diff --git "a/semantic_breed_recommender.py" "b/semantic_breed_recommender.py" new file mode 100644--- /dev/null +++ "b/semantic_breed_recommender.py" @@ -0,0 +1,2215 @@ +import random +import hashlib +import numpy as np +import sqlite3 +import re +import traceback +from typing import List, Dict, Tuple, Optional, Any +from dataclasses import dataclass +from sentence_transformers import SentenceTransformer +import torch +from sklearn.metrics.pairwise import cosine_similarity +from dog_database import get_dog_description +from breed_health_info import breed_health_info +from breed_noise_info import breed_noise_info +from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores +from query_understanding import QueryUnderstandingEngine, analyze_user_query +from constraint_manager import ConstraintManager, apply_breed_constraints +from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore +from score_calibrator import ScoreCalibrator, calibrate_breed_scores +from config_manager import get_config_manager, get_standardized_breed_data + +@dataclass +class BreedDescriptionVector: + """Data structure for breed description vectorization""" + breed_name: str + description_text: str + embedding: np.ndarray + characteristics: Dict[str, Any] + +class SemanticBreedRecommender: + """ + Enhanced SBERT-based semantic breed recommendation system + Provides multi-dimensional natural language understanding for dog breed recommendations + """ + + def __init__(self): + """Initialize the semantic recommender""" + self.model_name = 'all-MiniLM-L6-v2' # Efficient SBERT model + self.sbert_model = None + self.breed_vectors = {} + self.breed_list = self._get_breed_list() + self.comparative_keywords = { + 'most': 1.0, 'love': 1.0, 'prefer': 0.9, 'like': 0.8, + 'then': 0.7, 'second': 0.7, 'followed': 0.6, + 'third': 0.5, 'least': 0.3, 'dislike': 0.2 + } + # self.query_engine = QueryUnderstandingEngine() + # self.constraint_manager = ConstraintManager() + # self.multi_head_scorer = None # Will be initialized with SBERT model + # self.score_calibrator = ScoreCalibrator() + # self.config_manager = get_config_manager() + self._initialize_model() + self._build_breed_vectors() + + # Initialize multi-head scorer with SBERT model if enhanced mode is enabled + # if self.sbert_model: + # self.multi_head_scorer = MultiHeadScorer(self.sbert_model) + # print("Multi-head scorer initialized with SBERT model") + + def _get_breed_list(self) -> List[str]: + """Get breed list from database""" + try: + conn = sqlite3.connect('animal_detector.db') + cursor = conn.cursor() + cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog") + breeds = [row[0] for row in cursor.fetchall()] + cursor.close() + conn.close() + return breeds + except Exception as e: + print(f"Error getting breed list: {str(e)}") + # Backup breed list for Google Colab environment + return ['Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever', + 'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier'] + + def _initialize_model(self): + """Initialize SBERT model with fallback""" + try: + print("Loading SBERT model...") + # Try different model names if the primary one fails + model_options = ['all-MiniLM-L6-v2', 'all-mpnet-base-v2', 'all-MiniLM-L12-v2'] + + for model_name in model_options: + try: + self.sbert_model = SentenceTransformer(model_name) + self.model_name = model_name + print(f"SBERT model {model_name} loaded successfully") + return + except Exception as model_e: + print(f"Failed to load {model_name}: {str(model_e)}") + continue + + # If all models fail + print("All SBERT models failed to load. Using basic text matching fallback.") + self.sbert_model = None + + except Exception as e: + print(f"Failed to initialize any SBERT model: {str(e)}") + print(traceback.format_exc()) + print("Will provide basic text-based recommendations without embeddings") + self.sbert_model = None + + def _create_breed_description(self, breed: str) -> str: + """Create comprehensive natural language description for breed with all key characteristics""" + try: + # Get all information sources + breed_info = get_dog_description(breed) or {} + health_info = breed_health_info.get(breed, {}) if breed_health_info else {} + noise_info = breed_noise_info.get(breed, {}) if breed_noise_info else {} + + breed_display_name = breed.replace('_', ' ') + description_parts = [] + + # 1. Basic size and physical characteristics + size = breed_info.get('Size', 'medium').lower() + description_parts.append(f"{breed_display_name} is a {size} sized dog breed") + + # 2. Temperament and personality (critical for matching) + temperament = breed_info.get('Temperament', '') + if temperament: + description_parts.append(f"with a {temperament.lower()} temperament") + + # 3. Exercise and activity level (critical for apartment living) + exercise_needs = breed_info.get('Exercise Needs', 'moderate').lower() + if 'high' in exercise_needs or 'very high' in exercise_needs: + description_parts.append("requiring high daily exercise and mental stimulation") + elif 'low' in exercise_needs or 'minimal' in exercise_needs: + description_parts.append("with minimal exercise requirements, suitable for apartment living") + else: + description_parts.append("with moderate exercise needs") + + # 4. Noise characteristics (critical for quiet requirements) + noise_level = noise_info.get('noise_level', 'moderate').lower() + if 'low' in noise_level or 'quiet' in noise_level: + description_parts.append("known for being quiet and rarely barking") + elif 'high' in noise_level or 'loud' in noise_level: + description_parts.append("tends to be vocal and bark frequently") + else: + description_parts.append("with moderate barking tendencies") + + # 5. Living space compatibility + if size in ['small', 'tiny']: + description_parts.append("excellent for small apartments and limited spaces") + elif size in ['large', 'giant']: + description_parts.append("requiring large living spaces and preferably a yard") + else: + description_parts.append("adaptable to various living situations") + + # 6. Grooming and maintenance + grooming_needs = breed_info.get('Grooming Needs', 'moderate').lower() + if 'high' in grooming_needs: + description_parts.append("requiring regular professional grooming") + elif 'low' in grooming_needs: + description_parts.append("with minimal grooming requirements") + else: + description_parts.append("with moderate grooming needs") + + # 7. Family compatibility + good_with_children = breed_info.get('Good with Children', 'Yes') + if good_with_children == 'Yes': + description_parts.append("excellent with children and families") + else: + description_parts.append("better suited for adult households") + + # 8. Intelligence and trainability (from database description) + intelligence_keywords = [] + description_text = breed_info.get('Description', '').lower() + + if description_text: + # Extract intelligence indicators from description + if any(word in description_text for word in ['intelligent', 'smart', 'clever', 'quick to learn']): + intelligence_keywords.extend(['highly intelligent', 'trainable', 'quick learner']) + elif any(word in description_text for word in ['stubborn', 'independent', 'difficult to train']): + intelligence_keywords.extend(['independent minded', 'requires patience', 'challenging to train']) + else: + intelligence_keywords.extend(['moderate intelligence', 'trainable with consistency']) + + # Extract working/purpose traits from description + if any(word in description_text for word in ['working', 'herding', 'guard', 'hunting']): + intelligence_keywords.extend(['working breed', 'purpose-driven', 'task-oriented']) + elif any(word in description_text for word in ['companion', 'lap', 'toy', 'decorative']): + intelligence_keywords.extend(['companion breed', 'affectionate', 'people-focused']) + + # Add intelligence context to description + if intelligence_keywords: + description_parts.append(f"characterized as {', '.join(intelligence_keywords[:2])}") + + # 9. Special characteristics and purpose (enhanced with database mining) + if breed_info.get('Description'): + desc = breed_info.get('Description', '')[:150] # Increased to 150 chars for more context + if desc: + # Extract key traits from description for better semantic matching + desc_lower = desc.lower() + key_traits = [] + + # Extract key behavioral traits from description + if 'friendly' in desc_lower: + key_traits.append('friendly') + if 'gentle' in desc_lower: + key_traits.append('gentle') + if 'energetic' in desc_lower or 'active' in desc_lower: + key_traits.append('energetic') + if 'calm' in desc_lower or 'peaceful' in desc_lower: + key_traits.append('calm') + if 'protective' in desc_lower or 'guard' in desc_lower: + key_traits.append('protective') + + trait_text = f" and {', '.join(key_traits)}" if key_traits else "" + description_parts.append(f"Known for: {desc.lower()}{trait_text}") + + # 9. Care level requirements + try: + care_level = breed_info.get('Care Level', 'moderate') + if isinstance(care_level, str): + description_parts.append(f"requiring {care_level.lower()} overall care level") + else: + description_parts.append("requiring moderate overall care level") + except Exception as e: + print(f"Error processing care level for {breed}: {str(e)}") + description_parts.append("requiring moderate overall care level") + + # 10. Lifespan information + try: + lifespan = breed_info.get('Lifespan', '10-12 years') + if lifespan and isinstance(lifespan, str) and lifespan.strip(): + description_parts.append(f"with a typical lifespan of {lifespan}") + else: + description_parts.append("with a typical lifespan of 10-12 years") + except Exception as e: + print(f"Error processing lifespan for {breed}: {str(e)}") + description_parts.append("with a typical lifespan of 10-12 years") + + # Create comprehensive description + full_description = '. '.join(description_parts) + '.' + + # Add comprehensive keywords for better semantic matching + keywords = [] + + # Basic breed name keywords + keywords.extend([word.lower() for word in breed_display_name.split()]) + + # Temperament keywords + if temperament: + keywords.extend([word.lower().strip(',') for word in temperament.split()]) + + # Size-based keywords + if 'small' in size or 'tiny' in size: + keywords.extend(['small', 'tiny', 'compact', 'little', 'apartment', 'indoor', 'lap']) + elif 'large' in size or 'giant' in size: + keywords.extend(['large', 'big', 'giant', 'huge', 'yard', 'space', 'outdoor']) + else: + keywords.extend(['medium', 'moderate', 'average', 'balanced']) + + # Activity level keywords + exercise_needs = breed_info.get('Exercise Needs', 'moderate').lower() + if 'high' in exercise_needs: + keywords.extend(['active', 'energetic', 'exercise', 'outdoor', 'hiking', 'running', 'athletic']) + elif 'low' in exercise_needs: + keywords.extend(['calm', 'low-energy', 'indoor', 'relaxed', 'couch', 'sedentary']) + else: + keywords.extend(['moderate', 'balanced', 'walks', 'regular']) + + # Noise level keywords + noise_level = noise_info.get('noise_level', 'moderate').lower() + if 'quiet' in noise_level or 'low' in noise_level: + keywords.extend(['quiet', 'silent', 'calm', 'peaceful', 'low-noise']) + elif 'high' in noise_level or 'loud' in noise_level: + keywords.extend(['vocal', 'barking', 'loud', 'alert', 'watchdog']) + + # Living situation keywords + if size in ['small', 'tiny'] and 'low' in exercise_needs: + keywords.extend(['apartment', 'city', 'urban', 'small-space']) + if size in ['large', 'giant'] or 'high' in exercise_needs: + keywords.extend(['house', 'yard', 'suburban', 'rural', 'space']) + + # Family keywords + good_with_children = breed_info.get('Good with Children', 'Yes') + if good_with_children == 'Yes': + keywords.extend(['family', 'children', 'kids', 'friendly', 'gentle']) + + # Intelligence and trainability keywords (from database description mining) + if intelligence_keywords: + keywords.extend([word.lower() for phrase in intelligence_keywords for word in phrase.split()]) + + # Grooming-based keywords (enhanced) + grooming_needs = breed_info.get('Grooming Needs', 'moderate').lower() + if 'high' in grooming_needs: + keywords.extend(['high-maintenance', 'professional-grooming', 'daily-brushing', 'coat-care']) + elif 'low' in grooming_needs: + keywords.extend(['low-maintenance', 'minimal-grooming', 'easy-care', 'wash-and-go']) + else: + keywords.extend(['moderate-grooming', 'weekly-brushing', 'regular-care']) + + # Lifespan-based keywords + lifespan = breed_info.get('Lifespan', '10-12 years') + if lifespan and isinstance(lifespan, str): + try: + # Extract years from lifespan string (e.g., "10-12 years" or "12-15 years") + import re + years = re.findall(r'\d+', lifespan) + if years: + avg_years = sum(int(y) for y in years) / len(years) + if avg_years >= 14: + keywords.extend(['long-lived', 'longevity', 'durable', 'healthy-lifespan']) + elif avg_years <= 8: + keywords.extend(['shorter-lifespan', 'health-considerations', 'special-care']) + else: + keywords.extend(['average-lifespan', 'moderate-longevity']) + except: + keywords.extend(['average-lifespan']) + + # Add keywords to description for better semantic matching + unique_keywords = list(set(keywords)) + keyword_text = ' '.join(unique_keywords) + full_description += f" Additional context: {keyword_text}" + + return full_description + + except Exception as e: + print(f"Error creating description for {breed}: {str(e)}") + return f"{breed.replace('_', ' ')} is a dog breed with unique characteristics." + + def _build_breed_vectors(self): + """Build vector representations for all breeds""" + try: + print("Building breed vector database...") + + # Skip if model is not available + if self.sbert_model is None: + print("SBERT model not available, skipping vector building") + return + + for breed in self.breed_list: + description = self._create_breed_description(breed) + + # Generate embedding vector + embedding = self.sbert_model.encode(description, convert_to_tensor=False) + + # Get breed characteristics + breed_info = get_dog_description(breed) + characteristics = { + 'size': breed_info.get('Size', 'Medium') if breed_info else 'Medium', + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate', + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate', + 'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes', + 'temperament': breed_info.get('Temperament', '') if breed_info else '' + } + + self.breed_vectors[breed] = BreedDescriptionVector( + breed_name=breed, + description_text=description, + embedding=embedding, + characteristics=characteristics + ) + + print(f"Successfully built {len(self.breed_vectors)} breed vectors") + + except Exception as e: + print(f"Error building breed vectors: {str(e)}") + print(traceback.format_exc()) + raise + + def _parse_comparative_preferences(self, user_input: str) -> Dict[str, float]: + """Parse comparative preference expressions""" + breed_scores = {} + + # Normalize input + text = user_input.lower() + + # Find breed names and preference keywords + for breed in self.breed_list: + breed_display = breed.replace('_', ' ').lower() + breed_words = breed_display.split() + + # Check if this breed is mentioned + breed_mentioned = False + for word in breed_words: + if word in text: + breed_mentioned = True + break + + if breed_mentioned: + # Find nearby preference keywords + breed_score = 0.5 # Default score + + # Look for keywords within 50 characters of breed name + breed_pos = text.find(breed_words[0]) + if breed_pos != -1: + # Check for keywords in context + context_start = max(0, breed_pos - 50) + context_end = min(len(text), breed_pos + 50) + context = text[context_start:context_end] + + for keyword, score in self.comparative_keywords.items(): + if keyword in context: + breed_score = max(breed_score, score) + + breed_scores[breed] = breed_score + + return breed_scores + + def _extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]: + """Enhanced lifestyle keyword extraction with better pattern matching""" + keywords = { + 'living_space': [], + 'activity_level': [], + 'family_situation': [], + 'noise_preference': [], + 'size_preference': [], + 'care_level': [], + 'special_needs': [], + 'intelligence_preference': [], + 'grooming_preference': [], + 'lifespan_preference': [], + 'temperament_preference': [], + 'experience_level': [] + } + + text = user_input.lower() + + # Enhanced living space detection + apartment_terms = ['apartment', 'flat', 'condo', 'small space', 'city living', 'urban', 'no yard', 'indoor'] + house_terms = ['house', 'yard', 'garden', 'backyard', 'large space', 'suburban', 'rural', 'farm'] + + if any(term in text for term in apartment_terms): + keywords['living_space'].append('apartment') + if any(term in text for term in house_terms): + keywords['living_space'].append('house') + + # Enhanced activity level detection + high_activity = ['active', 'energetic', 'exercise', 'hiking', 'running', 'outdoor', 'sports', 'jogging', + 'athletic', 'adventure', 'vigorous', 'high energy', 'workout'] + low_activity = ['calm', 'lazy', 'indoor', 'low energy', 'couch', 'sedentary', 'relaxed', + 'peaceful', 'quiet lifestyle', 'minimal exercise'] + moderate_activity = ['moderate', 'walk', 'daily walks', 'light exercise'] + + if any(term in text for term in high_activity): + keywords['activity_level'].append('high') + if any(term in text for term in low_activity): + keywords['activity_level'].append('low') + if any(term in text for term in moderate_activity): + keywords['activity_level'].append('moderate') + + # Enhanced family situation detection + children_terms = ['children', 'kids', 'family', 'child', 'toddler', 'baby', 'teenage', 'school age'] + elderly_terms = ['elderly', 'senior', 'old', 'retirement', 'aged', 'mature'] + single_terms = ['single', 'alone', 'individual', 'solo', 'myself'] + + if any(term in text for term in children_terms): + keywords['family_situation'].append('children') + if any(term in text for term in elderly_terms): + keywords['family_situation'].append('elderly') + if any(term in text for term in single_terms): + keywords['family_situation'].append('single') + + # Enhanced noise preference detection + quiet_terms = ['quiet', 'silent', 'noise-sensitive', 'peaceful', 'no barking', 'minimal noise', + 'soft-spoken', 'calm', 'tranquil'] + noise_ok_terms = ['loud', 'barking ok', 'noise tolerant', 'vocal', 'doesn\'t matter'] + + if any(term in text for term in quiet_terms): + keywords['noise_preference'].append('low') + if any(term in text for term in noise_ok_terms): + keywords['noise_preference'].append('high') + + # Enhanced size preference detection + small_terms = ['small', 'tiny', 'little', 'compact', 'miniature', 'toy', 'lap dog'] + large_terms = ['large', 'big', 'giant', 'huge', 'massive', 'great'] + medium_terms = ['medium', 'moderate size', 'average', 'mid-sized'] + + if any(term in text for term in small_terms): + keywords['size_preference'].append('small') + if any(term in text for term in large_terms): + keywords['size_preference'].append('large') + if any(term in text for term in medium_terms): + keywords['size_preference'].append('medium') + + # Enhanced care level detection + low_care = ['low maintenance', 'easy care', 'simple', 'minimal grooming', 'wash and go'] + high_care = ['high maintenance', 'grooming', 'care intensive', 'professional grooming', 'daily brushing'] + + if any(term in text for term in low_care): + keywords['care_level'].append('low') + if any(term in text for term in high_care): + keywords['care_level'].append('high') + + # Intelligence preference detection (NEW) + smart_terms = ['smart', 'intelligent', 'clever', 'bright', 'quick learner', 'easy to train', 'trainable', 'genius', 'brilliant'] + independent_terms = ['independent', 'stubborn', 'strong-willed', 'less trainable', 'thinks for themselves'] + + if any(term in text for term in smart_terms): + keywords['intelligence_preference'].append('high') + if any(term in text for term in independent_terms): + keywords['intelligence_preference'].append('independent') + + # Grooming preference detection (NEW) + low_grooming_terms = ['low grooming', 'minimal grooming', 'easy care', 'wash and wear', 'no grooming', 'simple coat'] + high_grooming_terms = ['high grooming', 'professional grooming', 'lots of care', 'high maintenance coat', 'daily brushing', 'regular grooming'] + + if any(term in text for term in low_grooming_terms): + keywords['grooming_preference'].append('low') + if any(term in text for term in high_grooming_terms): + keywords['grooming_preference'].append('high') + + # Lifespan preference detection (NEW) + long_lived_terms = ['long lived', 'long lifespan', 'live long', 'many years', '15+ years', 'longevity'] + healthy_terms = ['healthy breed', 'few health issues', 'robust', 'hardy', 'strong constitution'] + + if any(term in text for term in long_lived_terms): + keywords['lifespan_preference'].append('long') + if any(term in text for term in healthy_terms): + keywords['lifespan_preference'].append('healthy') + + # Temperament preference detection (NEW) + gentle_terms = ['gentle', 'calm', 'peaceful', 'laid back', 'chill', 'mellow', 'docile'] + playful_terms = ['playful', 'energetic', 'fun', 'active personality', 'lively', 'spirited', 'bouncy'] + protective_terms = ['protective', 'guard', 'watchdog', 'alert', 'vigilant', 'defensive'] + friendly_terms = ['friendly', 'social', 'outgoing', 'loves people', 'sociable', 'gregarious'] + + if any(term in text for term in gentle_terms): + keywords['temperament_preference'].append('gentle') + if any(term in text for term in playful_terms): + keywords['temperament_preference'].append('playful') + if any(term in text for term in protective_terms): + keywords['temperament_preference'].append('protective') + if any(term in text for term in friendly_terms): + keywords['temperament_preference'].append('friendly') + + # Experience level detection (NEW) + beginner_terms = ['first time', 'beginner', 'new to dogs', 'never had', 'novice', 'inexperienced'] + advanced_terms = ['experienced', 'advanced', 'dog expert', 'many dogs before', 'professional', 'seasoned'] + + if any(term in text for term in beginner_terms): + keywords['experience_level'].append('beginner') + if any(term in text for term in advanced_terms): + keywords['experience_level'].append('advanced') + + # Enhanced special needs detection + guard_terms = ['guard', 'protection', 'security', 'watchdog', 'protective', 'defender'] + companion_terms = ['therapy', 'emotional support', 'companion', 'comfort', 'lap dog', 'cuddly'] + hypoallergenic_terms = ['hypoallergenic', 'allergies', 'non-shedding', 'allergy-friendly', 'no shed'] + multi_pet_terms = ['good with cats', 'cat friendly', 'multi-pet', 'other animals'] + + if any(term in text for term in guard_terms): + keywords['special_needs'].append('guard') + if any(term in text for term in companion_terms): + keywords['special_needs'].append('companion') + if any(term in text for term in hypoallergenic_terms): + keywords['special_needs'].append('hypoallergenic') + if any(term in text for term in multi_pet_terms): + keywords['special_needs'].append('multi_pet') + + return keywords + + def _apply_size_distribution_correction(self, recommendations: List[Dict]) -> List[Dict]: + """Apply size distribution correction to prevent large breed bias""" + if len(recommendations) < 10: + return recommendations + + # Analyze size distribution + size_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0} + + for rec in recommendations: + breed_info = get_dog_description(rec['breed']) + if breed_info: + size = self._normalize_breed_size(breed_info.get('Size', 'Medium')) + size_counts[size] += 1 + + total_recs = len(recommendations) + large_giant_ratio = (size_counts['large'] + size_counts['giant']) / total_recs + + # If more than 70% are large/giant breeds, apply correction + if large_giant_ratio > 0.7: + corrected_recommendations = [] + size_quotas = {'toy': 2, 'small': 4, 'medium': 6, 'large': 2, 'giant': 1} + current_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0} + + # First pass: add breeds within quotas + for rec in recommendations: + breed_info = get_dog_description(rec['breed']) + if breed_info: + size = self._normalize_breed_size(breed_info.get('Size', 'Medium')) + if current_counts[size] < size_quotas[size]: + corrected_recommendations.append(rec) + current_counts[size] += 1 + + # Second pass: fill remaining slots with best remaining candidates + remaining_slots = 15 - len(corrected_recommendations) + remaining_breeds = [rec for rec in recommendations if rec not in corrected_recommendations] + + corrected_recommendations.extend(remaining_breeds[:remaining_slots]) + return corrected_recommendations + + return recommendations + + def _normalize_breed_size(self, size: str) -> str: + """Normalize breed size to standard categories""" + if not isinstance(size, str): + return 'medium' + + size_lower = size.lower() + if any(term in size_lower for term in ['toy', 'tiny']): + return 'toy' + elif 'small' in size_lower: + return 'small' + elif 'medium' in size_lower: + return 'medium' + elif 'large' in size_lower: + return 'large' + elif any(term in size_lower for term in ['giant', 'extra large']): + return 'giant' + else: + return 'medium' + + def _parse_user_requirements(self, user_input: str) -> Dict[str, Any]: + """Parse user requirements more accurately""" + requirements = { + 'living_space': None, + 'exercise_level': None, + 'preferred_size': None, + 'noise_tolerance': None + } + + input_lower = user_input.lower() + + # Living space detection + if 'apartment' in input_lower or 'small' in input_lower: + requirements['living_space'] = 'apartment' + elif 'large house' in input_lower or 'big' in input_lower: + requirements['living_space'] = 'large_house' + elif 'medium' in input_lower: + requirements['living_space'] = 'medium_house' + + # Exercise level detection + if "don't exercise" in input_lower or 'low exercise' in input_lower: + requirements['exercise_level'] = 'low' + elif any(term in input_lower for term in ['hiking', 'running', 'active']): + requirements['exercise_level'] = 'high' + elif '30 minutes' in input_lower or 'moderate' in input_lower: + requirements['exercise_level'] = 'moderate' + + # Size preference detection + if any(term in input_lower for term in ['small dog', 'tiny', 'toy']): + requirements['preferred_size'] = 'small' + elif any(term in input_lower for term in ['large dog', 'big dog']): + requirements['preferred_size'] = 'large' + elif 'medium' in input_lower: + requirements['preferred_size'] = 'medium' + + return requirements + + def _apply_hard_constraints(self, breed: str, user_input: str, breed_characteristics: Dict[str, Any]) -> float: + """Enhanced hard constraints with stricter penalties""" + penalty = 0.0 + user_text_lower = user_input.lower() + + # Get breed information + breed_info = get_dog_description(breed) + if not breed_info: + return 0.0 + + breed_size = breed_info.get('Size', '').lower() + exercise_needs = breed_info.get('Exercise Needs', '').lower() + + # Apartment living constraints - MUCH STRICTER + if any(term in user_text_lower for term in ['apartment', 'flat', 'studio', 'small space']): + if 'giant' in breed_size: + return -2.0 # Complete elimination + elif 'large' in breed_size: + if any(term in exercise_needs for term in ['high', 'very high']): + return -2.0 # Complete elimination + else: + penalty -= 0.5 # Still significant penalty + elif 'medium' in breed_size and 'very high' in exercise_needs: + penalty -= 0.6 + + # Exercise mismatch constraints + if "don't exercise much" in user_text_lower or "low exercise" in user_text_lower: + if any(term in exercise_needs for term in ['very high', 'extreme', 'intense']): + return -2.0 # Complete elimination + elif 'high' in exercise_needs: + penalty -= 0.8 + + # Moderate lifestyle detection + if any(term in user_text_lower for term in ['moderate', 'balanced', '30 minutes', 'half hour']): + # Penalize extremes + if 'giant' in breed_size: + penalty -= 0.7 # Strong penalty for giants + elif 'very high' in exercise_needs: + penalty -= 0.5 + + # Children safety (existing logic remains but enhanced) + if any(term in user_text_lower for term in ['child', 'kids', 'family', 'baby']): + good_with_children = breed_info.get('Good with Children', '').lower() + if good_with_children == 'no': + return -2.0 # Complete elimination for safety + + return penalty + + def get_enhanced_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]: + """ + Enhanced multi-dimensional semantic breed recommendation + + Args: + user_input: User's natural language description + top_k: Number of recommendations to return + + Returns: + List of recommended breeds with enhanced scoring + """ + try: + # Stage 1: Query Understanding + dimensions = self.query_engine.analyze_query(user_input) + print(f"Query dimensions detected: {len(dimensions.spatial_constraints + dimensions.activity_level + dimensions.noise_preferences + dimensions.size_preferences + dimensions.family_context + dimensions.maintenance_level + dimensions.special_requirements)} total dimensions") + + # Stage 2: Apply Constraints + filter_result = self.constraint_manager.apply_constraints(dimensions, min_candidates=max(8, top_k)) + print(f"Constraint filtering: {len(self.breed_list)} -> {len(filter_result.passed_breeds)} candidates") + + if not filter_result.passed_breeds: + error_msg = f"No dog breeds match your requirements after applying constraints. Applied constraints: {filter_result.applied_constraints}. Consider relaxing some requirements." + print(f"ERROR: {error_msg}") + raise ValueError(error_msg) + + # Stage 3: Multi-head Scoring + if self.multi_head_scorer: + breed_scores = self.multi_head_scorer.score_breeds(filter_result.passed_breeds, dimensions) + print(f"Multi-head scoring completed for {len(breed_scores)} breeds") + else: + print("Multi-head scorer not available, using fallback scoring") + return self.get_semantic_recommendations(user_input, top_k) + + # Stage 4: Score Calibration + breed_score_tuples = [(score.breed_name, score.final_score) for score in breed_scores] + calibration_result = self.score_calibrator.calibrate_scores(breed_score_tuples) + print(f"Score calibration: method={calibration_result.calibration_method}") + + # Stage 5: Generate Final Recommendations + final_recommendations = [] + + for i, breed_score in enumerate(breed_scores[:top_k]): + breed_name = breed_score.breed_name + + # Get calibrated score + calibrated_score = calibration_result.score_mapping.get(breed_name, breed_score.final_score) + + # Get standardized breed info + standardized_info = get_standardized_breed_data(breed_name.replace(' ', '_')) + if standardized_info: + breed_info = self._get_breed_info_from_standardized(standardized_info) + else: + breed_info = get_dog_description(breed_name.replace(' ', '_')) or {} + + recommendation = { + 'breed': breed_name, + 'rank': i + 1, + 'overall_score': calibrated_score, + 'final_score': calibrated_score, + 'semantic_score': breed_score.semantic_component, + 'attribute_score': breed_score.attribute_component, + 'bidirectional_bonus': breed_score.bidirectional_bonus, + 'confidence_score': breed_score.confidence_score, + 'dimensional_breakdown': breed_score.dimensional_breakdown, + 'explanation': breed_score.explanation, + 'size': breed_info.get('Size', 'Unknown'), + 'temperament': breed_info.get('Temperament', ''), + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'), + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'), + 'good_with_children': breed_info.get('Good with Children', 'Yes'), + 'lifespan': breed_info.get('Lifespan', '10-12 years'), + 'description': breed_info.get('Description', ''), + 'search_type': 'enhanced_description', + 'calibration_method': calibration_result.calibration_method, + 'applied_constraints': filter_result.applied_constraints, + 'relaxed_constraints': filter_result.relaxed_constraints, + 'warnings': filter_result.warnings + } + + final_recommendations.append(recommendation) + + # Apply size distribution correction before returning + corrected_recommendations = self._apply_size_distribution_correction(final_recommendations) + + # Stage 6: Apply Intelligent Trait Matching Enhancement + intelligence_enhanced_recommendations = self._apply_intelligent_trait_matching(corrected_recommendations, user_input) + + print(f"Generated {len(intelligence_enhanced_recommendations)} enhanced semantic recommendations with intelligent trait matching") + return intelligence_enhanced_recommendations + + except Exception as e: + print(f"Error in enhanced semantic recommendations: {str(e)}") + print(traceback.format_exc()) + # Fallback to original method + return self.get_semantic_recommendations(user_input, top_k) + + def _apply_intelligent_trait_matching(self, recommendations: List[Dict], user_input: str) -> List[Dict]: + """Apply intelligent trait matching based on enhanced keyword extraction and database mining""" + try: + # Extract enhanced keywords from user input + extracted_keywords = self._extract_lifestyle_keywords(user_input) + + # Apply intelligent trait matching to each recommendation + enhanced_recommendations = [] + + for rec in recommendations: + breed_name = rec['breed'].replace(' ', '_') + + # Get breed database information + breed_info = get_dog_description(breed_name) or {} + + # Calculate intelligent trait bonuses + intelligence_bonus = 0.0 + trait_match_details = {} + + # 1. Intelligence Matching + if extracted_keywords.get('intelligence_preference'): + intelligence_pref = extracted_keywords['intelligence_preference'][0] + breed_desc = breed_info.get('Description', '').lower() + + if intelligence_pref == 'high': + if any(word in breed_desc for word in ['intelligent', 'smart', 'clever', 'quick to learn', 'trainable']): + intelligence_bonus += 0.05 + trait_match_details['intelligence_match'] = 'High intelligence match detected' + elif any(word in breed_desc for word in ['stubborn', 'independent', 'difficult']): + intelligence_bonus -= 0.02 + trait_match_details['intelligence_warning'] = 'May be challenging to train' + + elif intelligence_pref == 'independent': + if any(word in breed_desc for word in ['independent', 'stubborn', 'strong-willed']): + intelligence_bonus += 0.03 + trait_match_details['independence_match'] = 'Independent nature match' + + # 2. Grooming Preference Matching + if extracted_keywords.get('grooming_preference'): + grooming_pref = extracted_keywords['grooming_preference'][0] + breed_grooming = breed_info.get('Grooming Needs', '').lower() + + if grooming_pref == 'low' and 'low' in breed_grooming: + intelligence_bonus += 0.03 + trait_match_details['grooming_match'] = 'Low maintenance grooming match' + elif grooming_pref == 'high' and 'high' in breed_grooming: + intelligence_bonus += 0.03 + trait_match_details['grooming_match'] = 'High maintenance grooming match' + elif grooming_pref == 'low' and 'high' in breed_grooming: + intelligence_bonus -= 0.04 + trait_match_details['grooming_mismatch'] = 'High grooming needs may not suit preferences' + + # 3. Temperament Preference Matching + if extracted_keywords.get('temperament_preference'): + temp_prefs = extracted_keywords['temperament_preference'] + breed_temperament = breed_info.get('Temperament', '').lower() + breed_desc = breed_info.get('Description', '').lower() + + temp_text = (breed_temperament + ' ' + breed_desc).lower() + + for temp_pref in temp_prefs: + if temp_pref == 'gentle' and any(word in temp_text for word in ['gentle', 'calm', 'peaceful', 'mild']): + intelligence_bonus += 0.04 + trait_match_details['temperament_match'] = f'Gentle temperament match: {temp_pref}' + elif temp_pref == 'playful' and any(word in temp_text for word in ['playful', 'energetic', 'lively', 'fun']): + intelligence_bonus += 0.04 + trait_match_details['temperament_match'] = f'Playful temperament match: {temp_pref}' + elif temp_pref == 'protective' and any(word in temp_text for word in ['protective', 'guard', 'alert', 'watchful']): + intelligence_bonus += 0.04 + trait_match_details['temperament_match'] = f'Protective temperament match: {temp_pref}' + elif temp_pref == 'friendly' and any(word in temp_text for word in ['friendly', 'social', 'outgoing', 'people']): + intelligence_bonus += 0.04 + trait_match_details['temperament_match'] = f'Friendly temperament match: {temp_pref}' + + # 4. Experience Level Matching + if extracted_keywords.get('experience_level'): + exp_level = extracted_keywords['experience_level'][0] + breed_desc = breed_info.get('Description', '').lower() + + if exp_level == 'beginner': + # Favor easy-to-handle breeds for beginners + if any(word in breed_desc for word in ['easy', 'gentle', 'good for beginners', 'family', 'calm']): + intelligence_bonus += 0.06 + trait_match_details['beginner_friendly'] = 'Good choice for first-time owners' + elif any(word in breed_desc for word in ['challenging', 'dominant', 'requires experience', 'strong-willed']): + intelligence_bonus -= 0.08 + trait_match_details['experience_warning'] = 'May be challenging for first-time owners' + + elif exp_level == 'advanced': + # Advanced users can handle more challenging breeds + if any(word in breed_desc for word in ['working', 'requires experience', 'intelligent', 'strong']): + intelligence_bonus += 0.03 + trait_match_details['advanced_suitable'] = 'Good match for experienced owners' + + # 5. Lifespan Preference Matching + if extracted_keywords.get('lifespan_preference'): + lifespan_pref = extracted_keywords['lifespan_preference'][0] + breed_lifespan = breed_info.get('Lifespan', '10-12 years') + + try: + import re + years = re.findall(r'\d+', breed_lifespan) + if years: + avg_years = sum(int(y) for y in years) / len(years) + if lifespan_pref == 'long' and avg_years >= 13: + intelligence_bonus += 0.02 + trait_match_details['longevity_match'] = f'Long lifespan match: {breed_lifespan}' + elif lifespan_pref == 'healthy' and avg_years >= 12: + intelligence_bonus += 0.02 + trait_match_details['health_match'] = f'Healthy lifespan: {breed_lifespan}' + except: + pass + + # Apply the intelligence bonus to the overall score + original_score = rec['overall_score'] + enhanced_score = min(1.0, original_score + intelligence_bonus) + + # Create enhanced recommendation with trait matching details + enhanced_rec = rec.copy() + enhanced_rec['overall_score'] = enhanced_score + enhanced_rec['intelligence_bonus'] = intelligence_bonus + enhanced_rec['trait_match_details'] = trait_match_details + + # Add detailed explanation if significant enhancement occurred + if abs(intelligence_bonus) > 0.02: + enhancement_explanation = [] + for detail_key, detail_value in trait_match_details.items(): + enhancement_explanation.append(detail_value) + + if enhancement_explanation: + current_explanation = enhanced_rec.get('explanation', '') + enhanced_explanation = current_explanation + f" Enhanced matching: {'; '.join(enhancement_explanation)}" + enhanced_rec['explanation'] = enhanced_explanation + + enhanced_recommendations.append(enhanced_rec) + + # Re-sort by enhanced overall score + enhanced_recommendations.sort(key=lambda x: x['overall_score'], reverse=True) + + # Update ranks + for i, rec in enumerate(enhanced_recommendations): + rec['rank'] = i + 1 + + print(f"Applied intelligent trait matching with average bonus: {sum(r['intelligence_bonus'] for r in enhanced_recommendations) / len(enhanced_recommendations):.3f}") + + return enhanced_recommendations + + except Exception as e: + print(f"Error in intelligent trait matching: {str(e)}") + # Return original recommendations if trait matching fails + return recommendations + + def get_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]: + """ + Get breed recommendations based on natural language description + + Args: + user_input: User's natural language description + top_k: Number of recommendations to return + + Returns: + List of recommended breeds + """ + try: + print(f"Processing user input: {user_input}") + + # Check if model is available - if not, raise error + if self.sbert_model is None: + error_msg = "SBERT model not available. This could be due to:\n• Model download failed\n• Insufficient memory\n• Network connectivity issues\n\nPlease check your environment and try again." + print(f"ERROR: {error_msg}") + raise RuntimeError(error_msg) + + # Generate user input embedding + user_embedding = self.sbert_model.encode(user_input, convert_to_tensor=False) + + # Parse comparative preferences + comparative_prefs = self._parse_comparative_preferences(user_input) + + # Extract lifestyle keywords + lifestyle_keywords = self._extract_lifestyle_keywords(user_input) + + # Calculate similarity with all breeds and apply constraints + similarities = [] + + for breed, breed_vector in self.breed_vectors.items(): + # Apply hard constraints first + constraint_penalty = self._apply_hard_constraints(breed, user_input, breed_vector.characteristics) + + # Skip breeds that violate critical constraints + if constraint_penalty <= -1.0: # Complete disqualification + continue + + # Basic semantic similarity + semantic_score = cosine_similarity( + [user_embedding], + [breed_vector.embedding] + )[0][0] + + # Comparative preference weighting + comparative_bonus = comparative_prefs.get(breed, 0.0) + + # Lifestyle matching bonus + lifestyle_bonus = self._calculate_lifestyle_bonus( + breed_vector.characteristics, + lifestyle_keywords + ) + + # Apply constraint penalties + lifestyle_bonus += constraint_penalty + + # Enhanced combined score with better distribution + # Apply exponential scaling to create more natural score spread + base_semantic = semantic_score ** 0.8 # Slightly compress high scores + enhanced_lifestyle = lifestyle_bonus * 2.0 # Amplify lifestyle matching + enhanced_comparative = comparative_bonus * 1.5 # Amplify breed preferences + + final_score = ( + base_semantic * 0.55 + + enhanced_comparative * 0.30 + + enhanced_lifestyle * 0.15 + ) + + # Add small random variation to break ties naturally + random.seed(hash(breed)) # Consistent for same breed + final_score += random.uniform(-0.03, 0.03) + + # Ensure final score doesn't exceed 1.0 + final_score = min(1.0, final_score) + + similarities.append({ + 'breed': breed, + 'score': final_score, + 'semantic_score': semantic_score, + 'comparative_bonus': comparative_bonus, + 'lifestyle_bonus': lifestyle_bonus + }) + + # Calculate standardized display scores with balanced distribution + breed_display_scores = [] + + # First, collect all semantic scores for normalization + all_semantic_scores = [breed_data['semantic_score'] for breed_data in similarities] + semantic_mean = np.mean(all_semantic_scores) + semantic_std = np.std(all_semantic_scores) if len(all_semantic_scores) > 1 else 1.0 + + for breed_data in similarities: + breed = breed_data['breed'] + base_semantic = breed_data['semantic_score'] + + # Normalize semantic score to prevent extreme outliers + if semantic_std > 0: + normalized_semantic = (base_semantic - semantic_mean) / semantic_std + normalized_semantic = max(-2.0, min(2.0, normalized_semantic)) # Cap at 2 standard deviations + scaled_semantic = 0.5 + (normalized_semantic * 0.1) # Map to 0.3-0.7 range + else: + scaled_semantic = 0.5 + + # Get breed characteristics + breed_info = get_dog_description(breed) if breed != 'Unknown' else {} + breed_size = breed_info.get('Size', '').lower() if breed_info else '' + exercise_needs = breed_info.get('Exercise Needs', '').lower() if breed_info else '' + + # Calculate feature matching score (more important than pure semantic similarity) + feature_score = 0.0 + user_text = user_input.lower() + + # Size and space requirements (high weight) + if any(term in user_text for term in ['apartment', 'small', 'limited space']): + if 'small' in breed_size: + feature_score += 0.25 + elif 'medium' in breed_size: + feature_score += 0.05 + elif 'large' in breed_size or 'giant' in breed_size: + feature_score -= 0.30 + + # Exercise requirements (high weight) + if any(term in user_text for term in ['low exercise', 'minimal exercise', "doesn't need", 'not much']): + if 'low' in exercise_needs or 'minimal' in exercise_needs: + feature_score += 0.20 + elif 'high' in exercise_needs or 'very high' in exercise_needs: + feature_score -= 0.25 + elif any(term in user_text for term in ['active', 'high exercise', 'running', 'hiking']): + if 'high' in exercise_needs: + feature_score += 0.20 + elif 'low' in exercise_needs: + feature_score -= 0.15 + + # Family compatibility + if any(term in user_text for term in ['children', 'kids', 'family']): + good_with_children = breed_info.get('Good with Children', '') if breed_info else '' + if good_with_children == 'Yes': + feature_score += 0.10 + elif good_with_children == 'No': + feature_score -= 0.20 + + # Combine scores with balanced weights + final_score = ( + scaled_semantic * 0.35 + # Reduced semantic weight + feature_score * 0.45 + # Increased feature matching weight + breed_data['lifestyle_bonus'] * 0.15 + + breed_data['comparative_bonus'] * 0.05 + ) + + # Calculate base compatibility score + base_compatibility = final_score + + # Apply dynamic scoring with natural distribution + if base_compatibility >= 0.9: # Exceptional matches + score_range = (0.92, 0.98) + position = (base_compatibility - 0.9) / 0.1 + elif base_compatibility >= 0.75: # Excellent matches + score_range = (0.85, 0.91) + position = (base_compatibility - 0.75) / 0.15 + elif base_compatibility >= 0.6: # Good matches + score_range = (0.75, 0.84) + position = (base_compatibility - 0.6) / 0.15 + elif base_compatibility >= 0.45: # Fair matches + score_range = (0.65, 0.74) + position = (base_compatibility - 0.45) / 0.15 + elif base_compatibility >= 0.3: # Poor matches + score_range = (0.55, 0.64) + position = (base_compatibility - 0.3) / 0.15 + else: # Very poor matches + score_range = (0.45, 0.54) + position = max(0, base_compatibility / 0.3) + + # Calculate final score with natural variation + score_span = score_range[1] - score_range[0] + base_score = score_range[0] + (position * score_span) + + # Add controlled random variation for natural ranking + random.seed(hash(breed + user_input[:15])) + variation = random.uniform(-0.015, 0.015) + display_score = round(max(0.45, min(0.98, base_score + variation)), 3) + + breed_display_scores.append({ + 'breed': breed, + 'display_score': display_score, + 'semantic_score': base_semantic, + 'comparative_bonus': breed_data['comparative_bonus'], + 'lifestyle_bonus': breed_data['lifestyle_bonus'] + }) + + # Sort by display score to ensure ranking consistency + breed_display_scores.sort(key=lambda x: x['display_score'], reverse=True) + top_breeds = breed_display_scores[:top_k] + + # Convert to standard recommendation format + recommendations = [] + for i, breed_data in enumerate(top_breeds): + breed = breed_data['breed'] + display_score = breed_data['display_score'] + + # Get detailed information + breed_info = get_dog_description(breed) + + recommendation = { + 'breed': breed.replace('_', ' '), + 'rank': i + 1, + 'overall_score': display_score, # Use display score for consistency + 'final_score': display_score, # Ensure final_score matches overall_score + 'semantic_score': breed_data['semantic_score'], + 'comparative_bonus': breed_data['comparative_bonus'], + 'lifestyle_bonus': breed_data['lifestyle_bonus'], + 'size': breed_info.get('Size', 'Unknown') if breed_info else 'Unknown', + 'temperament': breed_info.get('Temperament', '') if breed_info else '', + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate', + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate', + 'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes', + 'lifespan': breed_info.get('Lifespan', '10-12 years') if breed_info else '10-12 years', + 'description': breed_info.get('Description', '') if breed_info else '', + 'search_type': 'description' + } + + recommendations.append(recommendation) + + print(f"Generated {len(recommendations)} semantic recommendations") + return recommendations + + except Exception as e: + print(f"Failed to generate semantic recommendations: {str(e)}") + print(traceback.format_exc()) + return [] + + def _calculate_lifestyle_bonus(self, breed_characteristics: Dict[str, Any], + lifestyle_keywords: Dict[str, List[str]]) -> float: + """Enhanced lifestyle matching bonus calculation""" + bonus = 0.0 + penalties = 0.0 + + # Enhanced size matching + breed_size = breed_characteristics.get('size', '').lower() + size_prefs = lifestyle_keywords.get('size_preference', []) + for pref in size_prefs: + if pref in breed_size: + bonus += 0.25 # Strong reward for size match + elif (pref == 'small' and 'large' in breed_size) or \ + (pref == 'large' and 'small' in breed_size): + penalties += 0.15 # Penalty for size mismatch + + # Enhanced activity level matching + breed_exercise = breed_characteristics.get('exercise_needs', '').lower() + activity_prefs = lifestyle_keywords.get('activity_level', []) + + if 'high' in activity_prefs: + if 'high' in breed_exercise or 'very high' in breed_exercise: + bonus += 0.2 + elif 'low' in breed_exercise: + penalties += 0.2 + elif 'low' in activity_prefs: + if 'low' in breed_exercise: + bonus += 0.2 + elif 'high' in breed_exercise or 'very high' in breed_exercise: + penalties += 0.25 + elif 'moderate' in activity_prefs: + if 'moderate' in breed_exercise: + bonus += 0.15 + + # Enhanced family situation matching + good_with_children = breed_characteristics.get('good_with_children', 'Yes') + family_prefs = lifestyle_keywords.get('family_situation', []) + + if 'children' in family_prefs: + if good_with_children == 'Yes': + bonus += 0.15 + else: + penalties += 0.3 # Strong penalty for non-child-friendly breeds + + # Enhanced living space matching + living_prefs = lifestyle_keywords.get('living_space', []) + if 'apartment' in living_prefs: + if 'small' in breed_size: + bonus += 0.2 + elif 'medium' in breed_size and 'low' in breed_exercise: + bonus += 0.1 + elif 'large' in breed_size or 'giant' in breed_size: + penalties += 0.2 # Penalty for large dogs in apartments + + # Noise preference matching + noise_prefs = lifestyle_keywords.get('noise_preference', []) + temperament = breed_characteristics.get('temperament', '').lower() + + if 'low' in noise_prefs: + # Reward quiet breeds + if any(term in temperament for term in ['gentle', 'calm', 'quiet']): + bonus += 0.1 + + # Care level matching + grooming_needs = breed_characteristics.get('grooming_needs', '').lower() + care_prefs = lifestyle_keywords.get('care_level', []) + + if 'low' in care_prefs and 'low' in grooming_needs: + bonus += 0.1 + elif 'high' in care_prefs and 'high' in grooming_needs: + bonus += 0.1 + elif 'low' in care_prefs and 'high' in grooming_needs: + penalties += 0.15 + + # Special needs matching + special_needs = lifestyle_keywords.get('special_needs', []) + + if 'guard' in special_needs: + if any(term in temperament for term in ['protective', 'alert', 'watchful']): + bonus += 0.1 + elif 'companion' in special_needs: + if any(term in temperament for term in ['affectionate', 'gentle', 'loyal']): + bonus += 0.1 + + # Calculate final bonus with penalties + final_bonus = bonus - penalties + return max(-0.3, min(0.5, final_bonus)) # Allow negative bonus but limit range + + def _get_breed_info_from_standardized(self, standardized_info) -> Dict[str, Any]: + """Convert standardized breed info to dictionary format""" + try: + size_map = {1: 'Tiny', 2: 'Small', 3: 'Medium', 4: 'Large', 5: 'Giant'} + exercise_map = {1: 'Low', 2: 'Moderate', 3: 'High', 4: 'Very High'} + care_map = {1: 'Low', 2: 'Moderate', 3: 'High'} + + return { + 'Size': size_map.get(standardized_info.size_category, 'Medium'), + 'Exercise Needs': exercise_map.get(standardized_info.exercise_level, 'Moderate'), + 'Grooming Needs': care_map.get(standardized_info.care_complexity, 'Moderate'), + 'Good with Children': 'Yes' if standardized_info.child_compatibility >= 0.8 else + 'No' if standardized_info.child_compatibility <= 0.2 else 'Unknown', + 'Temperament': 'Varies by individual', + 'Lifespan': '10-12 years', + 'Description': f'A {size_map.get(standardized_info.size_category, "medium")} sized breed' + } + except Exception as e: + print(f"Error converting standardized info: {str(e)}") + return {} + + def _get_fallback_recommendations(self, top_k: int = 15) -> List[Dict[str, Any]]: + """Get fallback recommendations when enhanced system fails""" + try: + safe_breeds = [ + ('Labrador Retriever', 0.85), + ('Golden Retriever', 0.82), + ('Cavalier King Charles Spaniel', 0.80), + ('French Bulldog', 0.78), + ('Boston Terrier', 0.76), + ('Bichon Frise', 0.74), + ('Pug', 0.72), + ('Cocker Spaniel', 0.70) + ] + + recommendations = [] + for i, (breed, score) in enumerate(safe_breeds[:top_k]): + breed_info = get_dog_description(breed.replace(' ', '_')) or {} + + recommendation = { + 'breed': breed, + 'rank': i + 1, + 'overall_score': score, + 'final_score': score, + 'semantic_score': score * 0.8, + 'comparative_bonus': 0.0, + 'lifestyle_bonus': 0.0, + 'size': breed_info.get('Size', 'Unknown'), + 'temperament': breed_info.get('Temperament', ''), + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'), + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'), + 'good_with_children': breed_info.get('Good with Children', 'Yes'), + 'lifespan': breed_info.get('Lifespan', '10-12 years'), + 'description': breed_info.get('Description', ''), + 'search_type': 'fallback' + } + recommendations.append(recommendation) + + return recommendations + + except Exception as e: + print(f"Error generating fallback recommendations: {str(e)}") + return [] + + def get_enhanced_recommendations_with_unified_scoring(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]: + """簡化的增強推薦方法""" + try: + print(f"Processing enhanced recommendation: {user_input[:50]}...") + + # 使用基本語意匹配 + return self.get_semantic_recommendations(user_input, top_k) + + except Exception as e: + error_msg = f"Enhanced recommendation error: {str(e)}. Please check your description." + print(f"ERROR: {error_msg}") + print(traceback.format_exc()) + raise RuntimeError(error_msg) from e + + def _analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]: + """增強用戶描述分析""" + text = user_description.lower() + analysis = { + 'mentioned_breeds': [], + 'lifestyle_keywords': {}, + 'preference_strength': {}, + 'constraint_requirements': [], + 'user_context': {} + } + + # 提取提及的品種 + for breed in self.breed_list: + breed_display = breed.replace('_', ' ').lower() + if breed_display in text or any(word in text for word in breed_display.split()): + analysis['mentioned_breeds'].append(breed) + # 簡單偏好強度分析 + if any(word in text for word in ['love', 'prefer', 'like', '喜歡', '最愛']): + analysis['preference_strength'][breed] = 0.8 + else: + analysis['preference_strength'][breed] = 0.5 + + # 提取約束要求 + if any(word in text for word in ['quiet', 'silent', 'no barking', '安靜']): + analysis['constraint_requirements'].append('low_noise') + if any(word in text for word in ['apartment', 'small space', '公寓']): + analysis['constraint_requirements'].append('apartment_suitable') + if any(word in text for word in ['children', 'kids', 'family', '小孩']): + analysis['constraint_requirements'].append('child_friendly') + + # 提取用戶背景 + analysis['user_context'] = { + 'has_children': any(word in text for word in ['children', 'kids', '小孩']), + 'living_space': 'apartment' if any(word in text for word in ['apartment', '公寓']) else 'house', + 'activity_level': 'high' if any(word in text for word in ['active', 'energetic', '活躍']) else 'moderate', + 'noise_sensitive': any(word in text for word in ['quiet', 'silent', '安靜']), + 'experience_level': 'beginner' if any(word in text for word in ['first time', 'beginner', '新手']) else 'intermediate' + } + + return analysis + + def _create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> UserPreferences: + """從分析結果創建用戶偏好物件""" + context = analysis['user_context'] + + # 推斷居住空間類型 + living_space = 'apartment' if context.get('living_space') == 'apartment' else 'house_small' + + # 推斷院子權限 + yard_access = 'no_yard' if living_space == 'apartment' else 'shared_yard' + + # 推斷運動時間 + activity_level = context.get('activity_level', 'moderate') + exercise_time_map = {'high': 120, 'moderate': 60, 'low': 30} + exercise_time = exercise_time_map.get(activity_level, 60) + + # 推斷運動類型 + exercise_type_map = {'high': 'active_training', 'moderate': 'moderate_activity', 'low': 'light_walks'} + exercise_type = exercise_type_map.get(activity_level, 'moderate_activity') + + # 推斷噪音容忍度 + noise_tolerance = 'low' if context.get('noise_sensitive', False) else 'medium' + + return UserPreferences( + living_space=living_space, + yard_access=yard_access, + exercise_time=exercise_time, + exercise_type=exercise_type, + grooming_commitment='medium', + experience_level=context.get('experience_level', 'intermediate'), + time_availability='moderate', + has_children=context.get('has_children', False), + children_age='school_age' if context.get('has_children', False) else None, + noise_tolerance=noise_tolerance, + space_for_play=(living_space != 'apartment'), + other_pets=False, + climate='moderate', + health_sensitivity='medium', + barking_acceptance=noise_tolerance, + size_preference='no_preference' + ) + + def _get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]: + """獲取候選品種列表""" + candidate_breeds = set() + + # 如果提及特定品種,優先包含 + if analysis['mentioned_breeds']: + candidate_breeds.update(analysis['mentioned_breeds']) + + # 根據約束要求過濾品種 + if 'apartment_suitable' in analysis['constraint_requirements']: + apartment_suitable = [ + 'French_Bulldog', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier', + 'Pug', 'Bichon_Frise', 'Cocker_Spaniel', 'Yorkshire_Terrier', 'Shih_Tzu' + ] + candidate_breeds.update(breed for breed in apartment_suitable if breed in self.breed_list) + + if 'child_friendly' in analysis['constraint_requirements']: + child_friendly = [ + 'Labrador_Retriever', 'Golden_Retriever', 'Beagle', 'Cavalier_King_Charles_Spaniel', + 'Bichon_Frise', 'Poodle', 'Cocker_Spaniel' + ] + candidate_breeds.update(breed for breed in child_friendly if breed in self.breed_list) + + # 如果候選品種不足,添加更多通用品種 + if len(candidate_breeds) < 20: + general_breeds = [ + 'Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever', 'French_Bulldog', + 'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier', 'Boston_Terrier', + 'Border_Collie', 'Siberian_Husky', 'Cavalier_King_Charles_Spaniel', 'Boxer', + 'Bichon_Frise', 'Cocker_Spaniel', 'Shih_Tzu', 'Pug', 'Chihuahua' + ] + candidate_breeds.update(breed for breed in general_breeds if breed in self.breed_list) + + return list(candidate_breeds)[:30] # 限制候選數量以提高效率 + + def _apply_constraint_filtering_enhanced(self, breed: str, analysis: Dict[str, Any]) -> float: + """應用約束過濾,返回調整分數""" + penalty = 0.0 + + breed_info = get_dog_description(breed) + if not breed_info: + return penalty + + # 低噪音要求 + if 'low_noise' in analysis['constraint_requirements']: + noise_info = breed_noise_info.get(breed, {}) + noise_level = noise_info.get('noise_level', 'moderate').lower() + if 'high' in noise_level: + penalty -= 0.3 # 嚴重扣分 + elif 'low' in noise_level: + penalty += 0.1 # 輕微加分 + + # 公寓適合性 + if 'apartment_suitable' in analysis['constraint_requirements']: + size = breed_info.get('Size', '').lower() + exercise_needs = breed_info.get('Exercise Needs', '').lower() + + if size in ['large', 'giant']: + penalty -= 0.2 + elif size in ['small', 'tiny']: + penalty += 0.1 + + if 'high' in exercise_needs: + penalty -= 0.15 + + # 兒童友善性 + if 'child_friendly' in analysis['constraint_requirements']: + good_with_children = breed_info.get('Good with Children', 'Unknown') + if good_with_children == 'Yes': + penalty += 0.15 + elif good_with_children == 'No': + penalty -= 0.4 # 嚴重扣分 + + return penalty + + def _get_breed_characteristics_enhanced(self, breed: str) -> Dict[str, Any]: + """獲取品種特徵""" + breed_info = get_dog_description(breed) + if not breed_info: + return {} + + characteristics = { + 'size': breed_info.get('Size', 'Unknown'), + 'temperament': breed_info.get('Temperament', ''), + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'), + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'), + 'good_with_children': breed_info.get('Good with Children', 'Unknown'), + 'lifespan': breed_info.get('Lifespan', '10-12 years'), + 'description': breed_info.get('Description', '') + } + + # 添加噪音資訊 + noise_info = breed_noise_info.get(breed, {}) + characteristics['noise_level'] = noise_info.get('noise_level', 'moderate') + + return characteristics + + def get_hybrid_recommendations(self, user_description: str, + user_preferences: Optional[Any] = None, + top_k: int = 15) -> List[Dict[str, Any]]: + """ + Hybrid recommendations: Combine semantic matching with traditional scoring + + Args: + user_description: User's natural language description + user_preferences: Optional structured preference settings + top_k: Number of recommendations to return + + Returns: + Hybrid recommendation results + """ + try: + # Get semantic recommendations + semantic_recommendations = self.get_semantic_recommendations(user_description, top_k * 2) + + if not user_preferences: + return semantic_recommendations[:top_k] + + # Combine with traditional scoring + hybrid_results = [] + + for semantic_rec in semantic_recommendations: + breed_name = semantic_rec['breed'].replace(' ', '_') + + # Calculate traditional compatibility score + traditional_score = calculate_compatibility_score(user_preferences, breed_name) + + # Hybrid score (semantic 40% + traditional 60%) + hybrid_score = ( + semantic_rec['overall_score'] * 0.4 + + traditional_score * 0.6 + ) + + semantic_rec['hybrid_score'] = hybrid_score + semantic_rec['traditional_score'] = traditional_score + hybrid_results.append(semantic_rec) + + # Re-sort by hybrid score + hybrid_results.sort(key=lambda x: x['hybrid_score'], reverse=True) + + # Update rankings + for i, result in enumerate(hybrid_results[:top_k]): + result['rank'] = i + 1 + result['overall_score'] = result['hybrid_score'] + + return hybrid_results[:top_k] + + except Exception as e: + print(f"Hybrid recommendation failed: {str(e)}") + print(traceback.format_exc()) + return self.get_semantic_recommendations(user_description, top_k) + +def get_breed_recommendations_by_description(user_description: str, + user_preferences: Optional[Any] = None, + top_k: int = 15) -> List[Dict[str, Any]]: + """Main interface function for getting breed recommendations by description""" + try: + print("Initializing Enhanced SemanticBreedRecommender...") + recommender = SemanticBreedRecommender() + + # 優先使用整合統一評分系統的增強推薦 + print("Using enhanced recommendation system with unified scoring") + results = recommender.get_enhanced_recommendations_with_unified_scoring(user_description, top_k) + + if results and len(results) > 0: + print(f"Generated {len(results)} enhanced recommendations successfully") + return results + else: + # 如果增強系統無結果,嘗試原有增強系統 + print("Enhanced unified system returned no results, trying original enhanced system") + results = recommender.get_enhanced_semantic_recommendations(user_description, top_k) + + if results and len(results) > 0: + return results + else: + # 最後回退到標準系統 + print("All enhanced systems failed, using standard system") + if user_preferences: + results = recommender.get_hybrid_recommendations(user_description, user_preferences, top_k) + else: + results = recommender.get_semantic_recommendations(user_description, top_k) + + if not results: + error_msg = f"All recommendation systems failed to generate results. Please check your input description and try again. Error details may be in the console." + print(f"ERROR: {error_msg}") + raise RuntimeError(error_msg) + return results + + except Exception as e: + error_msg = f"Critical error in recommendation system: {str(e)}. Please check your input and system configuration." + print(f"ERROR: {error_msg}") + print(traceback.format_exc()) + raise RuntimeError(error_msg) from e + + +def get_enhanced_recommendations_with_unified_scoring(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]: + """簡化版本:基本語意推薦功能""" + try: + print(f"Processing description-based recommendation: {user_description[:50]}...") + + # 創建基本推薦器實例 + recommender = SemanticBreedRecommender() + + if not recommender.sbert_model: + print("SBERT model not available, using basic text matching...") + # 使用基本文字匹配邏輯 + return _get_basic_text_matching_recommendations(user_description, top_k) + + # 使用語意相似度推薦 + recommendations = [] + user_embedding = recommender.sbert_model.encode(user_description) + + # 計算所有品種的增強分數 + all_breed_scores = [] + for breed_name, breed_vector in recommender.breed_vectors.items(): + breed_embedding = breed_vector.embedding + similarity = cosine_similarity([user_embedding], [breed_embedding])[0][0] + + # 獲取品種資料 + breed_info = get_dog_description(breed_name) or {} + + # 計算增強的匹配分數 + enhanced_score = _calculate_enhanced_matching_score( + breed_name, breed_info, user_description, similarity + ) + + all_breed_scores.append((breed_name, enhanced_score, breed_info, similarity)) + + # 按 final_score 排序(而不是語意相似度) + all_breed_scores.sort(key=lambda x: x[1]['final_score'], reverse=True) + top_breeds = all_breed_scores[:top_k] + + for i, (breed, enhanced_score, breed_info, similarity) in enumerate(top_breeds): + recommendation = { + 'breed': breed.replace('_', ' '), + 'rank': i + 1, # 正確的排名 + 'overall_score': enhanced_score['final_score'], + 'final_score': enhanced_score['final_score'], + 'semantic_score': similarity, + 'comparative_bonus': enhanced_score['lifestyle_bonus'], + 'lifestyle_bonus': enhanced_score['lifestyle_bonus'], + 'size': breed_info.get('Size', 'Unknown'), + 'temperament': breed_info.get('Temperament', 'Unknown'), + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'), + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'), + 'good_with_children': breed_info.get('Good with Children', 'Unknown'), + 'lifespan': breed_info.get('Lifespan', '10-12 years'), + 'description': breed_info.get('Description', 'No description available'), + 'search_type': 'description', + 'scores': enhanced_score['dimension_scores'] + } + recommendations.append(recommendation) + + print(f"Generated {len(recommendations)} semantic recommendations") + return recommendations + + except Exception as e: + error_msg = f"Error in semantic recommendation system: {str(e)}. Please check your input and try again." + print(f"ERROR: {error_msg}") + print(traceback.format_exc()) + raise RuntimeError(error_msg) from e + +def _calculate_enhanced_matching_score(breed: str, breed_info: dict, user_description: str, base_similarity: float) -> dict: + """計算增強的匹配分數,基於用戶描述和品種特性""" + try: + user_desc = user_description.lower() + + # 分析用戶需求 + space_requirements = _analyze_space_requirements(user_desc) + exercise_requirements = _analyze_exercise_requirements(user_desc) + noise_requirements = _analyze_noise_requirements(user_desc) + size_requirements = _analyze_size_requirements(user_desc) + family_requirements = _analyze_family_requirements(user_desc) + + # 獲取品種特性 + breed_size = breed_info.get('Size', '').lower() + breed_exercise = breed_info.get('Exercise Needs', '').lower() + breed_noise = breed_noise_info.get(breed, {}).get('noise_level', 'moderate').lower() + breed_temperament = breed_info.get('Temperament', '').lower() + breed_good_with_children = breed_info.get('Good with Children', '').lower() + + # 計算各維度匹配分數 + dimension_scores = {} + + # 空間匹配 (30% 權重) + space_score = _calculate_space_compatibility(space_requirements, breed_size, breed_exercise) + dimension_scores['space'] = space_score + + # 運動需求匹配 (25% 權重) + exercise_score = _calculate_exercise_compatibility(exercise_requirements, breed_exercise) + dimension_scores['exercise'] = exercise_score + + # 噪音匹配 (20% 權重) + noise_score = _calculate_noise_compatibility(noise_requirements, breed_noise) + dimension_scores['noise'] = noise_score + + # 體型匹配 (15% 權重) + size_score = _calculate_size_compatibility(size_requirements, breed_size) + dimension_scores['grooming'] = min(0.9, base_similarity + 0.1) # 美容需求基於語意相似度 + + # 家庭相容性 (10% 權重) + family_score = _calculate_family_compatibility(family_requirements, breed_good_with_children, breed_temperament) + dimension_scores['family'] = family_score + dimension_scores['experience'] = min(0.9, base_similarity + 0.05) # 經驗需求基於語意相似度 + + # 應用硬約束過濾 + constraint_penalty = _apply_hard_constraints_enhanced(user_desc, breed_info) + + # 計算加權總分 - 精確化維度權重配置 + # 根據指導建議重新平衡維度權重 + weighted_score = ( + space_score * 0.30 + # 空間相容性(降低5%) + exercise_score * 0.28 + # 運動需求匹配(降低2%) + noise_score * 0.18 + # 噪音控制(提升3%) + family_score * 0.12 + # 家庭相容性(提升2%) + size_score * 0.08 + # 體型匹配(降低2%) + min(0.9, base_similarity + 0.1) * 0.04 # 護理需求(新增獨立權重) + ) + + # 優化完美匹配獎勵機制 - 降低觸發門檻並增加層次 + perfect_match_bonus = 0.0 + if space_score >= 0.88 and exercise_score >= 0.88 and noise_score >= 0.85: + perfect_match_bonus = 0.08 # 卓越匹配獎勵 + elif space_score >= 0.82 and exercise_score >= 0.82 and noise_score >= 0.75: + perfect_match_bonus = 0.04 # 優秀匹配獎勵 + elif space_score >= 0.75 and exercise_score >= 0.75: + perfect_match_bonus = 0.02 # 良好匹配獎勵 + + # 結合語意相似度與維度匹配 - 調整為75%維度匹配 25%語義相似度 + base_combined_score = (weighted_score * 0.75 + base_similarity * 0.25) + perfect_match_bonus + + # 應用漸進式約束懲罰,但確保基礎分數保障 + raw_final_score = base_combined_score + constraint_penalty + + # 實施動態分數保障機制 - 提升至40-42%基礎分數 + # 根據品種特性動態調整基礎分數 + base_guaranteed_score = 0.42 # 提升基礎保障分數 + + # 特殊品種基礎分數調整 + high_adaptability_breeds = ['French_Bulldog', 'Pug', 'Golden_Retriever', 'Labrador_Retriever'] + if any(breed in breed for breed in high_adaptability_breeds): + base_guaranteed_score = 0.45 # 高適應性品種更高基礎分數 + + # 動態分數分佈優化 + if raw_final_score >= base_guaranteed_score: + # 對於高分品種,實施適度壓縮避免過度集中 + if raw_final_score > 0.85: + compression_factor = 0.92 # 輕度壓縮高分 + final_score = 0.85 + (raw_final_score - 0.85) * compression_factor + else: + final_score = raw_final_score + final_score = min(0.93, final_score) # 降低最高分數限制 + else: + # 對於低分品種,使用改進的保障機制 + normalized_raw_score = max(0.15, raw_final_score) + # 基礎保障75% + 實際計算25%,保持一定區分度 + final_score = base_guaranteed_score * 0.75 + normalized_raw_score * 0.25 + final_score = max(base_guaranteed_score, min(0.93, final_score)) + + lifestyle_bonus = max(0.0, weighted_score - base_similarity) + + return { + 'final_score': final_score, + 'weighted_score': weighted_score, + 'lifestyle_bonus': lifestyle_bonus, + 'dimension_scores': dimension_scores, + 'constraint_penalty': constraint_penalty + } + + except Exception as e: + print(f"Error in enhanced matching calculation for {breed}: {str(e)}") + return { + 'final_score': base_similarity, + 'weighted_score': base_similarity, + 'lifestyle_bonus': 0.0, + 'dimension_scores': { + 'space': base_similarity * 0.9, + 'exercise': base_similarity * 0.85, + 'grooming': base_similarity * 0.8, + 'experience': base_similarity * 0.75, + 'noise': base_similarity * 0.7, + 'family': base_similarity * 0.65 + }, + 'constraint_penalty': 0.0 + } + +def _analyze_space_requirements(user_desc: str) -> dict: + """分析空間需求 - 增強中等活動量識別""" + requirements = {'type': 'unknown', 'size': 'medium', 'importance': 0.5} + + if any(word in user_desc for word in ['apartment', 'small apartment', 'small space', 'condo', 'flat']): + requirements['type'] = 'apartment' + requirements['size'] = 'small' + requirements['importance'] = 0.95 # 提高重要性 + elif any(word in user_desc for word in ['medium-sized house', 'medium house', 'townhouse']): + requirements['type'] = 'medium_house' + requirements['size'] = 'medium' + requirements['importance'] = 0.8 # 中等活動量用戶的特殊標記 + elif any(word in user_desc for word in ['large house', 'big house', 'yard', 'garden', 'large space', 'backyard']): + requirements['type'] = 'house' + requirements['size'] = 'large' + requirements['importance'] = 0.7 + + return requirements + +def _analyze_exercise_requirements(user_desc: str) -> dict: + """分析運動需求 - 增強中等活動量識別""" + requirements = {'level': 'moderate', 'importance': 0.5} + + # 低運動量識別 + if any(word in user_desc for word in ["don't exercise", "don't exercise much", "low exercise", "minimal", "lazy", "not active"]): + requirements['level'] = 'low' + requirements['importance'] = 0.95 + # 中等運動量的精確識別 + elif any(phrase in user_desc for phrase in ['30 minutes', 'half hour', 'moderate', 'balanced', 'walk about']): + if 'walk' in user_desc or 'daily' in user_desc: + requirements['level'] = 'moderate' + requirements['importance'] = 0.85 # 中等活動量的特殊標記 + # 高運動量識別 + elif any(word in user_desc for word in ['active', 'hiking', 'outdoor activities', 'running', 'outdoors', 'love hiking']): + requirements['level'] = 'high' + requirements['importance'] = 0.9 + + return requirements + +def _analyze_noise_requirements(user_desc: str) -> dict: + """分析噪音需求""" + requirements = {'tolerance': 'medium', 'importance': 0.5} + + if any(word in user_desc for word in ['quiet', 'no bark', "won't bark", "doesn't bark", 'silent', 'peaceful']): + requirements['tolerance'] = 'low' + requirements['importance'] = 0.9 + elif any(word in user_desc for word in ['loud', 'barking ok', 'noise ok']): + requirements['tolerance'] = 'high' + requirements['importance'] = 0.7 + + return requirements + +def _analyze_size_requirements(user_desc: str) -> dict: + """分析體型需求""" + requirements = {'preferred': 'any', 'importance': 0.5} + + if any(word in user_desc for word in ['small', 'tiny', 'little', 'lap dog', 'compact']): + requirements['preferred'] = 'small' + requirements['importance'] = 0.8 + elif any(word in user_desc for word in ['large', 'big', 'giant']): + requirements['preferred'] = 'large' + requirements['importance'] = 0.8 + + return requirements + +def _analyze_family_requirements(user_desc: str) -> dict: + """分析家庭需求""" + requirements = {'children': False, 'importance': 0.3} + + if any(word in user_desc for word in ['children', 'kids', 'family', 'child']): + requirements['children'] = True + requirements['importance'] = 0.8 + + return requirements + +def _calculate_space_compatibility(space_req: dict, breed_size: str, breed_exercise: str) -> float: + """計算空間相容性分數 - 增強中等活動量處理""" + if space_req['type'] == 'apartment': + if 'small' in breed_size or 'toy' in breed_size: + base_score = 0.95 + elif 'medium' in breed_size: + if 'low' in breed_exercise: + base_score = 0.75 + else: + base_score = 0.45 # 降低中型犬在公寓的分數 + elif 'large' in breed_size: + base_score = 0.05 # 大型犬極度不適合公寓 + elif 'giant' in breed_size: + base_score = 0.01 # 超大型犬完全不適合公寓 + else: + base_score = 0.7 + elif space_req['type'] == 'medium_house': + # 中型房屋的特殊處理 - 適合中等活動量用戶 + if 'small' in breed_size or 'toy' in breed_size: + base_score = 0.9 + elif 'medium' in breed_size: + base_score = 0.95 # 中型犬在中型房屋很適合 + elif 'large' in breed_size: + if 'moderate' in breed_exercise or 'low' in breed_exercise: + base_score = 0.8 # 低運動量大型犬還可以 + else: + base_score = 0.6 # 高運動量大型犬不太適合 + elif 'giant' in breed_size: + base_score = 0.3 # 超大型犬在中型房屋不太適合 + else: + base_score = 0.85 + else: + # 大型房屋的情況 + if 'small' in breed_size or 'toy' in breed_size: + base_score = 0.85 + elif 'medium' in breed_size: + base_score = 0.9 + elif 'large' in breed_size or 'giant' in breed_size: + base_score = 0.95 + else: + base_score = 0.8 + + return min(0.95, base_score) + +def _calculate_exercise_compatibility(exercise_req: dict, breed_exercise: str) -> float: + """計算運動需求相容性分數 - 增強中等活動量處理""" + if exercise_req['level'] == 'low': + if 'low' in breed_exercise or 'minimal' in breed_exercise: + return 0.95 + elif 'moderate' in breed_exercise: + return 0.5 # 降低不匹配分數 + elif 'high' in breed_exercise: + return 0.1 # 進一步降低高運動需求的匹配 + else: + return 0.7 + elif exercise_req['level'] == 'high': + if 'high' in breed_exercise: + return 0.95 + elif 'moderate' in breed_exercise: + return 0.8 + elif 'low' in breed_exercise: + return 0.6 + else: + return 0.7 + else: # moderate - 中等活動量的精確處理 + if 'moderate' in breed_exercise: + return 0.95 # 完美匹配 + elif 'low' in breed_exercise: + return 0.85 # 低運動需求的品種對中等活動量用戶也不錯 + elif 'high' in breed_exercise: + return 0.5 # 中等活動量用戶不太適合高運動需求品種 + else: + return 0.75 + + return 0.6 + +def _calculate_noise_compatibility(noise_req: dict, breed_noise: str) -> float: + """計算噪音相容性分數,更好處理複合等級""" + breed_noise_lower = breed_noise.lower() + + if noise_req['tolerance'] == 'low': + if 'low' in breed_noise_lower and 'moderate' not in breed_noise_lower: + return 0.95 # 純低噪音 + elif 'low-moderate' in breed_noise_lower or 'low to moderate' in breed_noise_lower: + return 0.8 # 低到中等噪音,還可接受 + elif breed_noise_lower in ['moderate']: + return 0.4 # 中等噪音有些問題 + elif 'high' in breed_noise_lower: + return 0.1 # 高噪音不適合 + else: + return 0.6 # 未知噪音水平,保守估計 + elif noise_req['tolerance'] == 'high': + if 'high' in breed_noise_lower: + return 0.9 + elif 'moderate' in breed_noise_lower: + return 0.85 + elif 'low' in breed_noise_lower: + return 0.8 # 安靜犬對高容忍度的人也很好 + else: + return 0.8 + else: # moderate tolerance + if 'moderate' in breed_noise_lower: + return 0.9 + elif 'low' in breed_noise_lower: + return 0.85 + elif 'high' in breed_noise_lower: + return 0.6 + else: + return 0.75 + + return 0.7 + +def _calculate_size_compatibility(size_req: dict, breed_size: str) -> float: + """計算體型相容性分數""" + if size_req['preferred'] == 'small': + if any(word in breed_size for word in ['small', 'toy', 'tiny']): + return 0.9 + elif 'medium' in breed_size: + return 0.6 + else: + return 0.3 + elif size_req['preferred'] == 'large': + if any(word in breed_size for word in ['large', 'giant']): + return 0.9 + elif 'medium' in breed_size: + return 0.7 + else: + return 0.4 + + return 0.7 # 無特別偏好 + +def _calculate_family_compatibility(family_req: dict, good_with_children: str, temperament: str) -> float: + """計算家庭相容性分數""" + if family_req['children']: + if 'yes' in good_with_children.lower(): + return 0.9 + elif any(word in temperament for word in ['gentle', 'patient', 'friendly']): + return 0.8 + elif 'no' in good_with_children.lower(): + return 0.2 + else: + return 0.6 + + return 0.7 + +def _apply_hard_constraints_enhanced(user_desc: str, breed_info: dict) -> float: + """應用品種特性感知的動態懲罰機制""" + penalty = 0.0 + + # 建立懲罰衰減係數和補償機制 + penalty_decay_factor = 0.7 + breed_adaptability_bonus = 0.0 + breed_size = breed_info.get('Size', '').lower() + breed_exercise = breed_info.get('Exercise Needs', '').lower() + breed_name = breed_info.get('Breed', '').replace(' ', '_') + + # 公寓空間約束 - 品種特性感知懲罰機制 + if 'apartment' in user_desc or 'small apartment' in user_desc: + if 'giant' in breed_size: + base_penalty = -0.35 # 減少基礎懲罰 + # 特定品種適應性補償 + adaptable_giants = ['Mastiff', 'Great Dane'] # 相對安靜的巨型犬 + if any(adapt_breed in breed_name for adapt_breed in adaptable_giants): + breed_adaptability_bonus += 0.08 + penalty += base_penalty * penalty_decay_factor + elif 'large' in breed_size: + base_penalty = -0.25 # 減少大型犬懲罰 + # 適合公寓的大型犬補償 + apartment_friendly_large = ['Greyhound', 'Great_Dane'] + if any(apt_breed in breed_name for apt_breed in apartment_friendly_large): + breed_adaptability_bonus += 0.06 + penalty += base_penalty * penalty_decay_factor + elif 'medium' in breed_size and 'high' in breed_exercise: + penalty += -0.15 * penalty_decay_factor # 進一步減少懲罰 + + # 運動需求不匹配 - 品種特性感知懲罰機制 + if any(phrase in user_desc for phrase in ["don't exercise", "not active", "low exercise", "don't exercise much"]): + if 'high' in breed_exercise: + base_penalty = -0.28 # 減少基礎懲罰 + # 低維護高運動犬種補償 + adaptable_high_energy = ['Greyhound', 'Whippet'] # 運動爆發型,平���安靜 + if any(adapt_breed in breed_name for adapt_breed in adaptable_high_energy): + breed_adaptability_bonus += 0.10 + penalty += base_penalty * penalty_decay_factor + elif 'moderate' in breed_exercise: + penalty += -0.08 * penalty_decay_factor # 進一步減少懲罰 + + # 噪音控制需求不匹配 - 品種特性感知懲罰機制 + if any(phrase in user_desc for phrase in ['quiet', "won't bark", "doesn't bark", "silent"]): + breed_noise = breed_noise_info.get(breed_name, {}).get('noise_level', 'moderate').lower() + if 'high' in breed_noise: + base_penalty = -0.18 # 減少基礎懲罰 + # 訓練性良好的高噪音品種補償 + trainable_vocal_breeds = ['German_Shepherd', 'Golden_Retriever'] + if any(train_breed in breed_name for train_breed in trainable_vocal_breeds): + breed_adaptability_bonus += 0.05 + penalty += base_penalty * penalty_decay_factor + elif 'moderate' in breed_noise and 'low' not in breed_noise: + penalty += -0.05 * penalty_decay_factor + + # 體型偏好不匹配 - 漸進式懲罰 + if any(phrase in user_desc for phrase in ['small', 'tiny', 'little']): + if 'giant' in breed_size: + penalty -= 0.35 # 超大型犬懲罰 + elif 'large' in breed_size: + penalty -= 0.20 # 大型犬懲罰 + + # 中等活動量用戶的特殊約束處理 - 漸進式懲罰 + moderate_activity_terms = ['30 minutes', 'half hour', 'moderate', 'balanced', 'medium-sized house'] + if any(term in user_desc for term in moderate_activity_terms): + # 超大型犬對中等活動量用戶的適度懲罰 + giant_breeds = ['Saint Bernard', 'Tibetan Mastiff', 'Great Dane', 'Mastiff', 'Newfoundland'] + if any(giant in breed_name for giant in giant_breeds) or 'giant' in breed_size: + penalty -= 0.35 # 適度懲罰,不完全排除 + + # 中型房屋 + 超大型犬的額外考量 + if 'medium-sized house' in user_desc and any(giant in breed_name for giant in giant_breeds): + if not any(high_activity in user_desc for high_activity in ['hiking', 'running', 'active', 'outdoor activities']): + penalty -= 0.15 # 輕度額外懲罰 + + # 30分鐘散步對極高運動需求品種的懲罰 + if any(term in user_desc for term in ['30 minutes', 'half hour']) and 'walk' in user_desc: + high_energy_breeds = ['Siberian Husky', 'Border Collie', 'Jack Russell Terrier', 'Weimaraner'] + if any(he_breed in breed_name for he_breed in high_energy_breeds) and 'high' in breed_exercise: + penalty -= 0.25 # 適度懲罰極高運動需求品種 + + # 添加特殊品種適應性補償機制 + # 對於邊界適配品種,給予適度補償 + boundary_adaptable_breeds = { + 'Italian_Greyhound': 0.08, # 安靜、低維護的小型犬 + 'Boston_Bull': 0.06, # 適應性強的小型犬 + 'Havanese': 0.05, # 友好適應的小型犬 + 'Silky_terrier': 0.04, # 安靜的玩具犬 + 'Basset': 0.07 # 低能量但友好的中型犬 + } + + if breed_name in boundary_adaptable_breeds: + breed_adaptability_bonus += boundary_adaptable_breeds[breed_name] + + # 應用品種適應性補償並設置懲罰上限 + final_penalty = penalty + breed_adaptability_bonus + # 限制最大懲罰,避免單一約束主導評分 + final_penalty = max(-0.4, final_penalty) + + return final_penalty + +def _get_basic_text_matching_recommendations(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]: + """基本文字匹配推薦(SBERT 不可用時的後備方案)""" + try: + print("Using basic text matching as fallback...") + + # 基本關鍵字匹配 + keywords = user_description.lower().split() + breed_scores = [] + + # 從數據庫獲取品種清單 + try: + conn = sqlite3.connect('animal_detector.db') + cursor = conn.cursor() + cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog LIMIT 50") + basic_breeds = [row[0] for row in cursor.fetchall()] + cursor.close() + conn.close() + except Exception as e: + print(f"Could not load breed list from database: {str(e)}") + # 後備品種清單 + basic_breeds = [ + 'Labrador_Retriever', 'Golden_Retriever', 'German_Shepherd', 'French_Bulldog', + 'Border_Collie', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier', + 'Dachshund', 'Boxer', 'Siberian_Husky', 'Great_Dane', 'Pomeranian', 'Shih-Tzu', + 'Maltese_Dog', 'Chihuahua', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier', + 'Japanese_Spaniel', 'Toy_Terrier', 'Affenpinscher', 'Pekingese', 'Lhasa' + ] + + for breed in basic_breeds: + breed_info = get_dog_description(breed) or {} + breed_text = f"{breed} {breed_info.get('Temperament', '')} {breed_info.get('Size', '')} {breed_info.get('Description', '')}".lower() + + # 計算關鍵字匹配分數 + matches = sum(1 for keyword in keywords if keyword in breed_text) + base_score = min(0.95, 0.3 + (matches / len(keywords)) * 0.6) + + # 應用增強匹配邏輯 + enhanced_score = _calculate_enhanced_matching_score( + breed, breed_info, user_description, base_score + ) + + breed_scores.append((breed, enhanced_score['final_score'], breed_info, enhanced_score)) + + # 按分數排序 + breed_scores.sort(key=lambda x: x[1], reverse=True) + + recommendations = [] + for i, (breed, final_score, breed_info, enhanced_score) in enumerate(breed_scores[:top_k]): + recommendation = { + 'breed': breed.replace('_', ' '), + 'rank': i + 1, + 'overall_score': final_score, + 'final_score': final_score, + 'semantic_score': enhanced_score.get('weighted_score', final_score), + 'comparative_bonus': enhanced_score.get('lifestyle_bonus', 0.0), + 'lifestyle_bonus': enhanced_score.get('lifestyle_bonus', 0.0), + 'size': breed_info.get('Size', 'Unknown'), + 'temperament': breed_info.get('Temperament', 'Unknown'), + 'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'), + 'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'), + 'good_with_children': breed_info.get('Good with Children', 'Unknown'), + 'lifespan': breed_info.get('Lifespan', '10-12 years'), + 'description': breed_info.get('Description', 'No description available'), + 'search_type': 'description', + 'scores': enhanced_score.get('dimension_scores', { + 'space': final_score * 0.9, + 'exercise': final_score * 0.85, + 'grooming': final_score * 0.8, + 'experience': final_score * 0.75, + 'noise': final_score * 0.7, + 'family': final_score * 0.65 + }) + } + recommendations.append(recommendation) + + return recommendations + + except Exception as e: + error_msg = f"Error in basic text matching: {str(e)}" + print(f"ERROR: {error_msg}") + raise RuntimeError(error_msg) from e