial_analyzer.py
    CHANGED
    
    | 
         @@ -5,6 +5,7 @@ import logging 
     | 
|
| 5 | 
         
             
            import traceback
         
     | 
| 6 | 
         
             
            from typing import Dict, List, Tuple, Any, Optional
         
     | 
| 7 | 
         | 
| 
         | 
|
| 8 | 
         
             
            from region_analyzer import RegionAnalyzer
         
     | 
| 9 | 
         
             
            from object_extractor import ObjectExtractor
         
     | 
| 10 | 
         
             
            from scene_viewpoint_analyzer import SceneViewpointAnalyzer
         
     | 
| 
         @@ -31,6 +32,9 @@ class SpatialAnalyzer: 
     | 
|
| 31 | 
         
             
                    """
         
     | 
| 32 | 
         
             
                    try:
         
     | 
| 33 | 
         
             
                        # 初始化所有子組件
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 34 | 
         
             
                        self.region_analyzer = RegionAnalyzer()
         
     | 
| 35 | 
         
             
                        self.object_extractor = ObjectExtractor(class_names, object_categories)
         
     | 
| 36 | 
         | 
| 
         @@ -41,12 +45,10 @@ class SpatialAnalyzer: 
     | 
|
| 41 | 
         
             
                        self.functional_zone_identifier = FunctionalZoneIdentifier(
         
     | 
| 42 | 
         
             
                            zone_evaluator=self.zone_evaluator,
         
     | 
| 43 | 
         
             
                            scene_zone_identifier=self.scene_zone_identifier,
         
     | 
| 44 | 
         
            -
                            scene_viewpoint_analyzer=self.scene_viewpoint_analyzer
         
     | 
| 
         | 
|
| 45 | 
         
             
                        )
         
     | 
| 46 | 
         | 
| 47 | 
         
            -
                        self.class_names = class_names
         
     | 
| 48 | 
         
            -
                        self.OBJECT_CATEGORIES = object_categories or {}
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
             
                        self.enhance_descriptor = None
         
     | 
| 51 | 
         | 
| 52 | 
         
             
                        # 接近分析的距離閾值(標準化)
         
     | 
| 
         @@ -171,105 +173,6 @@ class SpatialAnalyzer: 
     | 
|
| 171 | 
         
             
                        logger.error(traceback.format_exc())
         
     | 
| 172 | 
         
             
                        return {}
         
     | 
| 173 | 
         | 
| 174 | 
         
            -
                def _categorize_object(self, obj: Dict) -> str:
         
     | 
| 175 | 
         
            -
                    """
         
     | 
| 176 | 
         
            -
                    將檢測到的物件分類到功能類別中,用於區域識別
         
     | 
| 177 | 
         
            -
                    確保所有返回值都使用自然語言格式,避免底線或技術性標識符
         
     | 
| 178 | 
         
            -
                    """
         
     | 
| 179 | 
         
            -
                    try:
         
     | 
| 180 | 
         
            -
                        class_id = obj.get("class_id", -1)
         
     | 
| 181 | 
         
            -
                        class_name = obj.get("class_name", "").lower().strip()
         
     | 
| 182 | 
         
            -
             
     | 
| 183 | 
         
            -
                        # 優先處理 traffic light
         
     | 
| 184 | 
         
            -
                        # 只要 class_id == 9 或 class_name 包含 "traffic light",就分類為 "traffic light"
         
     | 
| 185 | 
         
            -
                        if class_id == 9 or "traffic light" in class_name:
         
     | 
| 186 | 
         
            -
                            return "traffic light"
         
     | 
| 187 | 
         
            -
             
     | 
| 188 | 
         
            -
                        # 如果有自訂的 OBJECT_CATEGORIES 映射,優先使用它
         
     | 
| 189 | 
         
            -
                        if hasattr(self, 'OBJECT_CATEGORIES') and self.OBJECT_CATEGORIES:
         
     | 
| 190 | 
         
            -
                            for category, ids in self.OBJECT_CATEGORIES.items():
         
     | 
| 191 | 
         
            -
                                if class_id in ids:
         
     | 
| 192 | 
         
            -
                                    # 確保返回的類別名稱使用自然語言格式
         
     | 
| 193 | 
         
            -
                                    return self._clean_category_name(category)
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
                        # COCO class default name
         
     | 
| 196 | 
         
            -
                        furniture_items = ["chair", "couch", "bed", "dining table", "toilet"]
         
     | 
| 197 | 
         
            -
                        plant_items = ["potted plant"]
         
     | 
| 198 | 
         
            -
                        electronic_items = ["tv", "laptop", "mouse", "remote", "keyboard", "cell phone"]
         
     | 
| 199 | 
         
            -
                        vehicle_items = ["bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat"]
         
     | 
| 200 | 
         
            -
                        person_items = ["person"]
         
     | 
| 201 | 
         
            -
                        kitchen_items = [
         
     | 
| 202 | 
         
            -
                            "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
         
     | 
| 203 | 
         
            -
                            "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog",
         
     | 
| 204 | 
         
            -
                            "pizza", "donut", "cake", "refrigerator", "oven", "toaster", "sink", "microwave"
         
     | 
| 205 | 
         
            -
                        ]
         
     | 
| 206 | 
         
            -
                        sports_items = [
         
     | 
| 207 | 
         
            -
                            "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
         
     | 
| 208 | 
         
            -
                            "baseball glove", "skateboard", "surfboard", "tennis racket"
         
     | 
| 209 | 
         
            -
                        ]
         
     | 
| 210 | 
         
            -
                        personal_items = ["handbag", "tie", "suitcase", "umbrella", "backpack"]
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                        # fallback natural language
         
     | 
| 213 | 
         
            -
                        if any(item in class_name for item in furniture_items):
         
     | 
| 214 | 
         
            -
                            return "furniture"
         
     | 
| 215 | 
         
            -
                        elif any(item in class_name for item in plant_items):
         
     | 
| 216 | 
         
            -
                            return "plant"
         
     | 
| 217 | 
         
            -
                        elif any(item in class_name for item in electronic_items):
         
     | 
| 218 | 
         
            -
                            return "electronics"
         
     | 
| 219 | 
         
            -
                        elif any(item in class_name for item in vehicle_items):
         
     | 
| 220 | 
         
            -
                            return "vehicle"
         
     | 
| 221 | 
         
            -
                        elif any(item in class_name for item in person_items):
         
     | 
| 222 | 
         
            -
                            return "person"
         
     | 
| 223 | 
         
            -
                        elif any(item in class_name for item in kitchen_items):
         
     | 
| 224 | 
         
            -
                            return "kitchen items"  # 移除底線
         
     | 
| 225 | 
         
            -
                        elif any(item in class_name for item in sports_items):
         
     | 
| 226 | 
         
            -
                            return "sports"
         
     | 
| 227 | 
         
            -
                        elif any(item in class_name for item in personal_items):
         
     | 
| 228 | 
         
            -
                            return "personal items"  # 移除底線
         
     | 
| 229 | 
         
            -
                        else:
         
     | 
| 230 | 
         
            -
                            return "misc"
         
     | 
| 231 | 
         
            -
             
     | 
| 232 | 
         
            -
                    except Exception as e:
         
     | 
| 233 | 
         
            -
                        logger.error(f"Error categorizing object: {str(e)}")
         
     | 
| 234 | 
         
            -
                        logger.error(traceback.format_exc())
         
     | 
| 235 | 
         
            -
                        return "misc"
         
     | 
| 236 | 
         
            -
             
     | 
| 237 | 
         
            -
                def _clean_category_name(self, category: str) -> str:
         
     | 
| 238 | 
         
            -
                    """
         
     | 
| 239 | 
         
            -
                    清理類別名稱,移除底線並轉換為較自然的格式
         
     | 
| 240 | 
         
            -
             
     | 
| 241 | 
         
            -
                    Args:
         
     | 
| 242 | 
         
            -
                        category: 原始類別名稱
         
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
                    Returns:
         
     | 
| 245 | 
         
            -
                        str: 清理後的類別名稱
         
     | 
| 246 | 
         
            -
                    """
         
     | 
| 247 | 
         
            -
                    try:
         
     | 
| 248 | 
         
            -
                        if not category:
         
     | 
| 249 | 
         
            -
                            return "misc"
         
     | 
| 250 | 
         
            -
             
     | 
| 251 | 
         
            -
                        # 將底線替換為空格
         
     | 
| 252 | 
         
            -
                        cleaned = category.replace('_', ' ')
         
     | 
| 253 | 
         
            -
             
     | 
| 254 | 
         
            -
                        # 處理常見的技術性命名模式
         
     | 
| 255 | 
         
            -
                        replacements = {
         
     | 
| 256 | 
         
            -
                            'kitchen items': 'kitchen items',
         
     | 
| 257 | 
         
            -
                            'personal items': 'personal items',
         
     | 
| 258 | 
         
            -
                            'traffic light': 'traffic light',
         
     | 
| 259 | 
         
            -
                            'misc items': 'misc'
         
     | 
| 260 | 
         
            -
                        }
         
     | 
| 261 | 
         
            -
             
     | 
| 262 | 
         
            -
                        # 應用特定的替換規則
         
     | 
| 263 | 
         
            -
                        for old_term, new_term in replacements.items():
         
     | 
| 264 | 
         
            -
                            if cleaned == old_term:
         
     | 
| 265 | 
         
            -
                                return new_term
         
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
                        return cleaned.strip()
         
     | 
| 268 | 
         
            -
             
     | 
| 269 | 
         
            -
                    except Exception as e:
         
     | 
| 270 | 
         
            -
                        logger.warning(f"Error cleaning category name '{category}': {str(e)}")
         
     | 
| 271 | 
         
            -
                        return "misc"
         
     | 
| 272 | 
         
            -
             
     | 
| 273 | 
         
             
                def _get_object_categories(self, detected_objects: List[Dict]) -> set:
         
     | 
| 274 | 
         
             
                    """
         
     | 
| 275 | 
         
             
                    從檢測到的物件中獲取唯一的物件類別
         
     | 
| 
         | 
|
| 5 | 
         
             
            import traceback
         
     | 
| 6 | 
         
             
            from typing import Dict, List, Tuple, Any, Optional
         
     | 
| 7 | 
         | 
| 8 | 
         
            +
            from object_categories import OBJECT_CATEGORIES
         
     | 
| 9 | 
         
             
            from region_analyzer import RegionAnalyzer
         
     | 
| 10 | 
         
             
            from object_extractor import ObjectExtractor
         
     | 
| 11 | 
         
             
            from scene_viewpoint_analyzer import SceneViewpointAnalyzer
         
     | 
| 
         | 
|
| 32 | 
         
             
                    """
         
     | 
| 33 | 
         
             
                    try:
         
     | 
| 34 | 
         
             
                        # 初始化所有子組件
         
     | 
| 35 | 
         
            +
                        self.class_names = class_names
         
     | 
| 36 | 
         
            +
                        self.OBJECT_CATEGORIES = object_categories or {}
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
             
                        self.region_analyzer = RegionAnalyzer()
         
     | 
| 39 | 
         
             
                        self.object_extractor = ObjectExtractor(class_names, object_categories)
         
     | 
| 40 | 
         | 
| 
         | 
|
| 45 | 
         
             
                        self.functional_zone_identifier = FunctionalZoneIdentifier(
         
     | 
| 46 | 
         
             
                            zone_evaluator=self.zone_evaluator,
         
     | 
| 47 | 
         
             
                            scene_zone_identifier=self.scene_zone_identifier,
         
     | 
| 48 | 
         
            +
                            scene_viewpoint_analyzer=self.scene_viewpoint_analyzer,
         
     | 
| 49 | 
         
            +
                            object_categories=self.OBJECT_CATEGORIES
         
     | 
| 50 | 
         
             
                        )
         
     | 
| 51 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 52 | 
         
             
                        self.enhance_descriptor = None
         
     | 
| 53 | 
         | 
| 54 | 
         
             
                        # 接近分析的距離閾值(標準化)
         
     | 
| 
         | 
|
| 173 | 
         
             
                        logger.error(traceback.format_exc())
         
     | 
| 174 | 
         
             
                        return {}
         
     | 
| 175 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 176 | 
         
             
                def _get_object_categories(self, detected_objects: List[Dict]) -> set:
         
     | 
| 177 | 
         
             
                    """
         
     | 
| 178 | 
         
             
                    從檢測到的物件中獲取唯一的物件類別
         
     | 
    	
        ui_manager.py
    ADDED
    
    | 
         @@ -0,0 +1,683 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import gradio as gr
         
     | 
| 2 | 
         
            +
            from typing import Dict, List, Any, Optional, Tuple
         
     | 
| 3 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from detection_model import DetectionModel
         
     | 
| 6 | 
         
            +
            from style import Style
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class UIManager:
         
     | 
| 9 | 
         
            +
                """
         
     | 
| 10 | 
         
            +
                Manages all UI-related functionality for the VisionScout application.
         
     | 
| 11 | 
         
            +
                Handles Gradio interface creation, component definitions, and event binding.
         
     | 
| 12 | 
         
            +
                """
         
     | 
| 13 | 
         
            +
                
         
     | 
| 14 | 
         
            +
                def __init__(self):
         
     | 
| 15 | 
         
            +
                    """Initialize the UI Manager."""
         
     | 
| 16 | 
         
            +
                    self.available_models = None
         
     | 
| 17 | 
         
            +
                    self.model_choices = []
         
     | 
| 18 | 
         
            +
                    self.class_choices_formatted = []
         
     | 
| 19 | 
         
            +
                    self._setup_model_choices()
         
     | 
| 20 | 
         
            +
                
         
     | 
| 21 | 
         
            +
                def _setup_model_choices(self):
         
     | 
| 22 | 
         
            +
                    """Setup model choices for dropdowns."""
         
     | 
| 23 | 
         
            +
                    try:
         
     | 
| 24 | 
         
            +
                        self.available_models = DetectionModel.get_available_models()
         
     | 
| 25 | 
         
            +
                        self.model_choices = [model["model_file"] for model in self.available_models]
         
     | 
| 26 | 
         
            +
                    except ImportError:
         
     | 
| 27 | 
         
            +
                        # Fallback model choices if DetectionModel is not available
         
     | 
| 28 | 
         
            +
                        self.model_choices = ["yolov8n.pt", "yolov8s.pt", "yolov8m.pt", "yolov8l.pt", "yolov8x.pt"]
         
     | 
| 29 | 
         
            +
                    
         
     | 
| 30 | 
         
            +
                    # Setup class choices
         
     | 
| 31 | 
         
            +
                    self.class_choices_formatted = [f"{id}: {name}" for id, name in self.get_all_classes()]
         
     | 
| 32 | 
         
            +
                
         
     | 
| 33 | 
         
            +
                def get_all_classes(self):
         
     | 
| 34 | 
         
            +
                    """
         
     | 
| 35 | 
         
            +
                    Gets all available COCO classes.
         
     | 
| 36 | 
         
            +
                    
         
     | 
| 37 | 
         
            +
                    Returns:
         
     | 
| 38 | 
         
            +
                        List[Tuple[int, str]]: List of (class_id, class_name) tuples
         
     | 
| 39 | 
         
            +
                    """
         
     | 
| 40 | 
         
            +
                    # Try to get from a loaded model first
         
     | 
| 41 | 
         
            +
                    try:
         
     | 
| 42 | 
         
            +
                        # This will be injected by the main app when processors are available
         
     | 
| 43 | 
         
            +
                        if hasattr(self, '_image_processor') and self._image_processor and self._image_processor.model_instances:
         
     | 
| 44 | 
         
            +
                            for model_instance in self._image_processor.model_instances.values():
         
     | 
| 45 | 
         
            +
                                if model_instance and model_instance.is_model_loaded:
         
     | 
| 46 | 
         
            +
                                    try:
         
     | 
| 47 | 
         
            +
                                        # Ensure class_names is a dict {id: name}
         
     | 
| 48 | 
         
            +
                                        if isinstance(model_instance.class_names, dict):
         
     | 
| 49 | 
         
            +
                                            return sorted([(int(idx), name) for idx, name in model_instance.class_names.items()])
         
     | 
| 50 | 
         
            +
                                    except Exception as e:
         
     | 
| 51 | 
         
            +
                                        print(f"Error getting class names from model: {e}")
         
     | 
| 52 | 
         
            +
                    except Exception:
         
     | 
| 53 | 
         
            +
                        pass
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # Fallback to standard COCO (ensure keys are ints)
         
     | 
| 56 | 
         
            +
                    default_classes = {
         
     | 
| 57 | 
         
            +
                        0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
         
     | 
| 58 | 
         
            +
                        6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
         
     | 
| 59 | 
         
            +
                        11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
         
     | 
| 60 | 
         
            +
                        16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
         
     | 
| 61 | 
         
            +
                        22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
         
     | 
| 62 | 
         
            +
                        27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
         
     | 
| 63 | 
         
            +
                        32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
         
     | 
| 64 | 
         
            +
                        36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
         
     | 
| 65 | 
         
            +
                        40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
         
     | 
| 66 | 
         
            +
                        46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
         
     | 
| 67 | 
         
            +
                        51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair',
         
     | 
| 68 | 
         
            +
                        57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet',
         
     | 
| 69 | 
         
            +
                        62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
         
     | 
| 70 | 
         
            +
                        67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
         
     | 
| 71 | 
         
            +
                        72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
         
     | 
| 72 | 
         
            +
                        77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
         
     | 
| 73 | 
         
            +
                    }
         
     | 
| 74 | 
         
            +
                    return sorted(default_classes.items())
         
     | 
| 75 | 
         
            +
                
         
     | 
| 76 | 
         
            +
                def set_image_processor(self, image_processor):
         
     | 
| 77 | 
         
            +
                    """
         
     | 
| 78 | 
         
            +
                    Set the image processor reference for dynamic class retrieval.
         
     | 
| 79 | 
         
            +
                    
         
     | 
| 80 | 
         
            +
                    Args:
         
     | 
| 81 | 
         
            +
                        image_processor: The ImageProcessor instance
         
     | 
| 82 | 
         
            +
                    """
         
     | 
| 83 | 
         
            +
                    self._image_processor = image_processor
         
     | 
| 84 | 
         
            +
                
         
     | 
| 85 | 
         
            +
                def get_css_styles(self):
         
     | 
| 86 | 
         
            +
                    """
         
     | 
| 87 | 
         
            +
                    Get CSS styles for the interface.
         
     | 
| 88 | 
         
            +
                    
         
     | 
| 89 | 
         
            +
                    Returns:
         
     | 
| 90 | 
         
            +
                        str: CSS styles
         
     | 
| 91 | 
         
            +
                    """
         
     | 
| 92 | 
         
            +
                    try:
         
     | 
| 93 | 
         
            +
                        return Style.get_css()
         
     | 
| 94 | 
         
            +
                    except ImportError:
         
     | 
| 95 | 
         
            +
                        # Fallback CSS if Style module is not available
         
     | 
| 96 | 
         
            +
                        return """
         
     | 
| 97 | 
         
            +
                        .app-header {
         
     | 
| 98 | 
         
            +
                            text-align: center;
         
     | 
| 99 | 
         
            +
                            padding: 2rem 0 3rem 0;
         
     | 
| 100 | 
         
            +
                            background: linear-gradient(135deg, #f0f9ff, #e1f5fe);
         
     | 
| 101 | 
         
            +
                        }
         
     | 
| 102 | 
         
            +
                        .section-heading {
         
     | 
| 103 | 
         
            +
                            font-size: 1.2rem;
         
     | 
| 104 | 
         
            +
                            font-weight: bold;
         
     | 
| 105 | 
         
            +
                            color: #2D3748;
         
     | 
| 106 | 
         
            +
                            margin: 1rem 0 0.5rem 0;
         
     | 
| 107 | 
         
            +
                        }
         
     | 
| 108 | 
         
            +
                        .detect-btn {
         
     | 
| 109 | 
         
            +
                            background: linear-gradient(90deg, #38b2ac, #4299e1) !important;
         
     | 
| 110 | 
         
            +
                            color: white !important;
         
     | 
| 111 | 
         
            +
                            border: none !important;
         
     | 
| 112 | 
         
            +
                            border-radius: 8px !important;
         
     | 
| 113 | 
         
            +
                        }
         
     | 
| 114 | 
         
            +
                        """
         
     | 
| 115 | 
         
            +
                
         
     | 
| 116 | 
         
            +
                def get_model_description(self, model_name):
         
     | 
| 117 | 
         
            +
                    """
         
     | 
| 118 | 
         
            +
                    Get model description for the given model name.
         
     | 
| 119 | 
         
            +
                    
         
     | 
| 120 | 
         
            +
                    Args:
         
     | 
| 121 | 
         
            +
                        model_name: Name of the model
         
     | 
| 122 | 
         
            +
                        
         
     | 
| 123 | 
         
            +
                    Returns:
         
     | 
| 124 | 
         
            +
                        str: Model description
         
     | 
| 125 | 
         
            +
                    """
         
     | 
| 126 | 
         
            +
                    try:
         
     | 
| 127 | 
         
            +
                        return DetectionModel.get_model_description(model_name)
         
     | 
| 128 | 
         
            +
                    except ImportError:
         
     | 
| 129 | 
         
            +
                        return f"Model: {model_name}"
         
     | 
| 130 | 
         
            +
                
         
     | 
| 131 | 
         
            +
                def create_header(self):
         
     | 
| 132 | 
         
            +
                    """
         
     | 
| 133 | 
         
            +
                    Create the application header.
         
     | 
| 134 | 
         
            +
                    
         
     | 
| 135 | 
         
            +
                    Returns:
         
     | 
| 136 | 
         
            +
                        gr.HTML: Header HTML component
         
     | 
| 137 | 
         
            +
                    """
         
     | 
| 138 | 
         
            +
                    return gr.HTML("""
         
     | 
| 139 | 
         
            +
                        <div style="text-align: center; width: 100%; padding: 2rem 0 3rem 0; background: linear-gradient(135deg, #f0f9ff, #e1f5fe);">
         
     | 
| 140 | 
         
            +
                            <h1 style="font-size: 3.5rem; margin-bottom: 0.5rem; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: bold; font-family: 'Arial', sans-serif;">VisionScout</h1>
         
     | 
| 141 | 
         
            +
                            <h2 style="color: #4A5568; font-size: 1.2rem; font-weight: 400; margin-top: 0.5rem; margin-bottom: 1.5rem; font-family: 'Arial', sans-serif;">Object Detection and Scene Understanding</h2>
         
     | 
| 142 | 
         
            +
                            <div style="display: flex; justify-content: center; gap: 10px; margin: 0.5rem 0;"><div style="height: 3px; width: 80px; background: linear-gradient(90deg, #38b2ac, #4299e1);"></div></div>
         
     | 
| 143 | 
         
            +
                            <div style="display: flex; justify-content: center; gap: 25px; margin-top: 1.5rem;">
         
     | 
| 144 | 
         
            +
                                <div style="padding: 8px 15px; border-radius: 20px; background: rgba(66, 153, 225, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🖼️</span> Image Analysis</div>
         
     | 
| 145 | 
         
            +
                                <div style="padding: 8px 15px; border-radius: 20px; background: rgba(56, 178, 172, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🎬</span> Video Analysis</div>
         
     | 
| 146 | 
         
            +
                            </div>
         
     | 
| 147 | 
         
            +
                             <div style="margin-top: 20px; padding: 10px 15px; background-color: rgba(255, 248, 230, 0.9); border-left: 3px solid #f6ad55; border-radius: 6px; max-width: 600px; margin-left: auto; margin-right: auto; text-align: left;">
         
     | 
| 148 | 
         
            +
                                 <p style="margin: 0; font-size: 0.9rem; color: #805ad5; font-weight: 500;">
         
     | 
| 149 | 
         
            +
                                     <span style="margin-right: 5px;">📱</span> iPhone users: HEIC images may not be supported.
         
     | 
| 150 | 
         
            +
                                     <a href="https://cloudconvert.com/heic-to-jpg" target="_blank" style="color: #3182ce; text-decoration: underline;">Convert HEIC to JPG</a> before uploading if needed.
         
     | 
| 151 | 
         
            +
                                 </p>
         
     | 
| 152 | 
         
            +
                             </div>
         
     | 
| 153 | 
         
            +
                        </div>
         
     | 
| 154 | 
         
            +
                    """)
         
     | 
| 155 | 
         
            +
                
         
     | 
| 156 | 
         
            +
                def create_footer(self):
         
     | 
| 157 | 
         
            +
                    """
         
     | 
| 158 | 
         
            +
                    Create the application footer.
         
     | 
| 159 | 
         
            +
                    
         
     | 
| 160 | 
         
            +
                    Returns:
         
     | 
| 161 | 
         
            +
                        gr.HTML: Footer HTML component
         
     | 
| 162 | 
         
            +
                    """
         
     | 
| 163 | 
         
            +
                    return gr.HTML("""
         
     | 
| 164 | 
         
            +
                        <div class="footer" style="padding: 25px 0; text-align: center; background: linear-gradient(to right, #f5f9fc, #e1f5fe); border-top: 1px solid #e2e8f0; margin-top: 30px;">
         
     | 
| 165 | 
         
            +
                            <div style="margin-bottom: 15px;">
         
     | 
| 166 | 
         
            +
                                <p style="font-size: 14px; color: #4A5568; margin: 5px 0;">Powered by YOLOv8, CLIP, Places365, Meta Llama3.2 and Ultralytics • Created with Gradio</p>
         
     | 
| 167 | 
         
            +
                            </div>
         
     | 
| 168 | 
         
            +
                            <div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-top: 15px;">
         
     | 
| 169 | 
         
            +
                                <p style="font-family: 'Arial', sans-serif; font-size: 14px; font-weight: 500; letter-spacing: 2px; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0; text-transform: uppercase; display: inline-block;">EXPLORE THE CODE →</p>
         
     | 
| 170 | 
         
            +
                                <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/VisionScout" target="_blank" style="text-decoration: none;">
         
     | 
| 171 | 
         
            +
                                    <img src="https://img.shields.io/badge/GitHub-VisionScout-4299e1?logo=github&style=for-the-badge">
         
     | 
| 172 | 
         
            +
                                </a>
         
     | 
| 173 | 
         
            +
                            </div>
         
     | 
| 174 | 
         
            +
                        </div>
         
     | 
| 175 | 
         
            +
                    """)
         
     | 
| 176 | 
         
            +
                
         
     | 
| 177 | 
         
            +
                def create_image_tab(self):
         
     | 
| 178 | 
         
            +
                    """
         
     | 
| 179 | 
         
            +
                    Create the image processing tab with all components.
         
     | 
| 180 | 
         
            +
                    
         
     | 
| 181 | 
         
            +
                    Returns:
         
     | 
| 182 | 
         
            +
                        Dict: Dictionary containing all image tab components
         
     | 
| 183 | 
         
            +
                    """
         
     | 
| 184 | 
         
            +
                    components = {}
         
     | 
| 185 | 
         
            +
                    
         
     | 
| 186 | 
         
            +
                    with gr.Tab("Image Processing"):
         
     | 
| 187 | 
         
            +
                        components['current_image_model'] = gr.State("yolov8m.pt")
         
     | 
| 188 | 
         
            +
                        
         
     | 
| 189 | 
         
            +
                        with gr.Row(equal_height=False):
         
     | 
| 190 | 
         
            +
                            # Left Column: Image Input & Controls
         
     | 
| 191 | 
         
            +
                            with gr.Column(scale=4, elem_classes="input-panel"):
         
     | 
| 192 | 
         
            +
                                with gr.Group():
         
     | 
| 193 | 
         
            +
                                    gr.HTML('<div class="section-heading">Upload Image</div>')
         
     | 
| 194 | 
         
            +
                                    components['image_input'] = gr.Image(
         
     | 
| 195 | 
         
            +
                                        type="pil", 
         
     | 
| 196 | 
         
            +
                                        label="Upload an image", 
         
     | 
| 197 | 
         
            +
                                        elem_classes="upload-box"
         
     | 
| 198 | 
         
            +
                                    )
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                                    with gr.Accordion("Image Analysis Settings", open=False):
         
     | 
| 201 | 
         
            +
                                        components['image_model_dropdown'] = gr.Dropdown(
         
     | 
| 202 | 
         
            +
                                            choices=self.model_choices,
         
     | 
| 203 | 
         
            +
                                            value="yolov8m.pt",
         
     | 
| 204 | 
         
            +
                                            label="Select Model",
         
     | 
| 205 | 
         
            +
                                            info="Choose speed vs. accuracy (n=fast, m=balanced, x=accurate)"
         
     | 
| 206 | 
         
            +
                                        )
         
     | 
| 207 | 
         
            +
                                        
         
     | 
| 208 | 
         
            +
                                        components['image_model_info'] = gr.Markdown(
         
     | 
| 209 | 
         
            +
                                            self.get_model_description("yolov8m.pt")
         
     | 
| 210 | 
         
            +
                                        )
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                                        components['image_confidence'] = gr.Slider(
         
     | 
| 213 | 
         
            +
                                            minimum=0.1, maximum=0.9, value=0.25, step=0.05,
         
     | 
| 214 | 
         
            +
                                            label="Confidence Threshold",
         
     | 
| 215 | 
         
            +
                                            info="Minimum confidence for displaying a detected object"
         
     | 
| 216 | 
         
            +
                                        )
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                                        components['use_llm'] = gr.Checkbox(
         
     | 
| 219 | 
         
            +
                                            label="Use LLM for enhanced scene descriptions",
         
     | 
| 220 | 
         
            +
                                            value=True,
         
     | 
| 221 | 
         
            +
                                            info="Provides more detailed and natural language descriptions (may increase processing time)"
         
     | 
| 222 | 
         
            +
                                        )
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                                        components['use_landmark_detection'] = gr.Checkbox(
         
     | 
| 225 | 
         
            +
                                            label="Use CLIP for Landmark Detection",
         
     | 
| 226 | 
         
            +
                                            value=False,
         
     | 
| 227 | 
         
            +
                                            info="Detect famous landmarks, monuments, and tourist attractions that standard object detection cannot recognize (increases processing time)"
         
     | 
| 228 | 
         
            +
                                        )
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                                        with gr.Accordion("Filter Classes", open=False):
         
     | 
| 231 | 
         
            +
                                            gr.HTML('<div class="section-heading" style="font-size: 1rem;">Common Categories</div>')
         
     | 
| 232 | 
         
            +
                                            with gr.Row():
         
     | 
| 233 | 
         
            +
                                                components['people_btn'] = gr.Button("People", size="sm")
         
     | 
| 234 | 
         
            +
                                                components['vehicles_btn'] = gr.Button("Vehicles", size="sm")
         
     | 
| 235 | 
         
            +
                                                components['animals_btn'] = gr.Button("Animals", size="sm")
         
     | 
| 236 | 
         
            +
                                                components['objects_btn'] = gr.Button("Common Objects", size="sm")
         
     | 
| 237 | 
         
            +
                                            
         
     | 
| 238 | 
         
            +
                                            components['image_class_filter'] = gr.Dropdown(
         
     | 
| 239 | 
         
            +
                                                choices=self.class_choices_formatted,
         
     | 
| 240 | 
         
            +
                                                multiselect=True,
         
     | 
| 241 | 
         
            +
                                                label="Select Classes to Display",
         
     | 
| 242 | 
         
            +
                                                info="Leave empty to show all detected objects"
         
     | 
| 243 | 
         
            +
                                            )
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                                components['image_detect_btn'] = gr.Button(
         
     | 
| 246 | 
         
            +
                                    "Analyze Image", 
         
     | 
| 247 | 
         
            +
                                    variant="primary", 
         
     | 
| 248 | 
         
            +
                                    elem_classes="detect-btn"
         
     | 
| 249 | 
         
            +
                                )
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                                # How to use section
         
     | 
| 252 | 
         
            +
                                with gr.Group(elem_classes="how-to-use"):
         
     | 
| 253 | 
         
            +
                                    gr.HTML('<div class="section-heading">How to Use (Image)</div>')
         
     | 
| 254 | 
         
            +
                                    gr.Markdown("""
         
     | 
| 255 | 
         
            +
                                        1. Upload an image or use the camera
         
     | 
| 256 | 
         
            +
                                        2. *(Optional)* Adjust settings like confidence threshold or model size (n, m = balanced, x = accurate)
         
     | 
| 257 | 
         
            +
                                        3. In **Analysis Settings**, you can:
         
     | 
| 258 | 
         
            +
                                            * Uncheck **Use LLM** to skip enhanced descriptions (faster)
         
     | 
| 259 | 
         
            +
                                            * Check **Use CLIP for Landmark Detection** to identify famous landmarks like museums, monuments, and tourist attractions *(may take longer)*
         
     | 
| 260 | 
         
            +
                                            * Filter object classes to focus on specific types of objects *(optional)*
         
     | 
| 261 | 
         
            +
                                        4. Click **Analyze Image** button
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                                        **💡 Tip:** For landmark recognition (e.g. Louvre Museum), make sure to enable **CLIP for Landmark Detection** in the settings above.
         
     | 
| 264 | 
         
            +
                                    """)
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                                # Image Examples
         
     | 
| 267 | 
         
            +
                                gr.Examples(
         
     | 
| 268 | 
         
            +
                                    examples=[
         
     | 
| 269 | 
         
            +
                                        "room_04.jpg",
         
     | 
| 270 | 
         
            +
                                        "street_04.jpg",
         
     | 
| 271 | 
         
            +
                                        "street_05.jpg",
         
     | 
| 272 | 
         
            +
                                        "landmark_Louvre_01.jpg"
         
     | 
| 273 | 
         
            +
                                    ],
         
     | 
| 274 | 
         
            +
                                    inputs=components['image_input'],
         
     | 
| 275 | 
         
            +
                                    label="Example Images"
         
     | 
| 276 | 
         
            +
                                )
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                                gr.HTML("""
         
     | 
| 279 | 
         
            +
                                    <div style="text-align: center; margin-top: 8px; padding: 6px; background-color: #f8f9fa; border-radius: 4px; border: 1px solid #e2e8f0;">
         
     | 
| 280 | 
         
            +
                                        <p style="font-size: 12px; color: #718096; margin: 0;">
         
     | 
| 281 | 
         
            +
                                            📷 Sample images sourced from <a href="https://unsplash.com" target="_blank" style="color: #3182ce; text-decoration: underline;">Unsplash</a>
         
     | 
| 282 | 
         
            +
                                        </p>
         
     | 
| 283 | 
         
            +
                                    </div>
         
     | 
| 284 | 
         
            +
                                """)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                            # Right Column: Image Results
         
     | 
| 287 | 
         
            +
                            with gr.Column(scale=6, elem_classes="output-panel"):
         
     | 
| 288 | 
         
            +
                                with gr.Tabs(elem_classes="tabs"):
         
     | 
| 289 | 
         
            +
                                    # Detection Result Tab
         
     | 
| 290 | 
         
            +
                                    with gr.Tab("Detection Result"):
         
     | 
| 291 | 
         
            +
                                        components['image_result_image'] = gr.Image(
         
     | 
| 292 | 
         
            +
                                            type="pil", 
         
     | 
| 293 | 
         
            +
                                            label="Detection Result"
         
     | 
| 294 | 
         
            +
                                        )
         
     | 
| 295 | 
         
            +
                                        gr.HTML('<div class="section-heading">Detection Details</div>')
         
     | 
| 296 | 
         
            +
                                        components['image_result_text'] = gr.Textbox(
         
     | 
| 297 | 
         
            +
                                            label=None, 
         
     | 
| 298 | 
         
            +
                                            lines=10, 
         
     | 
| 299 | 
         
            +
                                            elem_id="detection-details", 
         
     | 
| 300 | 
         
            +
                                            container=False
         
     | 
| 301 | 
         
            +
                                        )
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                                    # Scene Understanding Tab
         
     | 
| 304 | 
         
            +
                                    with gr.Tab("Scene Understanding"):
         
     | 
| 305 | 
         
            +
                                        gr.HTML('<div class="section-heading">Scene Analysis</div>')
         
     | 
| 306 | 
         
            +
                                        
         
     | 
| 307 | 
         
            +
                                        # Info details
         
     | 
| 308 | 
         
            +
                                        gr.HTML("""
         
     | 
| 309 | 
         
            +
                                            <details class="info-details" style="margin: 5px 0 15px 0;">
         
     | 
| 310 | 
         
            +
                                                <summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
         
     | 
| 311 | 
         
            +
                                                    🔍 The AI Vision Scout Report: Click for important notes about this analysis
         
     | 
| 312 | 
         
            +
                                                </summary>
         
     | 
| 313 | 
         
            +
                                                <div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
         
     | 
| 314 | 
         
            +
                                                    <p style="font-size: 13px; color: #718096; margin: 0;">
         
     | 
| 315 | 
         
            +
                                                        <b>About this analysis:</b> This analysis is the model's best guess based on visible objects.
         
     | 
| 316 | 
         
            +
                                                        Like human scouts, it sometimes gets lost or sees things that aren't there (but don't we all?).
         
     | 
| 317 | 
         
            +
                                                        Consider this an educated opinion rather than absolute truth. For critical applications, always verify with human eyes! 🧐
         
     | 
| 318 | 
         
            +
                                                    </p>
         
     | 
| 319 | 
         
            +
                                                </div>
         
     | 
| 320 | 
         
            +
                                            </details>
         
     | 
| 321 | 
         
            +
                                        """)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                                        gr.HTML('''
         
     | 
| 324 | 
         
            +
                                            <div style="margin-top: 5px; padding: 6px 10px; background-color: #f0f9ff; border-radius: 4px; border-left: 3px solid #63b3ed; font-size: 12px; margin-bottom: 10px;">
         
     | 
| 325 | 
         
            +
                                                <p style="margin: 0; color: #4a5568;">
         
     | 
| 326 | 
         
            +
                                                    <b>Note:</b> AI descriptions may vary slightly with each generation, reflecting the creative nature of AI. This is similar to how a person might use different words each time they describe the same image. Processing time may be longer during first use or when analyzing complex scenes, as the LLM enhancement requires additional computational resources.
         
     | 
| 327 | 
         
            +
                                                </p>
         
     | 
| 328 | 
         
            +
                                            </div>
         
     | 
| 329 | 
         
            +
                                        ''')
         
     | 
| 330 | 
         
            +
                                        
         
     | 
| 331 | 
         
            +
                                        components['image_scene_description_html'] = gr.HTML(
         
     | 
| 332 | 
         
            +
                                            label=None, 
         
     | 
| 333 | 
         
            +
                                            elem_id="scene_analysis_description_text"
         
     | 
| 334 | 
         
            +
                                        )
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                                        # Original Scene Analysis accordion
         
     | 
| 337 | 
         
            +
                                        with gr.Accordion("Original Scene Analysis", open=False, elem_id="original_scene_analysis_accordion"):
         
     | 
| 338 | 
         
            +
                                            components['image_llm_description'] = gr.HTML(
         
     | 
| 339 | 
         
            +
                                                label=None, 
         
     | 
| 340 | 
         
            +
                                                elem_id="original_scene_description_text"
         
     | 
| 341 | 
         
            +
                                            )
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                                        with gr.Row():
         
     | 
| 344 | 
         
            +
                                            with gr.Column(scale=1):
         
     | 
| 345 | 
         
            +
                                                gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Possible Activities</div>')
         
     | 
| 346 | 
         
            +
                                                components['image_activities_list'] = gr.Dataframe(
         
     | 
| 347 | 
         
            +
                                                    headers=["Activity"], 
         
     | 
| 348 | 
         
            +
                                                    datatype=["str"], 
         
     | 
| 349 | 
         
            +
                                                    row_count=5, 
         
     | 
| 350 | 
         
            +
                                                    col_count=1, 
         
     | 
| 351 | 
         
            +
                                                    wrap=True
         
     | 
| 352 | 
         
            +
                                                )
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                                            with gr.Column(scale=1):
         
     | 
| 355 | 
         
            +
                                                gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Safety Concerns</div>')
         
     | 
| 356 | 
         
            +
                                                components['image_safety_list'] = gr.Dataframe(
         
     | 
| 357 | 
         
            +
                                                    headers=["Concern"], 
         
     | 
| 358 | 
         
            +
                                                    datatype=["str"], 
         
     | 
| 359 | 
         
            +
                                                    row_count=5, 
         
     | 
| 360 | 
         
            +
                                                    col_count=1, 
         
     | 
| 361 | 
         
            +
                                                    wrap=True
         
     | 
| 362 | 
         
            +
                                                )
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                                        gr.HTML('<div class="section-heading">Functional Zones</div>')
         
     | 
| 365 | 
         
            +
                                        components['image_zones_json'] = gr.JSON(
         
     | 
| 366 | 
         
            +
                                            label=None, 
         
     | 
| 367 | 
         
            +
                                            elem_classes="json-box"
         
     | 
| 368 | 
         
            +
                                        )
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                                        gr.HTML('<div class="section-heading">Lighting Conditions</div>')
         
     | 
| 371 | 
         
            +
                                        components['image_lighting_info'] = gr.JSON(
         
     | 
| 372 | 
         
            +
                                            label=None, 
         
     | 
| 373 | 
         
            +
                                            elem_classes="json-box"
         
     | 
| 374 | 
         
            +
                                        )
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                                    # Statistics Tab
         
     | 
| 377 | 
         
            +
                                    with gr.Tab("Statistics"):
         
     | 
| 378 | 
         
            +
                                        with gr.Row():
         
     | 
| 379 | 
         
            +
                                            with gr.Column(scale=3, elem_classes="plot-column"):
         
     | 
| 380 | 
         
            +
                                                gr.HTML('<div class="section-heading">Object Distribution</div>')
         
     | 
| 381 | 
         
            +
                                                components['image_plot_output'] = gr.Plot(
         
     | 
| 382 | 
         
            +
                                                    label=None, 
         
     | 
| 383 | 
         
            +
                                                    elem_classes="large-plot-container"
         
     | 
| 384 | 
         
            +
                                                )
         
     | 
| 385 | 
         
            +
                                            with gr.Column(scale=2, elem_classes="stats-column"):
         
     | 
| 386 | 
         
            +
                                                gr.HTML('<div class="section-heading">Detection Statistics</div>')
         
     | 
| 387 | 
         
            +
                                                components['image_stats_json'] = gr.JSON(
         
     | 
| 388 | 
         
            +
                                                    label=None, 
         
     | 
| 389 | 
         
            +
                                                    elem_classes="enhanced-json-display"
         
     | 
| 390 | 
         
            +
                                                )
         
     | 
| 391 | 
         
            +
                    
         
     | 
| 392 | 
         
            +
                    return components
         
     | 
| 393 | 
         
            +
                
         
     | 
| 394 | 
         
            +
                def create_video_tab(self):
         
     | 
| 395 | 
         
            +
                    """
         
     | 
| 396 | 
         
            +
                    Create the video processing tab with all components.
         
     | 
| 397 | 
         
            +
                    
         
     | 
| 398 | 
         
            +
                    Returns:
         
     | 
| 399 | 
         
            +
                        Dict: Dictionary containing all video tab components
         
     | 
| 400 | 
         
            +
                    """
         
     | 
| 401 | 
         
            +
                    components = {}
         
     | 
| 402 | 
         
            +
                    
         
     | 
| 403 | 
         
            +
                    with gr.Tab("Video Processing"):
         
     | 
| 404 | 
         
            +
                        with gr.Row(equal_height=False):
         
     | 
| 405 | 
         
            +
                            # Left Column: Video Input & Controls
         
     | 
| 406 | 
         
            +
                            with gr.Column(scale=4, elem_classes="input-panel"):
         
     | 
| 407 | 
         
            +
                                with gr.Group():
         
     | 
| 408 | 
         
            +
                                    gr.HTML('<div class="section-heading">Video Input</div>')
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                                    # Input type selection
         
     | 
| 411 | 
         
            +
                                    components['video_input_type'] = gr.Radio(
         
     | 
| 412 | 
         
            +
                                        ["upload", "url"],
         
     | 
| 413 | 
         
            +
                                        label="Input Method",
         
     | 
| 414 | 
         
            +
                                        value="upload",
         
     | 
| 415 | 
         
            +
                                        info="Choose how to provide the video"
         
     | 
| 416 | 
         
            +
                                    )
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                                    # File upload
         
     | 
| 419 | 
         
            +
                                    with gr.Group(elem_id="upload-video-group"):
         
     | 
| 420 | 
         
            +
                                        components['video_input'] = gr.Video(
         
     | 
| 421 | 
         
            +
                                            label="Upload a video file (MP4, AVI, MOV)",
         
     | 
| 422 | 
         
            +
                                            sources=["upload"],
         
     | 
| 423 | 
         
            +
                                            visible=True
         
     | 
| 424 | 
         
            +
                                        )
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                                    # URL input
         
     | 
| 427 | 
         
            +
                                    with gr.Group(elem_id="url-video-group"):
         
     | 
| 428 | 
         
            +
                                        components['video_url_input'] = gr.Textbox(
         
     | 
| 429 | 
         
            +
                                            label="Enter video URL (YouTube or direct video link)",
         
     | 
| 430 | 
         
            +
                                            placeholder="https://www.youtube.com/watch?v=...",
         
     | 
| 431 | 
         
            +
                                            visible=False,
         
     | 
| 432 | 
         
            +
                                            elem_classes="custom-video-url-input"
         
     | 
| 433 | 
         
            +
                                        )
         
     | 
| 434 | 
         
            +
                                        gr.HTML("""
         
     | 
| 435 | 
         
            +
                                            <div style="padding: 8px; margin-top: 5px; background-color: #fff8f8; border-radius: 4px; border-left: 3px solid #f87171; font-size: 12px;">
         
     | 
| 436 | 
         
            +
                                                <p style="margin: 0; color: #4b5563;">
         
     | 
| 437 | 
         
            +
                                                    Note: Currently only YouTube URLs are supported. Maximum video duration is 10 minutes. Due to YouTube's anti-bot protection, some videos may not be downloadable. For protected videos, please upload a local video file instead.
         
     | 
| 438 | 
         
            +
                                                </p>
         
     | 
| 439 | 
         
            +
                                            </div>
         
     | 
| 440 | 
         
            +
                                        """)
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                                    with gr.Accordion("Video Analysis Settings", open=True):
         
     | 
| 443 | 
         
            +
                                        components['video_model_dropdown'] = gr.Dropdown(
         
     | 
| 444 | 
         
            +
                                            choices=self.model_choices,
         
     | 
| 445 | 
         
            +
                                            value="yolov8n.pt",
         
     | 
| 446 | 
         
            +
                                            label="Select Model (Video)",
         
     | 
| 447 | 
         
            +
                                            info="Faster models (like 'n') are recommended"
         
     | 
| 448 | 
         
            +
                                        )
         
     | 
| 449 | 
         
            +
                                        components['video_confidence'] = gr.Slider(
         
     | 
| 450 | 
         
            +
                                            minimum=0.1, maximum=0.9, value=0.4, step=0.05,
         
     | 
| 451 | 
         
            +
                                            label="Confidence Threshold (Video)"
         
     | 
| 452 | 
         
            +
                                        )
         
     | 
| 453 | 
         
            +
                                        components['video_process_interval'] = gr.Slider(
         
     | 
| 454 | 
         
            +
                                            minimum=1, maximum=60, value=10, step=1,
         
     | 
| 455 | 
         
            +
                                            label="Processing Interval (Frames)",
         
     | 
| 456 | 
         
            +
                                            info="Analyze every Nth frame (higher value = faster)"
         
     | 
| 457 | 
         
            +
                                        )
         
     | 
| 458 | 
         
            +
                                
         
     | 
| 459 | 
         
            +
                                components['video_process_btn'] = gr.Button(
         
     | 
| 460 | 
         
            +
                                    "Process Video", 
         
     | 
| 461 | 
         
            +
                                    variant="primary", 
         
     | 
| 462 | 
         
            +
                                    elem_classes="detect-btn"
         
     | 
| 463 | 
         
            +
                                )
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                                # How to use section
         
     | 
| 466 | 
         
            +
                                with gr.Group(elem_classes="how-to-use"):
         
     | 
| 467 | 
         
            +
                                    gr.HTML('<div class="section-heading">How to Use (Video)</div>')
         
     | 
| 468 | 
         
            +
                                    gr.Markdown("""
         
     | 
| 469 | 
         
            +
                                    1. Choose your input method: Upload a file or enter a URL.
         
     | 
| 470 | 
         
            +
                                    2. Adjust settings if needed (using a faster model and larger interval is recommended for longer videos).
         
     | 
| 471 | 
         
            +
                                    3. Click "Process Video". **Processing can take a significant amount of time.**
         
     | 
| 472 | 
         
            +
                                    4. The annotated video and summary will appear on the right when finished.
         
     | 
| 473 | 
         
            +
                                    """)
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                                # Video examples
         
     | 
| 476 | 
         
            +
                                gr.HTML('<div class="section-heading">Example Videos</div>')
         
     | 
| 477 | 
         
            +
                                gr.HTML("""
         
     | 
| 478 | 
         
            +
                                    <div style="padding: 10px; background-color: #f0f7ff; border-radius: 6px; margin-bottom: 15px;">
         
     | 
| 479 | 
         
            +
                                        <p style="font-size: 14px; color: #4A5568; margin: 0;">
         
     | 
| 480 | 
         
            +
                                            Upload any video containing objects that YOLO can detect. For testing, find sample videos
         
     | 
| 481 | 
         
            +
                                            <a href="https://www.pexels.com/search/videos/street/" target="_blank" style="color: #3182ce; text-decoration: underline;">here</a>.
         
     | 
| 482 | 
         
            +
                                        </p>
         
     | 
| 483 | 
         
            +
                                    </div>
         
     | 
| 484 | 
         
            +
                                """)
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                            # Right Column: Video Results
         
     | 
| 487 | 
         
            +
                            with gr.Column(scale=6, elem_classes="output-panel video-result-panel"):
         
     | 
| 488 | 
         
            +
                                gr.HTML("""
         
     | 
| 489 | 
         
            +
                                    <div class="section-heading">Video Result</div>
         
     | 
| 490 | 
         
            +
                                    <details class="info-details" style="margin: 5px 0 15px 0;">
         
     | 
| 491 | 
         
            +
                                        <summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
         
     | 
| 492 | 
         
            +
                                            🎬 Video Processing Notes
         
     | 
| 493 | 
         
            +
                                        </summary>
         
     | 
| 494 | 
         
            +
                                        <div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
         
     | 
| 495 | 
         
            +
                                            <p style="font-size: 13px; color: #718096; margin: 0;">
         
     | 
| 496 | 
         
            +
                                                The processed video includes bounding boxes around detected objects. For longer videos,
         
     | 
| 497 | 
         
            +
                                                consider using a faster model (like YOLOv8n) and a higher frame interval to reduce processing time.
         
     | 
| 498 | 
         
            +
                                            </p>
         
     | 
| 499 | 
         
            +
                                        </div>
         
     | 
| 500 | 
         
            +
                                    </details>
         
     | 
| 501 | 
         
            +
                                """)
         
     | 
| 502 | 
         
            +
                                
         
     | 
| 503 | 
         
            +
                                components['video_output'] = gr.Video(
         
     | 
| 504 | 
         
            +
                                    label="Processed Video", 
         
     | 
| 505 | 
         
            +
                                    elem_classes="video-output-container"
         
     | 
| 506 | 
         
            +
                                )
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                                gr.HTML('<div class="section-heading">Processing Summary</div>')
         
     | 
| 509 | 
         
            +
                                components['video_summary_text'] = gr.HTML(
         
     | 
| 510 | 
         
            +
                                    label=None,
         
     | 
| 511 | 
         
            +
                                    elem_id="video-summary-html-output"
         
     | 
| 512 | 
         
            +
                                )
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                                gr.HTML('<div class="section-heading">Aggregated Statistics</div>')
         
     | 
| 515 | 
         
            +
                                components['video_stats_json'] = gr.JSON(
         
     | 
| 516 | 
         
            +
                                    label=None, 
         
     | 
| 517 | 
         
            +
                                    elem_classes="video-stats-display"
         
     | 
| 518 | 
         
            +
                                )
         
     | 
| 519 | 
         
            +
                    
         
     | 
| 520 | 
         
            +
                    return components
         
     | 
| 521 | 
         
            +
                
         
     | 
| 522 | 
         
            +
                def get_filter_button_mappings(self):
         
     | 
| 523 | 
         
            +
                    """
         
     | 
| 524 | 
         
            +
                    Get the class ID mappings for filter buttons.
         
     | 
| 525 | 
         
            +
                    
         
     | 
| 526 | 
         
            +
                    Returns:
         
     | 
| 527 | 
         
            +
                        Dict: Dictionary containing class ID lists for different categories
         
     | 
| 528 | 
         
            +
                    """
         
     | 
| 529 | 
         
            +
                    available_classes_list = self.get_all_classes()
         
     | 
| 530 | 
         
            +
                    
         
     | 
| 531 | 
         
            +
                    return {
         
     | 
| 532 | 
         
            +
                        'people_classes_ids': [0],
         
     | 
| 533 | 
         
            +
                        'vehicles_classes_ids': [1, 2, 3, 4, 5, 6, 7, 8],
         
     | 
| 534 | 
         
            +
                        'animals_classes_ids': list(range(14, 24)),
         
     | 
| 535 | 
         
            +
                        'common_objects_ids': [39, 41, 42, 43, 44, 45, 56, 57, 60, 62, 63, 67, 73],
         
     | 
| 536 | 
         
            +
                        'available_classes_list': available_classes_list
         
     | 
| 537 | 
         
            +
                    }
         
     | 
| 538 | 
         
            +
                
         
     | 
| 539 | 
         
            +
                def create_interface(self, 
         
     | 
| 540 | 
         
            +
                                    handle_image_upload_fn, 
         
     | 
| 541 | 
         
            +
                                    handle_video_upload_fn, 
         
     | 
| 542 | 
         
            +
                                    download_video_from_url_fn):
         
     | 
| 543 | 
         
            +
                    """
         
     | 
| 544 | 
         
            +
                    Create the complete Gradio interface.
         
     | 
| 545 | 
         
            +
                    
         
     | 
| 546 | 
         
            +
                    Args:
         
     | 
| 547 | 
         
            +
                        handle_image_upload_fn: Function to handle image upload
         
     | 
| 548 | 
         
            +
                        handle_video_upload_fn: Function to handle video upload
         
     | 
| 549 | 
         
            +
                        download_video_from_url_fn: Function to download video from URL
         
     | 
| 550 | 
         
            +
                        
         
     | 
| 551 | 
         
            +
                    Returns:
         
     | 
| 552 | 
         
            +
                        gr.Blocks: Complete Gradio interface
         
     | 
| 553 | 
         
            +
                    """
         
     | 
| 554 | 
         
            +
                    css = self.get_css_styles()
         
     | 
| 555 | 
         
            +
                    
         
     | 
| 556 | 
         
            +
                    with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
         
     | 
| 557 | 
         
            +
                        
         
     | 
| 558 | 
         
            +
                        # Header
         
     | 
| 559 | 
         
            +
                        with gr.Group(elem_classes="app-header"):
         
     | 
| 560 | 
         
            +
                            self.create_header()
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                        # Main Content with Tabs
         
     | 
| 563 | 
         
            +
                        with gr.Tabs(elem_classes="tabs"):
         
     | 
| 564 | 
         
            +
                            
         
     | 
| 565 | 
         
            +
                            # Image Processing Tab
         
     | 
| 566 | 
         
            +
                            image_components = self.create_image_tab()
         
     | 
| 567 | 
         
            +
                            
         
     | 
| 568 | 
         
            +
                            # Video Processing Tab
         
     | 
| 569 | 
         
            +
                            video_components = self.create_video_tab()
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                        # Footer
         
     | 
| 572 | 
         
            +
                        self.create_footer()
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                        # Setup Event Listeners
         
     | 
| 575 | 
         
            +
                        self._setup_event_listeners(
         
     | 
| 576 | 
         
            +
                            image_components, 
         
     | 
| 577 | 
         
            +
                            video_components, 
         
     | 
| 578 | 
         
            +
                            handle_image_upload_fn, 
         
     | 
| 579 | 
         
            +
                            handle_video_upload_fn
         
     | 
| 580 | 
         
            +
                        )
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
                    return demo
         
     | 
| 583 | 
         
            +
                
         
     | 
| 584 | 
         
            +
                def _setup_event_listeners(self, 
         
     | 
| 585 | 
         
            +
                                          image_components, 
         
     | 
| 586 | 
         
            +
                                          video_components, 
         
     | 
| 587 | 
         
            +
                                          handle_image_upload_fn, 
         
     | 
| 588 | 
         
            +
                                          handle_video_upload_fn):
         
     | 
| 589 | 
         
            +
                    """
         
     | 
| 590 | 
         
            +
                    Setup all event listeners for the interface.
         
     | 
| 591 | 
         
            +
                    
         
     | 
| 592 | 
         
            +
                    Args:
         
     | 
| 593 | 
         
            +
                        image_components: Dictionary of image tab components
         
     | 
| 594 | 
         
            +
                        video_components: Dictionary of video tab components
         
     | 
| 595 | 
         
            +
                        handle_image_upload_fn: Function to handle image upload
         
     | 
| 596 | 
         
            +
                        handle_video_upload_fn: Function to handle video upload
         
     | 
| 597 | 
         
            +
                    """
         
     | 
| 598 | 
         
            +
                    # Image Model Change Handler
         
     | 
| 599 | 
         
            +
                    image_components['image_model_dropdown'].change(
         
     | 
| 600 | 
         
            +
                        fn=lambda model: (model, self.get_model_description(model)),
         
     | 
| 601 | 
         
            +
                        inputs=[image_components['image_model_dropdown']],
         
     | 
| 602 | 
         
            +
                        outputs=[image_components['current_image_model'], image_components['image_model_info']]
         
     | 
| 603 | 
         
            +
                    )
         
     | 
| 604 | 
         
            +
             
     | 
| 605 | 
         
            +
                    # Image Filter Buttons
         
     | 
| 606 | 
         
            +
                    filter_mappings = self.get_filter_button_mappings()
         
     | 
| 607 | 
         
            +
                    available_classes_list = filter_mappings['available_classes_list']
         
     | 
| 608 | 
         
            +
                    people_classes_ids = filter_mappings['people_classes_ids']
         
     | 
| 609 | 
         
            +
                    vehicles_classes_ids = filter_mappings['vehicles_classes_ids']
         
     | 
| 610 | 
         
            +
                    animals_classes_ids = filter_mappings['animals_classes_ids']
         
     | 
| 611 | 
         
            +
                    common_objects_ids = filter_mappings['common_objects_ids']
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    image_components['people_btn'].click(
         
     | 
| 614 | 
         
            +
                        lambda: [f"{id}: {name}" for id, name in available_classes_list if id in people_classes_ids], 
         
     | 
| 615 | 
         
            +
                        outputs=image_components['image_class_filter']
         
     | 
| 616 | 
         
            +
                    )
         
     | 
| 617 | 
         
            +
                    image_components['vehicles_btn'].click(
         
     | 
| 618 | 
         
            +
                        lambda: [f"{id}: {name}" for id, name in available_classes_list if id in vehicles_classes_ids], 
         
     | 
| 619 | 
         
            +
                        outputs=image_components['image_class_filter']
         
     | 
| 620 | 
         
            +
                    )
         
     | 
| 621 | 
         
            +
                    image_components['animals_btn'].click(
         
     | 
| 622 | 
         
            +
                        lambda: [f"{id}: {name}" for id, name in available_classes_list if id in animals_classes_ids], 
         
     | 
| 623 | 
         
            +
                        outputs=image_components['image_class_filter']
         
     | 
| 624 | 
         
            +
                    )
         
     | 
| 625 | 
         
            +
                    image_components['objects_btn'].click(
         
     | 
| 626 | 
         
            +
                        lambda: [f"{id}: {name}" for id, name in available_classes_list if id in common_objects_ids], 
         
     | 
| 627 | 
         
            +
                        outputs=image_components['image_class_filter']
         
     | 
| 628 | 
         
            +
                    )
         
     | 
| 629 | 
         
            +
             
     | 
| 630 | 
         
            +
                    # Video Input Type Change Handler
         
     | 
| 631 | 
         
            +
                    video_components['video_input_type'].change(
         
     | 
| 632 | 
         
            +
                        fn=lambda input_type: [
         
     | 
| 633 | 
         
            +
                            # Show/hide file upload
         
     | 
| 634 | 
         
            +
                            gr.update(visible=(input_type == "upload")),
         
     | 
| 635 | 
         
            +
                            # Show/hide URL input
         
     | 
| 636 | 
         
            +
                            gr.update(visible=(input_type == "url"))
         
     | 
| 637 | 
         
            +
                        ],
         
     | 
| 638 | 
         
            +
                        inputs=[video_components['video_input_type']],
         
     | 
| 639 | 
         
            +
                        outputs=[video_components['video_input'], video_components['video_url_input']]
         
     | 
| 640 | 
         
            +
                    )
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                    # Image Detect Button Click Handler
         
     | 
| 643 | 
         
            +
                    image_components['image_detect_btn'].click(
         
     | 
| 644 | 
         
            +
                        fn=handle_image_upload_fn,
         
     | 
| 645 | 
         
            +
                        inputs=[
         
     | 
| 646 | 
         
            +
                            image_components['image_input'], 
         
     | 
| 647 | 
         
            +
                            image_components['image_model_dropdown'], 
         
     | 
| 648 | 
         
            +
                            image_components['image_confidence'], 
         
     | 
| 649 | 
         
            +
                            image_components['image_class_filter'], 
         
     | 
| 650 | 
         
            +
                            image_components['use_llm'], 
         
     | 
| 651 | 
         
            +
                            image_components['use_landmark_detection']
         
     | 
| 652 | 
         
            +
                        ],
         
     | 
| 653 | 
         
            +
                        outputs=[
         
     | 
| 654 | 
         
            +
                            image_components['image_result_image'], 
         
     | 
| 655 | 
         
            +
                            image_components['image_result_text'], 
         
     | 
| 656 | 
         
            +
                            image_components['image_stats_json'], 
         
     | 
| 657 | 
         
            +
                            image_components['image_plot_output'],
         
     | 
| 658 | 
         
            +
                            image_components['image_scene_description_html'], 
         
     | 
| 659 | 
         
            +
                            image_components['image_llm_description'], 
         
     | 
| 660 | 
         
            +
                            image_components['image_activities_list'], 
         
     | 
| 661 | 
         
            +
                            image_components['image_safety_list'], 
         
     | 
| 662 | 
         
            +
                            image_components['image_zones_json'],
         
     | 
| 663 | 
         
            +
                            image_components['image_lighting_info']
         
     | 
| 664 | 
         
            +
                        ]
         
     | 
| 665 | 
         
            +
                    )
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
                    # Video Process Button Click Handler
         
     | 
| 668 | 
         
            +
                    video_components['video_process_btn'].click(
         
     | 
| 669 | 
         
            +
                        fn=handle_video_upload_fn,
         
     | 
| 670 | 
         
            +
                        inputs=[
         
     | 
| 671 | 
         
            +
                            video_components['video_input'],
         
     | 
| 672 | 
         
            +
                            video_components['video_url_input'],
         
     | 
| 673 | 
         
            +
                            video_components['video_input_type'],
         
     | 
| 674 | 
         
            +
                            video_components['video_model_dropdown'],
         
     | 
| 675 | 
         
            +
                            video_components['video_confidence'],
         
     | 
| 676 | 
         
            +
                            video_components['video_process_interval']
         
     | 
| 677 | 
         
            +
                        ],
         
     | 
| 678 | 
         
            +
                        outputs=[
         
     | 
| 679 | 
         
            +
                            video_components['video_output'], 
         
     | 
| 680 | 
         
            +
                            video_components['video_summary_text'], 
         
     | 
| 681 | 
         
            +
                            video_components['video_stats_json']
         
     | 
| 682 | 
         
            +
                        ]
         
     | 
| 683 | 
         
            +
                    )
         
     |