Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +131 -467
scoring_calculation_system.py
CHANGED
|
@@ -206,205 +206,6 @@ def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences'
|
|
| 206 |
return factors
|
| 207 |
|
| 208 |
|
| 209 |
-
@staticmethod
|
| 210 |
-
def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
|
| 211 |
-
temperament = breed_info.get('Temperament', '').lower()
|
| 212 |
-
size = breed_info.get('Size', 'Medium')
|
| 213 |
-
|
| 214 |
-
# 基礎安全分數必須根據孩童年齡有所不同
|
| 215 |
-
base_safety_scores = {
|
| 216 |
-
'toddler': {
|
| 217 |
-
"Small": 0.85, # 幼童與小型犬相對安全
|
| 218 |
-
"Medium": 0.60, # 中型犬需要更多注意
|
| 219 |
-
"Large": 0.40, # 大型犬風險較高
|
| 220 |
-
"Giant": 0.30 # 巨型犬風險最高
|
| 221 |
-
},
|
| 222 |
-
'school_age': {
|
| 223 |
-
"Small": 0.90, # 學齡兒童與小型犬很合適
|
| 224 |
-
"Medium": 0.75, # 中型犬可以接受
|
| 225 |
-
"Large": 0.55, # 大型犬需要注意
|
| 226 |
-
"Giant": 0.45 # 巨型犬仍需謹慎
|
| 227 |
-
},
|
| 228 |
-
'teenager': {
|
| 229 |
-
"Small": 0.95, # 青少年幾乎能應付所有小型犬
|
| 230 |
-
"Medium": 0.85, # 中型犬很合適
|
| 231 |
-
"Large": 0.70, # 大型犬可以考慮
|
| 232 |
-
"Giant": 0.60 # 巨型犬仍需小心
|
| 233 |
-
}
|
| 234 |
-
}
|
| 235 |
-
|
| 236 |
-
# 根據孩童年齡選擇對應的基礎分數
|
| 237 |
-
safety_score = base_safety_scores[children_age][size]
|
| 238 |
-
|
| 239 |
-
# 年齡特定的危險特徵評估
|
| 240 |
-
age_specific_dangerous_traits = {
|
| 241 |
-
'toddler': {
|
| 242 |
-
'aggressive': -0.40, # 幼童最危險
|
| 243 |
-
'territorial': -0.35,
|
| 244 |
-
'protective': -0.30,
|
| 245 |
-
'nervous': -0.30,
|
| 246 |
-
'dominant': -0.25,
|
| 247 |
-
'energetic': -0.20 # 過度活潑對幼童也是風險
|
| 248 |
-
},
|
| 249 |
-
'school_age': {
|
| 250 |
-
'aggressive': -0.30,
|
| 251 |
-
'territorial': -0.25,
|
| 252 |
-
'protective': -0.20,
|
| 253 |
-
'nervous': -0.20,
|
| 254 |
-
'dominant': -0.15,
|
| 255 |
-
'energetic': -0.10
|
| 256 |
-
},
|
| 257 |
-
'teenager': {
|
| 258 |
-
'aggressive': -0.20,
|
| 259 |
-
'territorial': -0.15,
|
| 260 |
-
'protective': -0.10,
|
| 261 |
-
'nervous': -0.15,
|
| 262 |
-
'dominant': -0.10,
|
| 263 |
-
'energetic': -0.05
|
| 264 |
-
}
|
| 265 |
-
}
|
| 266 |
-
|
| 267 |
-
# 套用年齡特定的特徵評估
|
| 268 |
-
for trait, penalty in age_specific_dangerous_traits[children_age].items():
|
| 269 |
-
if trait in temperament:
|
| 270 |
-
safety_score += penalty
|
| 271 |
-
|
| 272 |
-
# 正面特徵評估(根據年齡調整獎勵程度)
|
| 273 |
-
positive_traits_by_age = {
|
| 274 |
-
'toddler': {
|
| 275 |
-
'gentle': 0.15,
|
| 276 |
-
'patient': 0.15,
|
| 277 |
-
'calm': 0.12,
|
| 278 |
-
'tolerant': 0.12
|
| 279 |
-
},
|
| 280 |
-
'school_age': {
|
| 281 |
-
'gentle': 0.12,
|
| 282 |
-
'patient': 0.12,
|
| 283 |
-
'playful': 0.10,
|
| 284 |
-
'friendly': 0.10
|
| 285 |
-
},
|
| 286 |
-
'teenager': {
|
| 287 |
-
'friendly': 0.10,
|
| 288 |
-
'playful': 0.10,
|
| 289 |
-
'adaptable': 0.08,
|
| 290 |
-
'trainable': 0.08
|
| 291 |
-
}
|
| 292 |
-
}
|
| 293 |
-
|
| 294 |
-
# 套用正面特徵評估
|
| 295 |
-
for trait, bonus in positive_traits_by_age[children_age].items():
|
| 296 |
-
if trait in temperament:
|
| 297 |
-
safety_score += bonus
|
| 298 |
-
|
| 299 |
-
# 特殊風險評估(對所有年齡都很重要)
|
| 300 |
-
description = breed_info.get('Description', '').lower()
|
| 301 |
-
if 'history of' in description:
|
| 302 |
-
safety_score -= 0.25
|
| 303 |
-
if 'requires experienced' in description:
|
| 304 |
-
safety_score -= 0.15
|
| 305 |
-
|
| 306 |
-
# 確保分數在合理範圍內
|
| 307 |
-
return max(0.2, min(0.95, safety_score))
|
| 308 |
-
|
| 309 |
-
# def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
|
| 310 |
-
# """
|
| 311 |
-
# 計算品種與家庭/兒童的安全相容性分數,作為calculate_compatibility_score的一部分
|
| 312 |
-
|
| 313 |
-
# 參數:
|
| 314 |
-
# breed_info (dict): 品種資訊
|
| 315 |
-
# children_age (str): 兒童年齡組別 ('toddler', 'school_age', 'teenager')
|
| 316 |
-
|
| 317 |
-
# 返回:
|
| 318 |
-
# float: 0.2-0.95之間的安全分數
|
| 319 |
-
# """
|
| 320 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
| 321 |
-
# size = breed_info.get('Size', 'Medium')
|
| 322 |
-
|
| 323 |
-
# # 基礎安全分數(根據體型)
|
| 324 |
-
# base_safety_scores = {
|
| 325 |
-
# "Small": 0.80, # 從 0.85 降至 0.80
|
| 326 |
-
# "Medium": 0.65, # 從 0.75 降至 0.65
|
| 327 |
-
# "Large": 0.50, # 從 0.65 降至 0.50
|
| 328 |
-
# "Giant": 0.40 # 從 0.55 降至 0.40
|
| 329 |
-
# }
|
| 330 |
-
# safety_score = base_safety_scores.get(size, 0.60)
|
| 331 |
-
|
| 332 |
-
# # 加強年齡相關的調整力度
|
| 333 |
-
# age_factors = {
|
| 334 |
-
# 'toddler': {
|
| 335 |
-
# 'base_modifier': -0.25, # 從 -0.15 降至 -0.25
|
| 336 |
-
# 'size_penalty': {
|
| 337 |
-
# "Small": -0.10, # 從 -0.05 降至 -0.10
|
| 338 |
-
# "Medium": -0.20, # 從 -0.10 降至 -0.20
|
| 339 |
-
# "Large": -0.30, # 從 -0.20 降至 -0.30
|
| 340 |
-
# "Giant": -0.35 # 從 -0.25 降至 -0.35
|
| 341 |
-
# }
|
| 342 |
-
# },
|
| 343 |
-
# 'school_age': {
|
| 344 |
-
# 'base_modifier': -0.15, # 從 -0.08 降至 -0.15
|
| 345 |
-
# 'size_penalty': {
|
| 346 |
-
# "Small": -0.05,
|
| 347 |
-
# "Medium": -0.10,
|
| 348 |
-
# "Large": -0.20,
|
| 349 |
-
# "Giant": -0.25
|
| 350 |
-
# }
|
| 351 |
-
# },
|
| 352 |
-
# 'teenager': {
|
| 353 |
-
# 'base_modifier': -0.08, # 從 -0.05 降至 -0.08
|
| 354 |
-
# 'size_penalty': {
|
| 355 |
-
# "Small": -0.02,
|
| 356 |
-
# "Medium": -0.05,
|
| 357 |
-
# "Large": -0.10,
|
| 358 |
-
# "Giant": -0.15
|
| 359 |
-
# }
|
| 360 |
-
# }
|
| 361 |
-
# }
|
| 362 |
-
|
| 363 |
-
# # 加強對危險特徵的評估
|
| 364 |
-
# dangerous_traits = {
|
| 365 |
-
# 'aggressive': -0.35, # 從 -0.25 加重到 -0.35
|
| 366 |
-
# 'territorial': -0.30, # 從 -0.20 加重到 -0.30
|
| 367 |
-
# 'protective': -0.25, # 從 -0.15 加重到 -0.25
|
| 368 |
-
# 'nervous': -0.25, # 從 -0.15 加重到 -0.25
|
| 369 |
-
# 'dominant': -0.20, # 從 -0.15 加重到 -0.20
|
| 370 |
-
# 'strong-willed': -0.18, # 從 -0.12 加重到 -0.18
|
| 371 |
-
# 'independent': -0.15, # 從 -0.10 加重到 -0.15
|
| 372 |
-
# 'energetic': -0.12 # 從 -0.08 加重到 -0.12
|
| 373 |
-
# }
|
| 374 |
-
|
| 375 |
-
# # 特殊風險評估加重
|
| 376 |
-
# if 'history of' in breed_info.get('Description', '').lower():
|
| 377 |
-
# safety_score -= 0.25 # 從 -0.15 加重到 -0.25
|
| 378 |
-
# if 'requires experienced' in breed_info.get('Description', '').lower():
|
| 379 |
-
# safety_score -= 0.20 # 從 -0.10 加重到 -0.20
|
| 380 |
-
|
| 381 |
-
# # 計算特徵分數
|
| 382 |
-
# for trait, bonus in positive_traits.items():
|
| 383 |
-
# if trait in temperament:
|
| 384 |
-
# safety_score += bonus * 0.8 # 降低正面特徵的影響力
|
| 385 |
-
|
| 386 |
-
# for trait, penalty in dangerous_traits.items():
|
| 387 |
-
# if trait in temperament:
|
| 388 |
-
# # 對幼童加重懲罰
|
| 389 |
-
# if children_age == 'toddler':
|
| 390 |
-
# safety_score += penalty * 1.3
|
| 391 |
-
# # 對青少年略微減輕懲罰
|
| 392 |
-
# elif children_age == 'teenager':
|
| 393 |
-
# safety_score += penalty * 0.8
|
| 394 |
-
# else:
|
| 395 |
-
# safety_score += penalty
|
| 396 |
-
|
| 397 |
-
# # 特殊風險評估
|
| 398 |
-
# description = breed_info.get('Description', '').lower()
|
| 399 |
-
# if 'history of' in description:
|
| 400 |
-
# safety_score -= 0.15
|
| 401 |
-
# if 'requires experienced' in description:
|
| 402 |
-
# safety_score -= 0.10
|
| 403 |
-
|
| 404 |
-
# # 將分數限制在合理範圍內
|
| 405 |
-
# return max(0.2, min(0.95, safety_score))
|
| 406 |
-
|
| 407 |
-
|
| 408 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
| 409 |
"""計算品種與使用者條件的相容性分數的優化版本"""
|
| 410 |
try:
|
|
@@ -493,175 +294,111 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 493 |
return base_score
|
| 494 |
|
| 495 |
|
| 496 |
-
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
| 497 |
-
# """
|
| 498 |
-
# 計算使用者經驗與品種需求的匹配分數
|
| 499 |
-
|
| 500 |
-
# 參數說明:
|
| 501 |
-
# care_level: 品種的照顧難度 ("High", "Moderate", "Low")
|
| 502 |
-
# user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
|
| 503 |
-
# temperament: 品種的性格特徵描述
|
| 504 |
-
|
| 505 |
-
# 返回:
|
| 506 |
-
# float: 0.2-1.0 之間的匹配分數
|
| 507 |
-
# """
|
| 508 |
-
# # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
|
| 509 |
-
# base_scores = {
|
| 510 |
-
# "High": {
|
| 511 |
-
# "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
|
| 512 |
-
# "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
|
| 513 |
-
# "advanced": 1.0 # 資深者能完全勝任
|
| 514 |
-
# },
|
| 515 |
-
# "Moderate": {
|
| 516 |
-
# "beginner": 0.35, # 適中難度對新手來說仍具挑戰
|
| 517 |
-
# "intermediate": 0.82, # 中級玩家有很好的勝任能力
|
| 518 |
-
# "advanced": 1.0 # 資深者完全勝任
|
| 519 |
-
# },
|
| 520 |
-
# "Low": {
|
| 521 |
-
# "beginner": 0.72, # 低難度品種適合新手
|
| 522 |
-
# "intermediate": 0.92, # 中級玩家幾乎完全勝任
|
| 523 |
-
# "advanced": 1.0 # 資深者完全勝任
|
| 524 |
-
# }
|
| 525 |
-
# }
|
| 526 |
-
|
| 527 |
-
# # 取得基礎分數
|
| 528 |
-
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
| 529 |
-
|
| 530 |
-
# # 性格特徵評估 - 根據經驗等級調整權重
|
| 531 |
-
# temperament_lower = temperament.lower()
|
| 532 |
-
# temperament_adjustments = 0.0
|
| 533 |
-
|
| 534 |
-
# if user_experience == "beginner":
|
| 535 |
-
# # 新手不適合的特徵 - 更嚴格的懲罰
|
| 536 |
-
# difficult_traits = {
|
| 537 |
-
# 'stubborn': -0.15, # 加重固執的懲罰
|
| 538 |
-
# 'independent': -0.12, # 加重獨立性的懲罰
|
| 539 |
-
# 'dominant': -0.12, # 加重支配性的懲罰
|
| 540 |
-
# 'strong-willed': -0.10, # 加重強勢的懲罰
|
| 541 |
-
# 'protective': -0.08, # 加重保護性的懲罰
|
| 542 |
-
# 'aloof': -0.08, # 加重冷漠的懲罰
|
| 543 |
-
# 'energetic': -0.06 # 輕微懲罰高能量
|
| 544 |
-
# }
|
| 545 |
-
|
| 546 |
-
# # 新手友善的特徵 - 提供更多獎勵
|
| 547 |
-
# easy_traits = {
|
| 548 |
-
# 'gentle': 0.08, # 增加溫和的獎勵
|
| 549 |
-
# 'friendly': 0.08, # 增加友善的獎勵
|
| 550 |
-
# 'eager to please': 0.08, # 增加順從的獎勵
|
| 551 |
-
# 'patient': 0.06, # 獎勵耐心
|
| 552 |
-
# 'adaptable': 0.06, # 獎勵適應性
|
| 553 |
-
# 'calm': 0.05 # 獎勵冷靜
|
| 554 |
-
# }
|
| 555 |
-
|
| 556 |
-
# # 計算特徵調整
|
| 557 |
-
# for trait, penalty in difficult_traits.items():
|
| 558 |
-
# if trait in temperament_lower:
|
| 559 |
-
# temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
|
| 560 |
-
|
| 561 |
-
# for trait, bonus in easy_traits.items():
|
| 562 |
-
# if trait in temperament_lower:
|
| 563 |
-
# temperament_adjustments += bonus
|
| 564 |
-
|
| 565 |
-
# # 品種特殊調整
|
| 566 |
-
# if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
|
| 567 |
-
# temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
|
| 568 |
-
|
| 569 |
-
# elif user_experience == "intermediate":
|
| 570 |
-
# # 中級玩家的調整更加平衡
|
| 571 |
-
# moderate_traits = {
|
| 572 |
-
# 'intelligent': 0.05, # 獎勵聰明
|
| 573 |
-
# 'athletic': 0.04, # 獎勵運動能力
|
| 574 |
-
# 'versatile': 0.04, # 獎勵多功能性
|
| 575 |
-
# 'stubborn': -0.06, # 輕微懲罰固執
|
| 576 |
-
# 'independent': -0.05, # 輕微懲罰獨立性
|
| 577 |
-
# 'protective': -0.04 # 輕微懲罰保護性
|
| 578 |
-
# }
|
| 579 |
-
|
| 580 |
-
# for trait, adjustment in moderate_traits.items():
|
| 581 |
-
# if trait in temperament_lower:
|
| 582 |
-
# temperament_adjustments += adjustment
|
| 583 |
-
|
| 584 |
-
# else: # advanced
|
| 585 |
-
# # 資深玩家能夠應對挑戰性特徵
|
| 586 |
-
# advanced_traits = {
|
| 587 |
-
# 'stubborn': 0.04, # 反轉為優勢
|
| 588 |
-
# 'independent': 0.04, # 反轉為優勢
|
| 589 |
-
# 'intelligent': 0.05, # 獎勵聰明
|
| 590 |
-
# 'protective': 0.04, # 獎勵保護性
|
| 591 |
-
# 'strong-willed': 0.03 # 獎勵強勢
|
| 592 |
-
# }
|
| 593 |
-
|
| 594 |
-
# for trait, bonus in advanced_traits.items():
|
| 595 |
-
# if trait in temperament_lower:
|
| 596 |
-
# temperament_adjustments += bonus
|
| 597 |
-
|
| 598 |
-
# # 確保最終分數在合理範圍內
|
| 599 |
-
# final_score = max(0.2, min(1.0, score + temperament_adjustments))
|
| 600 |
-
# return final_score
|
| 601 |
-
|
| 602 |
-
|
| 603 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
| 604 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
base_scores = {
|
| 606 |
"High": {
|
| 607 |
-
"beginner": 0.
|
| 608 |
-
"intermediate": 0.
|
| 609 |
-
"advanced": 0
|
| 610 |
},
|
| 611 |
"Moderate": {
|
| 612 |
-
"beginner": 0.
|
| 613 |
-
"intermediate": 0.
|
| 614 |
-
"advanced": 0
|
| 615 |
},
|
| 616 |
"Low": {
|
| 617 |
-
"beginner": 0.
|
| 618 |
-
"intermediate": 0.
|
| 619 |
-
"advanced": 0
|
| 620 |
}
|
| 621 |
}
|
| 622 |
|
| 623 |
-
#
|
| 624 |
-
|
| 625 |
|
| 626 |
-
#
|
| 627 |
temperament_lower = temperament.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
|
| 629 |
-
#
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
'dominant': 0.25,
|
| 633 |
-
'stubborn': 0.25,
|
| 634 |
-
'independent': 0.2,
|
| 635 |
-
'protective': 0.2,
|
| 636 |
-
'strong-willed': 0.15
|
| 637 |
-
}
|
| 638 |
-
|
| 639 |
-
difficulty_score = sum(value for trait, value in difficulty_traits.items()
|
| 640 |
-
if trait in temperament_lower)
|
| 641 |
-
|
| 642 |
-
# 根據經驗等級調整難度的影響
|
| 643 |
-
experience_modifiers = {
|
| 644 |
-
"beginner": 1.2, # 新手受難度影響最大
|
| 645 |
-
"intermediate": 0.8, # 中級玩家受中等影響
|
| 646 |
-
"advanced": 0.5 # 專家受較小影響但仍然存在
|
| 647 |
-
}
|
| 648 |
-
|
| 649 |
-
# 應用經驗調整
|
| 650 |
-
difficulty_impact = difficulty_score * experience_modifiers[user_experience]
|
| 651 |
-
adjusted_score = base_score * (1 - difficulty_impact)
|
| 652 |
-
|
| 653 |
-
# 特殊品種類型的額外調整
|
| 654 |
-
breed_type_penalties = {
|
| 655 |
-
'terrier': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': -0.04},
|
| 656 |
-
'working': {'beginner': -0.2, 'intermediate': -0.1, 'advanced': -0.05},
|
| 657 |
-
'guard': {'beginner': -0.25, 'intermediate': -0.12, 'advanced': -0.06}
|
| 658 |
-
}
|
| 659 |
-
|
| 660 |
-
for breed_type, penalties in breed_type_penalties.items():
|
| 661 |
-
if breed_type in temperament_lower:
|
| 662 |
-
adjusted_score += penalties[user_experience]
|
| 663 |
-
|
| 664 |
-
return max(0.2, min(0.95, adjusted_score))
|
| 665 |
|
| 666 |
|
| 667 |
def calculate_health_score(breed_name: str) -> float:
|
|
@@ -781,75 +518,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 781 |
|
| 782 |
return max(0.2, min(1.0, final_score))
|
| 783 |
|
| 784 |
-
# # 計算所有基礎分數
|
| 785 |
-
# scores = {
|
| 786 |
-
# 'space': calculate_space_score(
|
| 787 |
-
# breed_info['Size'],
|
| 788 |
-
# user_prefs.living_space,
|
| 789 |
-
# user_prefs.space_for_play,
|
| 790 |
-
# breed_info.get('Exercise Needs', 'Moderate')
|
| 791 |
-
# ),
|
| 792 |
-
# 'exercise': calculate_exercise_score(
|
| 793 |
-
# breed_info.get('Exercise Needs', 'Moderate'),
|
| 794 |
-
# user_prefs.exercise_time
|
| 795 |
-
# ),
|
| 796 |
-
# 'grooming': calculate_grooming_score(
|
| 797 |
-
# breed_info.get('Grooming Needs', 'Moderate'),
|
| 798 |
-
# user_prefs.grooming_commitment.lower(),
|
| 799 |
-
# breed_info['Size']
|
| 800 |
-
# ),
|
| 801 |
-
# 'experience': calculate_experience_score(
|
| 802 |
-
# breed_info.get('Care Level', 'Moderate'),
|
| 803 |
-
# user_prefs.experience_level,
|
| 804 |
-
# breed_info.get('Temperament', '')
|
| 805 |
-
# ),
|
| 806 |
-
# 'health': calculate_health_score(breed_info.get('Breed', '')),
|
| 807 |
-
# 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
| 808 |
-
# }
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
# # 優化權重配置
|
| 812 |
-
# weights = {
|
| 813 |
-
# 'space': 0.28,
|
| 814 |
-
# 'exercise': 0.18,
|
| 815 |
-
# 'grooming': 0.12,
|
| 816 |
-
# 'experience': 0.22,
|
| 817 |
-
# 'health': 0.12,
|
| 818 |
-
# 'noise': 0.08
|
| 819 |
-
# }
|
| 820 |
-
|
| 821 |
-
# # 計算加權總分
|
| 822 |
-
# weighted_score = sum(score * weights[category] for category, score in scores.items())
|
| 823 |
-
|
| 824 |
-
# def amplify_score(score):
|
| 825 |
-
# """
|
| 826 |
-
# 優化分數放大函數,確保分數範圍合理且結果一致
|
| 827 |
-
# """
|
| 828 |
-
# # 基礎調整
|
| 829 |
-
# adjusted = (score - 0.35) * 1.8
|
| 830 |
-
|
| 831 |
-
# # 使用 3.2 次方使曲線更平滑
|
| 832 |
-
# amplified = pow(adjusted, 3.2) / 5.8 + score
|
| 833 |
-
|
| 834 |
-
# # 特別處理高分區間,確保不超過95%
|
| 835 |
-
# if amplified > 0.90:
|
| 836 |
-
# # 壓縮高分區間,確保最高到95%
|
| 837 |
-
# amplified = 0.90 + (amplified - 0.90) * 0.5
|
| 838 |
-
|
| 839 |
-
# # 確保最終分數在合理範圍內(0.55-0.95)
|
| 840 |
-
# final_score = max(0.55, min(0.95, amplified))
|
| 841 |
-
|
| 842 |
-
# # 四捨五入到小數點後第三位
|
| 843 |
-
# return round(final_score, 3)
|
| 844 |
-
|
| 845 |
-
# final_score = amplify_score(weighted_score)
|
| 846 |
-
|
| 847 |
-
# # 四捨五入所有分數
|
| 848 |
-
# scores = {k: round(v, 4) for k, v in scores.items()}
|
| 849 |
-
# scores['overall'] = round(final_score, 4)
|
| 850 |
-
|
| 851 |
-
# return scores
|
| 852 |
-
|
| 853 |
# 計算所有基礎分數
|
| 854 |
scores = {
|
| 855 |
'space': calculate_space_score(
|
|
@@ -875,56 +543,52 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
| 875 |
'health': calculate_health_score(breed_info.get('Breed', '')),
|
| 876 |
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
| 877 |
}
|
| 878 |
-
|
| 879 |
-
# 2. 計算品種加分
|
| 880 |
-
if user_prefs.has_children:
|
| 881 |
-
scores['family_safety'] = calculate_family_safety_score(breed_info, user_prefs.children_age)
|
| 882 |
-
weights = {
|
| 883 |
-
'space': 0.22,
|
| 884 |
-
'exercise': 0.15,
|
| 885 |
-
'grooming': 0.10,
|
| 886 |
-
'experience': 0.20,
|
| 887 |
-
'health': 0.10,
|
| 888 |
-
'noise': 0.08,
|
| 889 |
-
'family_safety': 0.15
|
| 890 |
-
}
|
| 891 |
-
else:
|
| 892 |
-
weights = {
|
| 893 |
-
'space': 0.28,
|
| 894 |
-
'exercise': 0.18,
|
| 895 |
-
'grooming': 0.12,
|
| 896 |
-
'experience': 0.22,
|
| 897 |
-
'health': 0.12,
|
| 898 |
-
'noise': 0.08
|
| 899 |
-
}
|
| 900 |
|
| 901 |
-
# 3. 計算加權分數
|
| 902 |
-
weighted_score = sum(score * weights[category] for category, score in scores.items())
|
| 903 |
|
| 904 |
-
#
|
| 905 |
-
|
| 906 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 907 |
|
| 908 |
-
#
|
| 909 |
-
|
| 910 |
-
adjusted = (score - 0.3) * 1.6
|
| 911 |
-
amplified = pow(adjusted, 2.5) / 4.0 + score
|
| 912 |
-
return max(0.45, min(0.95, amplified))
|
| 913 |
|
| 914 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 915 |
|
| 916 |
-
|
|
|
|
|
|
|
| 917 |
scores = {k: round(v, 4) for k, v in scores.items()}
|
| 918 |
scores['overall'] = round(final_score, 4)
|
| 919 |
-
|
| 920 |
-
return scores
|
| 921 |
|
| 922 |
-
|
| 923 |
-
# print(f"Error details: {str(e)}")
|
| 924 |
-
# print(f"breed_info: {breed_info}")
|
| 925 |
-
# # print(f"Error in calculate_compatibility_score: {str(e)}")
|
| 926 |
-
# return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
| 927 |
|
| 928 |
except Exception as e:
|
| 929 |
-
print(f"Error
|
| 930 |
-
|
|
|
|
|
|
|
|
|
| 206 |
return factors
|
| 207 |
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
| 210 |
"""計算品種與使用者條件的相容性分數的優化版本"""
|
| 211 |
try:
|
|
|
|
| 294 |
return base_score
|
| 295 |
|
| 296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
| 298 |
+
"""
|
| 299 |
+
計算使用者經驗與品種需求的匹配分數
|
| 300 |
+
|
| 301 |
+
參數說明:
|
| 302 |
+
care_level: 品種的照顧難度 ("High", "Moderate", "Low")
|
| 303 |
+
user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
|
| 304 |
+
temperament: 品種的性格特徵描述
|
| 305 |
+
|
| 306 |
+
返回:
|
| 307 |
+
float: 0.2-1.0 之間的匹配分數
|
| 308 |
+
"""
|
| 309 |
+
# 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
|
| 310 |
base_scores = {
|
| 311 |
"High": {
|
| 312 |
+
"beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
|
| 313 |
+
"intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
|
| 314 |
+
"advanced": 1.0 # 資深者能完全勝任
|
| 315 |
},
|
| 316 |
"Moderate": {
|
| 317 |
+
"beginner": 0.35, # 適中難度對新手來說仍具挑戰
|
| 318 |
+
"intermediate": 0.82, # 中級玩家有很好的勝任能力
|
| 319 |
+
"advanced": 1.0 # 資深者完全勝任
|
| 320 |
},
|
| 321 |
"Low": {
|
| 322 |
+
"beginner": 0.72, # 低難度品種適合新手
|
| 323 |
+
"intermediate": 0.92, # 中級玩家幾乎完全勝���
|
| 324 |
+
"advanced": 1.0 # 資深者完全勝任
|
| 325 |
}
|
| 326 |
}
|
| 327 |
|
| 328 |
+
# 取得基礎分數
|
| 329 |
+
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
| 330 |
|
| 331 |
+
# 性格特徵評估 - 根據經驗等級調整權重
|
| 332 |
temperament_lower = temperament.lower()
|
| 333 |
+
temperament_adjustments = 0.0
|
| 334 |
+
|
| 335 |
+
if user_experience == "beginner":
|
| 336 |
+
# 新手不適合的特徵 - 更嚴格的懲罰
|
| 337 |
+
difficult_traits = {
|
| 338 |
+
'stubborn': -0.15, # 加重固執的懲罰
|
| 339 |
+
'independent': -0.12, # 加重獨立性的懲罰
|
| 340 |
+
'dominant': -0.12, # 加重支配性的懲罰
|
| 341 |
+
'strong-willed': -0.10, # 加重強勢的懲罰
|
| 342 |
+
'protective': -0.08, # 加重保護性的懲罰
|
| 343 |
+
'aloof': -0.08, # 加重冷漠的懲罰
|
| 344 |
+
'energetic': -0.06 # 輕微懲罰高能量
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
# 新手友善的特徵 - 提供更多獎勵
|
| 348 |
+
easy_traits = {
|
| 349 |
+
'gentle': 0.08, # 增加溫和的獎勵
|
| 350 |
+
'friendly': 0.08, # 增加友善的獎勵
|
| 351 |
+
'eager to please': 0.08, # 增加順從的獎勵
|
| 352 |
+
'patient': 0.06, # 獎勵耐心
|
| 353 |
+
'adaptable': 0.06, # 獎勵適應性
|
| 354 |
+
'calm': 0.05 # 獎勵冷靜
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
# 計算特徵調整
|
| 358 |
+
for trait, penalty in difficult_traits.items():
|
| 359 |
+
if trait in temperament_lower:
|
| 360 |
+
temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
|
| 361 |
+
|
| 362 |
+
for trait, bonus in easy_traits.items():
|
| 363 |
+
if trait in temperament_lower:
|
| 364 |
+
temperament_adjustments += bonus
|
| 365 |
+
|
| 366 |
+
# 品種特殊調整
|
| 367 |
+
if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
|
| 368 |
+
temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
|
| 369 |
+
|
| 370 |
+
elif user_experience == "intermediate":
|
| 371 |
+
# 中級玩家的調整更加平衡
|
| 372 |
+
moderate_traits = {
|
| 373 |
+
'intelligent': 0.05, # 獎勵聰明
|
| 374 |
+
'athletic': 0.04, # 獎勵運動能力
|
| 375 |
+
'versatile': 0.04, # 獎勵多功能性
|
| 376 |
+
'stubborn': -0.06, # 輕微懲罰固執
|
| 377 |
+
'independent': -0.05, # 輕微懲罰獨立性
|
| 378 |
+
'protective': -0.04 # 輕微懲罰保護性
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
for trait, adjustment in moderate_traits.items():
|
| 382 |
+
if trait in temperament_lower:
|
| 383 |
+
temperament_adjustments += adjustment
|
| 384 |
+
|
| 385 |
+
else: # advanced
|
| 386 |
+
# 資深玩家能夠應對挑戰性特徵
|
| 387 |
+
advanced_traits = {
|
| 388 |
+
'stubborn': 0.04, # 反轉為優勢
|
| 389 |
+
'independent': 0.04, # 反轉為優勢
|
| 390 |
+
'intelligent': 0.05, # 獎勵聰明
|
| 391 |
+
'protective': 0.04, # 獎勵保護性
|
| 392 |
+
'strong-willed': 0.03 # 獎勵強勢
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
for trait, bonus in advanced_traits.items():
|
| 396 |
+
if trait in temperament_lower:
|
| 397 |
+
temperament_adjustments += bonus
|
| 398 |
|
| 399 |
+
# 確保最終分數在合理範圍內
|
| 400 |
+
final_score = max(0.2, min(1.0, score + temperament_adjustments))
|
| 401 |
+
return final_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
|
| 404 |
def calculate_health_score(breed_name: str) -> float:
|
|
|
|
| 518 |
|
| 519 |
return max(0.2, min(1.0, final_score))
|
| 520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
# 計算所有基礎分數
|
| 522 |
scores = {
|
| 523 |
'space': calculate_space_score(
|
|
|
|
| 543 |
'health': calculate_health_score(breed_info.get('Breed', '')),
|
| 544 |
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
| 545 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
|
|
|
|
|
|
|
| 547 |
|
| 548 |
+
# 優化權重配置
|
| 549 |
+
weights = {
|
| 550 |
+
'space': 0.28,
|
| 551 |
+
'exercise': 0.18,
|
| 552 |
+
'grooming': 0.12,
|
| 553 |
+
'experience': 0.22,
|
| 554 |
+
'health': 0.12,
|
| 555 |
+
'noise': 0.08
|
| 556 |
+
}
|
| 557 |
|
| 558 |
+
# 計算加權總分
|
| 559 |
+
weighted_score = sum(score * weights[category] for category, score in scores.items())
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
+
def amplify_score(score):
|
| 562 |
+
"""
|
| 563 |
+
優化分數放大函數,確保分數範圍合理且結果一致
|
| 564 |
+
"""
|
| 565 |
+
# 基礎調整
|
| 566 |
+
adjusted = (score - 0.35) * 1.8
|
| 567 |
+
|
| 568 |
+
# 使用 3.2 次方使曲線更平滑
|
| 569 |
+
amplified = pow(adjusted, 3.2) / 5.8 + score
|
| 570 |
+
|
| 571 |
+
# 特別處理高分區間,確保不超過95%
|
| 572 |
+
if amplified > 0.90:
|
| 573 |
+
# 壓縮高分區間,確保最高到95%
|
| 574 |
+
amplified = 0.90 + (amplified - 0.90) * 0.5
|
| 575 |
+
|
| 576 |
+
# 確保最終分數在合理範圍內(0.55-0.95)
|
| 577 |
+
final_score = max(0.55, min(0.95, amplified))
|
| 578 |
+
|
| 579 |
+
# 四捨五入到小數點後第三位
|
| 580 |
+
return round(final_score, 3)
|
| 581 |
|
| 582 |
+
final_score = amplify_score(weighted_score)
|
| 583 |
+
|
| 584 |
+
# 四捨五入所有分數
|
| 585 |
scores = {k: round(v, 4) for k, v in scores.items()}
|
| 586 |
scores['overall'] = round(final_score, 4)
|
|
|
|
|
|
|
| 587 |
|
| 588 |
+
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
|
| 590 |
except Exception as e:
|
| 591 |
+
print(f"Error details: {str(e)}")
|
| 592 |
+
print(f"breed_info: {breed_info}")
|
| 593 |
+
# print(f"Error in calculate_compatibility_score: {str(e)}")
|
| 594 |
+
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|