PawMatchAI / semantic_breed_recommender.py
DawnC's picture
Upload 18 files
1e4c9bc verified
raw
history blame
108 kB
import random
import hashlib
import numpy as np
import sqlite3
import re
import traceback
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sentence_transformers import SentenceTransformer
import torch
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores
from query_understanding import QueryUnderstandingEngine, analyze_user_query
from constraint_manager import ConstraintManager, apply_breed_constraints
from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore
from score_calibrator import ScoreCalibrator, calibrate_breed_scores
from config_manager import get_config_manager, get_standardized_breed_data
@dataclass
class BreedDescriptionVector:
"""Data structure for breed description vectorization"""
breed_name: str
description_text: str
embedding: np.ndarray
characteristics: Dict[str, Any]
class SemanticBreedRecommender:
"""
Enhanced SBERT-based semantic breed recommendation system
Provides multi-dimensional natural language understanding for dog breed recommendations
"""
def __init__(self):
"""Initialize the semantic recommender"""
self.model_name = 'all-MiniLM-L6-v2' # Efficient SBERT model
self.sbert_model = None
self.breed_vectors = {}
self.breed_list = self._get_breed_list()
self.comparative_keywords = {
'most': 1.0, 'love': 1.0, 'prefer': 0.9, 'like': 0.8,
'then': 0.7, 'second': 0.7, 'followed': 0.6,
'third': 0.5, 'least': 0.3, 'dislike': 0.2
}
# self.query_engine = QueryUnderstandingEngine()
# self.constraint_manager = ConstraintManager()
# self.multi_head_scorer = None # Will be initialized with SBERT model
# self.score_calibrator = ScoreCalibrator()
# self.config_manager = get_config_manager()
self._initialize_model()
self._build_breed_vectors()
# Initialize multi-head scorer with SBERT model if enhanced mode is enabled
# if self.sbert_model:
# self.multi_head_scorer = MultiHeadScorer(self.sbert_model)
# print("Multi-head scorer initialized with SBERT model")
def _get_breed_list(self) -> List[str]:
"""Get breed list from database"""
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog")
breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
return breeds
except Exception as e:
print(f"Error getting breed list: {str(e)}")
# Backup breed list for Google Colab environment
return ['Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever',
'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier']
def _initialize_model(self):
"""Initialize SBERT model with fallback"""
try:
print("Loading SBERT model...")
# Try different model names if the primary one fails
model_options = ['all-MiniLM-L6-v2', 'all-mpnet-base-v2', 'all-MiniLM-L12-v2']
for model_name in model_options:
try:
self.sbert_model = SentenceTransformer(model_name)
self.model_name = model_name
print(f"SBERT model {model_name} loaded successfully")
return
except Exception as model_e:
print(f"Failed to load {model_name}: {str(model_e)}")
continue
# If all models fail
print("All SBERT models failed to load. Using basic text matching fallback.")
self.sbert_model = None
except Exception as e:
print(f"Failed to initialize any SBERT model: {str(e)}")
print(traceback.format_exc())
print("Will provide basic text-based recommendations without embeddings")
self.sbert_model = None
def _create_breed_description(self, breed: str) -> str:
"""Create comprehensive natural language description for breed with all key characteristics"""
try:
# Get all information sources
breed_info = get_dog_description(breed) or {}
health_info = breed_health_info.get(breed, {}) if breed_health_info else {}
noise_info = breed_noise_info.get(breed, {}) if breed_noise_info else {}
breed_display_name = breed.replace('_', ' ')
description_parts = []
# 1. Basic size and physical characteristics
size = breed_info.get('Size', 'medium').lower()
description_parts.append(f"{breed_display_name} is a {size} sized dog breed")
# 2. Temperament and personality (critical for matching)
temperament = breed_info.get('Temperament', '')
if temperament:
description_parts.append(f"with a {temperament.lower()} temperament")
# 3. Exercise and activity level (critical for apartment living)
exercise_needs = breed_info.get('Exercise Needs', 'moderate').lower()
if 'high' in exercise_needs or 'very high' in exercise_needs:
description_parts.append("requiring high daily exercise and mental stimulation")
elif 'low' in exercise_needs or 'minimal' in exercise_needs:
description_parts.append("with minimal exercise requirements, suitable for apartment living")
else:
description_parts.append("with moderate exercise needs")
# 4. Noise characteristics (critical for quiet requirements)
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'low' in noise_level or 'quiet' in noise_level:
description_parts.append("known for being quiet and rarely barking")
elif 'high' in noise_level or 'loud' in noise_level:
description_parts.append("tends to be vocal and bark frequently")
else:
description_parts.append("with moderate barking tendencies")
# 5. Living space compatibility
if size in ['small', 'tiny']:
description_parts.append("excellent for small apartments and limited spaces")
elif size in ['large', 'giant']:
description_parts.append("requiring large living spaces and preferably a yard")
else:
description_parts.append("adaptable to various living situations")
# 6. Grooming and maintenance
grooming_needs = breed_info.get('Grooming Needs', 'moderate').lower()
if 'high' in grooming_needs:
description_parts.append("requiring regular professional grooming")
elif 'low' in grooming_needs:
description_parts.append("with minimal grooming requirements")
else:
description_parts.append("with moderate grooming needs")
# 7. Family compatibility
good_with_children = breed_info.get('Good with Children', 'Yes')
if good_with_children == 'Yes':
description_parts.append("excellent with children and families")
else:
description_parts.append("better suited for adult households")
# 8. Intelligence and trainability (from database description)
intelligence_keywords = []
description_text = breed_info.get('Description', '').lower()
if description_text:
# Extract intelligence indicators from description
if any(word in description_text for word in ['intelligent', 'smart', 'clever', 'quick to learn']):
intelligence_keywords.extend(['highly intelligent', 'trainable', 'quick learner'])
elif any(word in description_text for word in ['stubborn', 'independent', 'difficult to train']):
intelligence_keywords.extend(['independent minded', 'requires patience', 'challenging to train'])
else:
intelligence_keywords.extend(['moderate intelligence', 'trainable with consistency'])
# Extract working/purpose traits from description
if any(word in description_text for word in ['working', 'herding', 'guard', 'hunting']):
intelligence_keywords.extend(['working breed', 'purpose-driven', 'task-oriented'])
elif any(word in description_text for word in ['companion', 'lap', 'toy', 'decorative']):
intelligence_keywords.extend(['companion breed', 'affectionate', 'people-focused'])
# Add intelligence context to description
if intelligence_keywords:
description_parts.append(f"characterized as {', '.join(intelligence_keywords[:2])}")
# 9. Special characteristics and purpose (enhanced with database mining)
if breed_info.get('Description'):
desc = breed_info.get('Description', '')[:150] # Increased to 150 chars for more context
if desc:
# Extract key traits from description for better semantic matching
desc_lower = desc.lower()
key_traits = []
# Extract key behavioral traits from description
if 'friendly' in desc_lower:
key_traits.append('friendly')
if 'gentle' in desc_lower:
key_traits.append('gentle')
if 'energetic' in desc_lower or 'active' in desc_lower:
key_traits.append('energetic')
if 'calm' in desc_lower or 'peaceful' in desc_lower:
key_traits.append('calm')
if 'protective' in desc_lower or 'guard' in desc_lower:
key_traits.append('protective')
trait_text = f" and {', '.join(key_traits)}" if key_traits else ""
description_parts.append(f"Known for: {desc.lower()}{trait_text}")
# 9. Care level requirements
try:
care_level = breed_info.get('Care Level', 'moderate')
if isinstance(care_level, str):
description_parts.append(f"requiring {care_level.lower()} overall care level")
else:
description_parts.append("requiring moderate overall care level")
except Exception as e:
print(f"Error processing care level for {breed}: {str(e)}")
description_parts.append("requiring moderate overall care level")
# 10. Lifespan information
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
if lifespan and isinstance(lifespan, str) and lifespan.strip():
description_parts.append(f"with a typical lifespan of {lifespan}")
else:
description_parts.append("with a typical lifespan of 10-12 years")
except Exception as e:
print(f"Error processing lifespan for {breed}: {str(e)}")
description_parts.append("with a typical lifespan of 10-12 years")
# Create comprehensive description
full_description = '. '.join(description_parts) + '.'
# Add comprehensive keywords for better semantic matching
keywords = []
# Basic breed name keywords
keywords.extend([word.lower() for word in breed_display_name.split()])
# Temperament keywords
if temperament:
keywords.extend([word.lower().strip(',') for word in temperament.split()])
# Size-based keywords
if 'small' in size or 'tiny' in size:
keywords.extend(['small', 'tiny', 'compact', 'little', 'apartment', 'indoor', 'lap'])
elif 'large' in size or 'giant' in size:
keywords.extend(['large', 'big', 'giant', 'huge', 'yard', 'space', 'outdoor'])
else:
keywords.extend(['medium', 'moderate', 'average', 'balanced'])
# Activity level keywords
exercise_needs = breed_info.get('Exercise Needs', 'moderate').lower()
if 'high' in exercise_needs:
keywords.extend(['active', 'energetic', 'exercise', 'outdoor', 'hiking', 'running', 'athletic'])
elif 'low' in exercise_needs:
keywords.extend(['calm', 'low-energy', 'indoor', 'relaxed', 'couch', 'sedentary'])
else:
keywords.extend(['moderate', 'balanced', 'walks', 'regular'])
# Noise level keywords
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'quiet' in noise_level or 'low' in noise_level:
keywords.extend(['quiet', 'silent', 'calm', 'peaceful', 'low-noise'])
elif 'high' in noise_level or 'loud' in noise_level:
keywords.extend(['vocal', 'barking', 'loud', 'alert', 'watchdog'])
# Living situation keywords
if size in ['small', 'tiny'] and 'low' in exercise_needs:
keywords.extend(['apartment', 'city', 'urban', 'small-space'])
if size in ['large', 'giant'] or 'high' in exercise_needs:
keywords.extend(['house', 'yard', 'suburban', 'rural', 'space'])
# Family keywords
good_with_children = breed_info.get('Good with Children', 'Yes')
if good_with_children == 'Yes':
keywords.extend(['family', 'children', 'kids', 'friendly', 'gentle'])
# Intelligence and trainability keywords (from database description mining)
if intelligence_keywords:
keywords.extend([word.lower() for phrase in intelligence_keywords for word in phrase.split()])
# Grooming-based keywords (enhanced)
grooming_needs = breed_info.get('Grooming Needs', 'moderate').lower()
if 'high' in grooming_needs:
keywords.extend(['high-maintenance', 'professional-grooming', 'daily-brushing', 'coat-care'])
elif 'low' in grooming_needs:
keywords.extend(['low-maintenance', 'minimal-grooming', 'easy-care', 'wash-and-go'])
else:
keywords.extend(['moderate-grooming', 'weekly-brushing', 'regular-care'])
# Lifespan-based keywords
lifespan = breed_info.get('Lifespan', '10-12 years')
if lifespan and isinstance(lifespan, str):
try:
# Extract years from lifespan string (e.g., "10-12 years" or "12-15 years")
import re
years = re.findall(r'\d+', lifespan)
if years:
avg_years = sum(int(y) for y in years) / len(years)
if avg_years >= 14:
keywords.extend(['long-lived', 'longevity', 'durable', 'healthy-lifespan'])
elif avg_years <= 8:
keywords.extend(['shorter-lifespan', 'health-considerations', 'special-care'])
else:
keywords.extend(['average-lifespan', 'moderate-longevity'])
except:
keywords.extend(['average-lifespan'])
# Add keywords to description for better semantic matching
unique_keywords = list(set(keywords))
keyword_text = ' '.join(unique_keywords)
full_description += f" Additional context: {keyword_text}"
return full_description
except Exception as e:
print(f"Error creating description for {breed}: {str(e)}")
return f"{breed.replace('_', ' ')} is a dog breed with unique characteristics."
def _build_breed_vectors(self):
"""Build vector representations for all breeds"""
try:
print("Building breed vector database...")
# Skip if model is not available
if self.sbert_model is None:
print("SBERT model not available, skipping vector building")
return
for breed in self.breed_list:
description = self._create_breed_description(breed)
# Generate embedding vector
embedding = self.sbert_model.encode(description, convert_to_tensor=False)
# Get breed characteristics
breed_info = get_dog_description(breed)
characteristics = {
'size': breed_info.get('Size', 'Medium') if breed_info else 'Medium',
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
'temperament': breed_info.get('Temperament', '') if breed_info else ''
}
self.breed_vectors[breed] = BreedDescriptionVector(
breed_name=breed,
description_text=description,
embedding=embedding,
characteristics=characteristics
)
print(f"Successfully built {len(self.breed_vectors)} breed vectors")
except Exception as e:
print(f"Error building breed vectors: {str(e)}")
print(traceback.format_exc())
raise
def _parse_comparative_preferences(self, user_input: str) -> Dict[str, float]:
"""Parse comparative preference expressions"""
breed_scores = {}
# Normalize input
text = user_input.lower()
# Find breed names and preference keywords
for breed in self.breed_list:
breed_display = breed.replace('_', ' ').lower()
breed_words = breed_display.split()
# Check if this breed is mentioned
breed_mentioned = False
for word in breed_words:
if word in text:
breed_mentioned = True
break
if breed_mentioned:
# Find nearby preference keywords
breed_score = 0.5 # Default score
# Look for keywords within 50 characters of breed name
breed_pos = text.find(breed_words[0])
if breed_pos != -1:
# Check for keywords in context
context_start = max(0, breed_pos - 50)
context_end = min(len(text), breed_pos + 50)
context = text[context_start:context_end]
for keyword, score in self.comparative_keywords.items():
if keyword in context:
breed_score = max(breed_score, score)
breed_scores[breed] = breed_score
return breed_scores
def _extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]:
"""Enhanced lifestyle keyword extraction with better pattern matching"""
keywords = {
'living_space': [],
'activity_level': [],
'family_situation': [],
'noise_preference': [],
'size_preference': [],
'care_level': [],
'special_needs': [],
'intelligence_preference': [],
'grooming_preference': [],
'lifespan_preference': [],
'temperament_preference': [],
'experience_level': []
}
text = user_input.lower()
# Enhanced living space detection
apartment_terms = ['apartment', 'flat', 'condo', 'small space', 'city living', 'urban', 'no yard', 'indoor']
house_terms = ['house', 'yard', 'garden', 'backyard', 'large space', 'suburban', 'rural', 'farm']
if any(term in text for term in apartment_terms):
keywords['living_space'].append('apartment')
if any(term in text for term in house_terms):
keywords['living_space'].append('house')
# Enhanced activity level detection
high_activity = ['active', 'energetic', 'exercise', 'hiking', 'running', 'outdoor', 'sports', 'jogging',
'athletic', 'adventure', 'vigorous', 'high energy', 'workout']
low_activity = ['calm', 'lazy', 'indoor', 'low energy', 'couch', 'sedentary', 'relaxed',
'peaceful', 'quiet lifestyle', 'minimal exercise']
moderate_activity = ['moderate', 'walk', 'daily walks', 'light exercise']
if any(term in text for term in high_activity):
keywords['activity_level'].append('high')
if any(term in text for term in low_activity):
keywords['activity_level'].append('low')
if any(term in text for term in moderate_activity):
keywords['activity_level'].append('moderate')
# Enhanced family situation detection
children_terms = ['children', 'kids', 'family', 'child', 'toddler', 'baby', 'teenage', 'school age']
elderly_terms = ['elderly', 'senior', 'old', 'retirement', 'aged', 'mature']
single_terms = ['single', 'alone', 'individual', 'solo', 'myself']
if any(term in text for term in children_terms):
keywords['family_situation'].append('children')
if any(term in text for term in elderly_terms):
keywords['family_situation'].append('elderly')
if any(term in text for term in single_terms):
keywords['family_situation'].append('single')
# Enhanced noise preference detection
quiet_terms = ['quiet', 'silent', 'noise-sensitive', 'peaceful', 'no barking', 'minimal noise',
'soft-spoken', 'calm', 'tranquil']
noise_ok_terms = ['loud', 'barking ok', 'noise tolerant', 'vocal', 'doesn\'t matter']
if any(term in text for term in quiet_terms):
keywords['noise_preference'].append('low')
if any(term in text for term in noise_ok_terms):
keywords['noise_preference'].append('high')
# Enhanced size preference detection
small_terms = ['small', 'tiny', 'little', 'compact', 'miniature', 'toy', 'lap dog']
large_terms = ['large', 'big', 'giant', 'huge', 'massive', 'great']
medium_terms = ['medium', 'moderate size', 'average', 'mid-sized']
if any(term in text for term in small_terms):
keywords['size_preference'].append('small')
if any(term in text for term in large_terms):
keywords['size_preference'].append('large')
if any(term in text for term in medium_terms):
keywords['size_preference'].append('medium')
# Enhanced care level detection
low_care = ['low maintenance', 'easy care', 'simple', 'minimal grooming', 'wash and go']
high_care = ['high maintenance', 'grooming', 'care intensive', 'professional grooming', 'daily brushing']
if any(term in text for term in low_care):
keywords['care_level'].append('low')
if any(term in text for term in high_care):
keywords['care_level'].append('high')
# Intelligence preference detection (NEW)
smart_terms = ['smart', 'intelligent', 'clever', 'bright', 'quick learner', 'easy to train', 'trainable', 'genius', 'brilliant']
independent_terms = ['independent', 'stubborn', 'strong-willed', 'less trainable', 'thinks for themselves']
if any(term in text for term in smart_terms):
keywords['intelligence_preference'].append('high')
if any(term in text for term in independent_terms):
keywords['intelligence_preference'].append('independent')
# Grooming preference detection (NEW)
low_grooming_terms = ['low grooming', 'minimal grooming', 'easy care', 'wash and wear', 'no grooming', 'simple coat']
high_grooming_terms = ['high grooming', 'professional grooming', 'lots of care', 'high maintenance coat', 'daily brushing', 'regular grooming']
if any(term in text for term in low_grooming_terms):
keywords['grooming_preference'].append('low')
if any(term in text for term in high_grooming_terms):
keywords['grooming_preference'].append('high')
# Lifespan preference detection (NEW)
long_lived_terms = ['long lived', 'long lifespan', 'live long', 'many years', '15+ years', 'longevity']
healthy_terms = ['healthy breed', 'few health issues', 'robust', 'hardy', 'strong constitution']
if any(term in text for term in long_lived_terms):
keywords['lifespan_preference'].append('long')
if any(term in text for term in healthy_terms):
keywords['lifespan_preference'].append('healthy')
# Temperament preference detection (NEW)
gentle_terms = ['gentle', 'calm', 'peaceful', 'laid back', 'chill', 'mellow', 'docile']
playful_terms = ['playful', 'energetic', 'fun', 'active personality', 'lively', 'spirited', 'bouncy']
protective_terms = ['protective', 'guard', 'watchdog', 'alert', 'vigilant', 'defensive']
friendly_terms = ['friendly', 'social', 'outgoing', 'loves people', 'sociable', 'gregarious']
if any(term in text for term in gentle_terms):
keywords['temperament_preference'].append('gentle')
if any(term in text for term in playful_terms):
keywords['temperament_preference'].append('playful')
if any(term in text for term in protective_terms):
keywords['temperament_preference'].append('protective')
if any(term in text for term in friendly_terms):
keywords['temperament_preference'].append('friendly')
# Experience level detection (NEW)
beginner_terms = ['first time', 'beginner', 'new to dogs', 'never had', 'novice', 'inexperienced']
advanced_terms = ['experienced', 'advanced', 'dog expert', 'many dogs before', 'professional', 'seasoned']
if any(term in text for term in beginner_terms):
keywords['experience_level'].append('beginner')
if any(term in text for term in advanced_terms):
keywords['experience_level'].append('advanced')
# Enhanced special needs detection
guard_terms = ['guard', 'protection', 'security', 'watchdog', 'protective', 'defender']
companion_terms = ['therapy', 'emotional support', 'companion', 'comfort', 'lap dog', 'cuddly']
hypoallergenic_terms = ['hypoallergenic', 'allergies', 'non-shedding', 'allergy-friendly', 'no shed']
multi_pet_terms = ['good with cats', 'cat friendly', 'multi-pet', 'other animals']
if any(term in text for term in guard_terms):
keywords['special_needs'].append('guard')
if any(term in text for term in companion_terms):
keywords['special_needs'].append('companion')
if any(term in text for term in hypoallergenic_terms):
keywords['special_needs'].append('hypoallergenic')
if any(term in text for term in multi_pet_terms):
keywords['special_needs'].append('multi_pet')
return keywords
def _apply_size_distribution_correction(self, recommendations: List[Dict]) -> List[Dict]:
"""Apply size distribution correction to prevent large breed bias"""
if len(recommendations) < 10:
return recommendations
# Analyze size distribution
size_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0}
for rec in recommendations:
breed_info = get_dog_description(rec['breed'])
if breed_info:
size = self._normalize_breed_size(breed_info.get('Size', 'Medium'))
size_counts[size] += 1
total_recs = len(recommendations)
large_giant_ratio = (size_counts['large'] + size_counts['giant']) / total_recs
# If more than 70% are large/giant breeds, apply correction
if large_giant_ratio > 0.7:
corrected_recommendations = []
size_quotas = {'toy': 2, 'small': 4, 'medium': 6, 'large': 2, 'giant': 1}
current_counts = {'toy': 0, 'small': 0, 'medium': 0, 'large': 0, 'giant': 0}
# First pass: add breeds within quotas
for rec in recommendations:
breed_info = get_dog_description(rec['breed'])
if breed_info:
size = self._normalize_breed_size(breed_info.get('Size', 'Medium'))
if current_counts[size] < size_quotas[size]:
corrected_recommendations.append(rec)
current_counts[size] += 1
# Second pass: fill remaining slots with best remaining candidates
remaining_slots = 15 - len(corrected_recommendations)
remaining_breeds = [rec for rec in recommendations if rec not in corrected_recommendations]
corrected_recommendations.extend(remaining_breeds[:remaining_slots])
return corrected_recommendations
return recommendations
def _normalize_breed_size(self, size: str) -> str:
"""Normalize breed size to standard categories"""
if not isinstance(size, str):
return 'medium'
size_lower = size.lower()
if any(term in size_lower for term in ['toy', 'tiny']):
return 'toy'
elif 'small' in size_lower:
return 'small'
elif 'medium' in size_lower:
return 'medium'
elif 'large' in size_lower:
return 'large'
elif any(term in size_lower for term in ['giant', 'extra large']):
return 'giant'
else:
return 'medium'
def _parse_user_requirements(self, user_input: str) -> Dict[str, Any]:
"""Parse user requirements more accurately"""
requirements = {
'living_space': None,
'exercise_level': None,
'preferred_size': None,
'noise_tolerance': None
}
input_lower = user_input.lower()
# Living space detection
if 'apartment' in input_lower or 'small' in input_lower:
requirements['living_space'] = 'apartment'
elif 'large house' in input_lower or 'big' in input_lower:
requirements['living_space'] = 'large_house'
elif 'medium' in input_lower:
requirements['living_space'] = 'medium_house'
# Exercise level detection
if "don't exercise" in input_lower or 'low exercise' in input_lower:
requirements['exercise_level'] = 'low'
elif any(term in input_lower for term in ['hiking', 'running', 'active']):
requirements['exercise_level'] = 'high'
elif '30 minutes' in input_lower or 'moderate' in input_lower:
requirements['exercise_level'] = 'moderate'
# Size preference detection
if any(term in input_lower for term in ['small dog', 'tiny', 'toy']):
requirements['preferred_size'] = 'small'
elif any(term in input_lower for term in ['large dog', 'big dog']):
requirements['preferred_size'] = 'large'
elif 'medium' in input_lower:
requirements['preferred_size'] = 'medium'
return requirements
def _apply_hard_constraints(self, breed: str, user_input: str, breed_characteristics: Dict[str, Any]) -> float:
"""Enhanced hard constraints with stricter penalties"""
penalty = 0.0
user_text_lower = user_input.lower()
# Get breed information
breed_info = get_dog_description(breed)
if not breed_info:
return 0.0
breed_size = breed_info.get('Size', '').lower()
exercise_needs = breed_info.get('Exercise Needs', '').lower()
# Apartment living constraints - MUCH STRICTER
if any(term in user_text_lower for term in ['apartment', 'flat', 'studio', 'small space']):
if 'giant' in breed_size:
return -2.0 # Complete elimination
elif 'large' in breed_size:
if any(term in exercise_needs for term in ['high', 'very high']):
return -2.0 # Complete elimination
else:
penalty -= 0.5 # Still significant penalty
elif 'medium' in breed_size and 'very high' in exercise_needs:
penalty -= 0.6
# Exercise mismatch constraints
if "don't exercise much" in user_text_lower or "low exercise" in user_text_lower:
if any(term in exercise_needs for term in ['very high', 'extreme', 'intense']):
return -2.0 # Complete elimination
elif 'high' in exercise_needs:
penalty -= 0.8
# Moderate lifestyle detection
if any(term in user_text_lower for term in ['moderate', 'balanced', '30 minutes', 'half hour']):
# Penalize extremes
if 'giant' in breed_size:
penalty -= 0.7 # Strong penalty for giants
elif 'very high' in exercise_needs:
penalty -= 0.5
# Children safety (existing logic remains but enhanced)
if any(term in user_text_lower for term in ['child', 'kids', 'family', 'baby']):
good_with_children = breed_info.get('Good with Children', '').lower()
if good_with_children == 'no':
return -2.0 # Complete elimination for safety
return penalty
def get_enhanced_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
Enhanced multi-dimensional semantic breed recommendation
Args:
user_input: User's natural language description
top_k: Number of recommendations to return
Returns:
List of recommended breeds with enhanced scoring
"""
try:
# Stage 1: Query Understanding
dimensions = self.query_engine.analyze_query(user_input)
print(f"Query dimensions detected: {len(dimensions.spatial_constraints + dimensions.activity_level + dimensions.noise_preferences + dimensions.size_preferences + dimensions.family_context + dimensions.maintenance_level + dimensions.special_requirements)} total dimensions")
# Stage 2: Apply Constraints
filter_result = self.constraint_manager.apply_constraints(dimensions, min_candidates=max(8, top_k))
print(f"Constraint filtering: {len(self.breed_list)} -> {len(filter_result.passed_breeds)} candidates")
if not filter_result.passed_breeds:
error_msg = f"No dog breeds match your requirements after applying constraints. Applied constraints: {filter_result.applied_constraints}. Consider relaxing some requirements."
print(f"ERROR: {error_msg}")
raise ValueError(error_msg)
# Stage 3: Multi-head Scoring
if self.multi_head_scorer:
breed_scores = self.multi_head_scorer.score_breeds(filter_result.passed_breeds, dimensions)
print(f"Multi-head scoring completed for {len(breed_scores)} breeds")
else:
print("Multi-head scorer not available, using fallback scoring")
return self.get_semantic_recommendations(user_input, top_k)
# Stage 4: Score Calibration
breed_score_tuples = [(score.breed_name, score.final_score) for score in breed_scores]
calibration_result = self.score_calibrator.calibrate_scores(breed_score_tuples)
print(f"Score calibration: method={calibration_result.calibration_method}")
# Stage 5: Generate Final Recommendations
final_recommendations = []
for i, breed_score in enumerate(breed_scores[:top_k]):
breed_name = breed_score.breed_name
# Get calibrated score
calibrated_score = calibration_result.score_mapping.get(breed_name, breed_score.final_score)
# Get standardized breed info
standardized_info = get_standardized_breed_data(breed_name.replace(' ', '_'))
if standardized_info:
breed_info = self._get_breed_info_from_standardized(standardized_info)
else:
breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}
recommendation = {
'breed': breed_name,
'rank': i + 1,
'overall_score': calibrated_score,
'final_score': calibrated_score,
'semantic_score': breed_score.semantic_component,
'attribute_score': breed_score.attribute_component,
'bidirectional_bonus': breed_score.bidirectional_bonus,
'confidence_score': breed_score.confidence_score,
'dimensional_breakdown': breed_score.dimensional_breakdown,
'explanation': breed_score.explanation,
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', ''),
'search_type': 'enhanced_description',
'calibration_method': calibration_result.calibration_method,
'applied_constraints': filter_result.applied_constraints,
'relaxed_constraints': filter_result.relaxed_constraints,
'warnings': filter_result.warnings
}
final_recommendations.append(recommendation)
# Apply size distribution correction before returning
corrected_recommendations = self._apply_size_distribution_correction(final_recommendations)
# Stage 6: Apply Intelligent Trait Matching Enhancement
intelligence_enhanced_recommendations = self._apply_intelligent_trait_matching(corrected_recommendations, user_input)
print(f"Generated {len(intelligence_enhanced_recommendations)} enhanced semantic recommendations with intelligent trait matching")
return intelligence_enhanced_recommendations
except Exception as e:
print(f"Error in enhanced semantic recommendations: {str(e)}")
print(traceback.format_exc())
# Fallback to original method
return self.get_semantic_recommendations(user_input, top_k)
def _apply_intelligent_trait_matching(self, recommendations: List[Dict], user_input: str) -> List[Dict]:
"""Apply intelligent trait matching based on enhanced keyword extraction and database mining"""
try:
# Extract enhanced keywords from user input
extracted_keywords = self._extract_lifestyle_keywords(user_input)
# Apply intelligent trait matching to each recommendation
enhanced_recommendations = []
for rec in recommendations:
breed_name = rec['breed'].replace(' ', '_')
# Get breed database information
breed_info = get_dog_description(breed_name) or {}
# Calculate intelligent trait bonuses
intelligence_bonus = 0.0
trait_match_details = {}
# 1. Intelligence Matching
if extracted_keywords.get('intelligence_preference'):
intelligence_pref = extracted_keywords['intelligence_preference'][0]
breed_desc = breed_info.get('Description', '').lower()
if intelligence_pref == 'high':
if any(word in breed_desc for word in ['intelligent', 'smart', 'clever', 'quick to learn', 'trainable']):
intelligence_bonus += 0.05
trait_match_details['intelligence_match'] = 'High intelligence match detected'
elif any(word in breed_desc for word in ['stubborn', 'independent', 'difficult']):
intelligence_bonus -= 0.02
trait_match_details['intelligence_warning'] = 'May be challenging to train'
elif intelligence_pref == 'independent':
if any(word in breed_desc for word in ['independent', 'stubborn', 'strong-willed']):
intelligence_bonus += 0.03
trait_match_details['independence_match'] = 'Independent nature match'
# 2. Grooming Preference Matching
if extracted_keywords.get('grooming_preference'):
grooming_pref = extracted_keywords['grooming_preference'][0]
breed_grooming = breed_info.get('Grooming Needs', '').lower()
if grooming_pref == 'low' and 'low' in breed_grooming:
intelligence_bonus += 0.03
trait_match_details['grooming_match'] = 'Low maintenance grooming match'
elif grooming_pref == 'high' and 'high' in breed_grooming:
intelligence_bonus += 0.03
trait_match_details['grooming_match'] = 'High maintenance grooming match'
elif grooming_pref == 'low' and 'high' in breed_grooming:
intelligence_bonus -= 0.04
trait_match_details['grooming_mismatch'] = 'High grooming needs may not suit preferences'
# 3. Temperament Preference Matching
if extracted_keywords.get('temperament_preference'):
temp_prefs = extracted_keywords['temperament_preference']
breed_temperament = breed_info.get('Temperament', '').lower()
breed_desc = breed_info.get('Description', '').lower()
temp_text = (breed_temperament + ' ' + breed_desc).lower()
for temp_pref in temp_prefs:
if temp_pref == 'gentle' and any(word in temp_text for word in ['gentle', 'calm', 'peaceful', 'mild']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Gentle temperament match: {temp_pref}'
elif temp_pref == 'playful' and any(word in temp_text for word in ['playful', 'energetic', 'lively', 'fun']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Playful temperament match: {temp_pref}'
elif temp_pref == 'protective' and any(word in temp_text for word in ['protective', 'guard', 'alert', 'watchful']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Protective temperament match: {temp_pref}'
elif temp_pref == 'friendly' and any(word in temp_text for word in ['friendly', 'social', 'outgoing', 'people']):
intelligence_bonus += 0.04
trait_match_details['temperament_match'] = f'Friendly temperament match: {temp_pref}'
# 4. Experience Level Matching
if extracted_keywords.get('experience_level'):
exp_level = extracted_keywords['experience_level'][0]
breed_desc = breed_info.get('Description', '').lower()
if exp_level == 'beginner':
# Favor easy-to-handle breeds for beginners
if any(word in breed_desc for word in ['easy', 'gentle', 'good for beginners', 'family', 'calm']):
intelligence_bonus += 0.06
trait_match_details['beginner_friendly'] = 'Good choice for first-time owners'
elif any(word in breed_desc for word in ['challenging', 'dominant', 'requires experience', 'strong-willed']):
intelligence_bonus -= 0.08
trait_match_details['experience_warning'] = 'May be challenging for first-time owners'
elif exp_level == 'advanced':
# Advanced users can handle more challenging breeds
if any(word in breed_desc for word in ['working', 'requires experience', 'intelligent', 'strong']):
intelligence_bonus += 0.03
trait_match_details['advanced_suitable'] = 'Good match for experienced owners'
# 5. Lifespan Preference Matching
if extracted_keywords.get('lifespan_preference'):
lifespan_pref = extracted_keywords['lifespan_preference'][0]
breed_lifespan = breed_info.get('Lifespan', '10-12 years')
try:
import re
years = re.findall(r'\d+', breed_lifespan)
if years:
avg_years = sum(int(y) for y in years) / len(years)
if lifespan_pref == 'long' and avg_years >= 13:
intelligence_bonus += 0.02
trait_match_details['longevity_match'] = f'Long lifespan match: {breed_lifespan}'
elif lifespan_pref == 'healthy' and avg_years >= 12:
intelligence_bonus += 0.02
trait_match_details['health_match'] = f'Healthy lifespan: {breed_lifespan}'
except:
pass
# Apply the intelligence bonus to the overall score
original_score = rec['overall_score']
enhanced_score = min(1.0, original_score + intelligence_bonus)
# Create enhanced recommendation with trait matching details
enhanced_rec = rec.copy()
enhanced_rec['overall_score'] = enhanced_score
enhanced_rec['intelligence_bonus'] = intelligence_bonus
enhanced_rec['trait_match_details'] = trait_match_details
# Add detailed explanation if significant enhancement occurred
if abs(intelligence_bonus) > 0.02:
enhancement_explanation = []
for detail_key, detail_value in trait_match_details.items():
enhancement_explanation.append(detail_value)
if enhancement_explanation:
current_explanation = enhanced_rec.get('explanation', '')
enhanced_explanation = current_explanation + f" Enhanced matching: {'; '.join(enhancement_explanation)}"
enhanced_rec['explanation'] = enhanced_explanation
enhanced_recommendations.append(enhanced_rec)
# Re-sort by enhanced overall score
enhanced_recommendations.sort(key=lambda x: x['overall_score'], reverse=True)
# Update ranks
for i, rec in enumerate(enhanced_recommendations):
rec['rank'] = i + 1
print(f"Applied intelligent trait matching with average bonus: {sum(r['intelligence_bonus'] for r in enhanced_recommendations) / len(enhanced_recommendations):.3f}")
return enhanced_recommendations
except Exception as e:
print(f"Error in intelligent trait matching: {str(e)}")
# Return original recommendations if trait matching fails
return recommendations
def get_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""
Get breed recommendations based on natural language description
Args:
user_input: User's natural language description
top_k: Number of recommendations to return
Returns:
List of recommended breeds
"""
try:
print(f"Processing user input: {user_input}")
# Check if model is available - if not, raise error
if self.sbert_model is None:
error_msg = "SBERT model not available. This could be due to:\n• Model download failed\n• Insufficient memory\n• Network connectivity issues\n\nPlease check your environment and try again."
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg)
# Generate user input embedding
user_embedding = self.sbert_model.encode(user_input, convert_to_tensor=False)
# Parse comparative preferences
comparative_prefs = self._parse_comparative_preferences(user_input)
# Extract lifestyle keywords
lifestyle_keywords = self._extract_lifestyle_keywords(user_input)
# Calculate similarity with all breeds and apply constraints
similarities = []
for breed, breed_vector in self.breed_vectors.items():
# Apply hard constraints first
constraint_penalty = self._apply_hard_constraints(breed, user_input, breed_vector.characteristics)
# Skip breeds that violate critical constraints
if constraint_penalty <= -1.0: # Complete disqualification
continue
# Basic semantic similarity
semantic_score = cosine_similarity(
[user_embedding],
[breed_vector.embedding]
)[0][0]
# Comparative preference weighting
comparative_bonus = comparative_prefs.get(breed, 0.0)
# Lifestyle matching bonus
lifestyle_bonus = self._calculate_lifestyle_bonus(
breed_vector.characteristics,
lifestyle_keywords
)
# Apply constraint penalties
lifestyle_bonus += constraint_penalty
# Enhanced combined score with better distribution
# Apply exponential scaling to create more natural score spread
base_semantic = semantic_score ** 0.8 # Slightly compress high scores
enhanced_lifestyle = lifestyle_bonus * 2.0 # Amplify lifestyle matching
enhanced_comparative = comparative_bonus * 1.5 # Amplify breed preferences
final_score = (
base_semantic * 0.55 +
enhanced_comparative * 0.30 +
enhanced_lifestyle * 0.15
)
# Add small random variation to break ties naturally
random.seed(hash(breed)) # Consistent for same breed
final_score += random.uniform(-0.03, 0.03)
# Ensure final score doesn't exceed 1.0
final_score = min(1.0, final_score)
similarities.append({
'breed': breed,
'score': final_score,
'semantic_score': semantic_score,
'comparative_bonus': comparative_bonus,
'lifestyle_bonus': lifestyle_bonus
})
# Calculate standardized display scores with balanced distribution
breed_display_scores = []
# First, collect all semantic scores for normalization
all_semantic_scores = [breed_data['semantic_score'] for breed_data in similarities]
semantic_mean = np.mean(all_semantic_scores)
semantic_std = np.std(all_semantic_scores) if len(all_semantic_scores) > 1 else 1.0
for breed_data in similarities:
breed = breed_data['breed']
base_semantic = breed_data['semantic_score']
# Normalize semantic score to prevent extreme outliers
if semantic_std > 0:
normalized_semantic = (base_semantic - semantic_mean) / semantic_std
normalized_semantic = max(-2.0, min(2.0, normalized_semantic)) # Cap at 2 standard deviations
scaled_semantic = 0.5 + (normalized_semantic * 0.1) # Map to 0.3-0.7 range
else:
scaled_semantic = 0.5
# Get breed characteristics
breed_info = get_dog_description(breed) if breed != 'Unknown' else {}
breed_size = breed_info.get('Size', '').lower() if breed_info else ''
exercise_needs = breed_info.get('Exercise Needs', '').lower() if breed_info else ''
# Calculate feature matching score (more important than pure semantic similarity)
feature_score = 0.0
user_text = user_input.lower()
# Size and space requirements (high weight)
if any(term in user_text for term in ['apartment', 'small', 'limited space']):
if 'small' in breed_size:
feature_score += 0.25
elif 'medium' in breed_size:
feature_score += 0.05
elif 'large' in breed_size or 'giant' in breed_size:
feature_score -= 0.30
# Exercise requirements (high weight)
if any(term in user_text for term in ['low exercise', 'minimal exercise', "doesn't need", 'not much']):
if 'low' in exercise_needs or 'minimal' in exercise_needs:
feature_score += 0.20
elif 'high' in exercise_needs or 'very high' in exercise_needs:
feature_score -= 0.25
elif any(term in user_text for term in ['active', 'high exercise', 'running', 'hiking']):
if 'high' in exercise_needs:
feature_score += 0.20
elif 'low' in exercise_needs:
feature_score -= 0.15
# Family compatibility
if any(term in user_text for term in ['children', 'kids', 'family']):
good_with_children = breed_info.get('Good with Children', '') if breed_info else ''
if good_with_children == 'Yes':
feature_score += 0.10
elif good_with_children == 'No':
feature_score -= 0.20
# Combine scores with balanced weights
final_score = (
scaled_semantic * 0.35 + # Reduced semantic weight
feature_score * 0.45 + # Increased feature matching weight
breed_data['lifestyle_bonus'] * 0.15 +
breed_data['comparative_bonus'] * 0.05
)
# Calculate base compatibility score
base_compatibility = final_score
# Apply dynamic scoring with natural distribution
if base_compatibility >= 0.9: # Exceptional matches
score_range = (0.92, 0.98)
position = (base_compatibility - 0.9) / 0.1
elif base_compatibility >= 0.75: # Excellent matches
score_range = (0.85, 0.91)
position = (base_compatibility - 0.75) / 0.15
elif base_compatibility >= 0.6: # Good matches
score_range = (0.75, 0.84)
position = (base_compatibility - 0.6) / 0.15
elif base_compatibility >= 0.45: # Fair matches
score_range = (0.65, 0.74)
position = (base_compatibility - 0.45) / 0.15
elif base_compatibility >= 0.3: # Poor matches
score_range = (0.55, 0.64)
position = (base_compatibility - 0.3) / 0.15
else: # Very poor matches
score_range = (0.45, 0.54)
position = max(0, base_compatibility / 0.3)
# Calculate final score with natural variation
score_span = score_range[1] - score_range[0]
base_score = score_range[0] + (position * score_span)
# Add controlled random variation for natural ranking
random.seed(hash(breed + user_input[:15]))
variation = random.uniform(-0.015, 0.015)
display_score = round(max(0.45, min(0.98, base_score + variation)), 3)
breed_display_scores.append({
'breed': breed,
'display_score': display_score,
'semantic_score': base_semantic,
'comparative_bonus': breed_data['comparative_bonus'],
'lifestyle_bonus': breed_data['lifestyle_bonus']
})
# Sort by display score to ensure ranking consistency
breed_display_scores.sort(key=lambda x: x['display_score'], reverse=True)
top_breeds = breed_display_scores[:top_k]
# Convert to standard recommendation format
recommendations = []
for i, breed_data in enumerate(top_breeds):
breed = breed_data['breed']
display_score = breed_data['display_score']
# Get detailed information
breed_info = get_dog_description(breed)
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1,
'overall_score': display_score, # Use display score for consistency
'final_score': display_score, # Ensure final_score matches overall_score
'semantic_score': breed_data['semantic_score'],
'comparative_bonus': breed_data['comparative_bonus'],
'lifestyle_bonus': breed_data['lifestyle_bonus'],
'size': breed_info.get('Size', 'Unknown') if breed_info else 'Unknown',
'temperament': breed_info.get('Temperament', '') if breed_info else '',
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
'lifespan': breed_info.get('Lifespan', '10-12 years') if breed_info else '10-12 years',
'description': breed_info.get('Description', '') if breed_info else '',
'search_type': 'description'
}
recommendations.append(recommendation)
print(f"Generated {len(recommendations)} semantic recommendations")
return recommendations
except Exception as e:
print(f"Failed to generate semantic recommendations: {str(e)}")
print(traceback.format_exc())
return []
def _calculate_lifestyle_bonus(self, breed_characteristics: Dict[str, Any],
lifestyle_keywords: Dict[str, List[str]]) -> float:
"""Enhanced lifestyle matching bonus calculation"""
bonus = 0.0
penalties = 0.0
# Enhanced size matching
breed_size = breed_characteristics.get('size', '').lower()
size_prefs = lifestyle_keywords.get('size_preference', [])
for pref in size_prefs:
if pref in breed_size:
bonus += 0.25 # Strong reward for size match
elif (pref == 'small' and 'large' in breed_size) or \
(pref == 'large' and 'small' in breed_size):
penalties += 0.15 # Penalty for size mismatch
# Enhanced activity level matching
breed_exercise = breed_characteristics.get('exercise_needs', '').lower()
activity_prefs = lifestyle_keywords.get('activity_level', [])
if 'high' in activity_prefs:
if 'high' in breed_exercise or 'very high' in breed_exercise:
bonus += 0.2
elif 'low' in breed_exercise:
penalties += 0.2
elif 'low' in activity_prefs:
if 'low' in breed_exercise:
bonus += 0.2
elif 'high' in breed_exercise or 'very high' in breed_exercise:
penalties += 0.25
elif 'moderate' in activity_prefs:
if 'moderate' in breed_exercise:
bonus += 0.15
# Enhanced family situation matching
good_with_children = breed_characteristics.get('good_with_children', 'Yes')
family_prefs = lifestyle_keywords.get('family_situation', [])
if 'children' in family_prefs:
if good_with_children == 'Yes':
bonus += 0.15
else:
penalties += 0.3 # Strong penalty for non-child-friendly breeds
# Enhanced living space matching
living_prefs = lifestyle_keywords.get('living_space', [])
if 'apartment' in living_prefs:
if 'small' in breed_size:
bonus += 0.2
elif 'medium' in breed_size and 'low' in breed_exercise:
bonus += 0.1
elif 'large' in breed_size or 'giant' in breed_size:
penalties += 0.2 # Penalty for large dogs in apartments
# Noise preference matching
noise_prefs = lifestyle_keywords.get('noise_preference', [])
temperament = breed_characteristics.get('temperament', '').lower()
if 'low' in noise_prefs:
# Reward quiet breeds
if any(term in temperament for term in ['gentle', 'calm', 'quiet']):
bonus += 0.1
# Care level matching
grooming_needs = breed_characteristics.get('grooming_needs', '').lower()
care_prefs = lifestyle_keywords.get('care_level', [])
if 'low' in care_prefs and 'low' in grooming_needs:
bonus += 0.1
elif 'high' in care_prefs and 'high' in grooming_needs:
bonus += 0.1
elif 'low' in care_prefs and 'high' in grooming_needs:
penalties += 0.15
# Special needs matching
special_needs = lifestyle_keywords.get('special_needs', [])
if 'guard' in special_needs:
if any(term in temperament for term in ['protective', 'alert', 'watchful']):
bonus += 0.1
elif 'companion' in special_needs:
if any(term in temperament for term in ['affectionate', 'gentle', 'loyal']):
bonus += 0.1
# Calculate final bonus with penalties
final_bonus = bonus - penalties
return max(-0.3, min(0.5, final_bonus)) # Allow negative bonus but limit range
def _get_breed_info_from_standardized(self, standardized_info) -> Dict[str, Any]:
"""Convert standardized breed info to dictionary format"""
try:
size_map = {1: 'Tiny', 2: 'Small', 3: 'Medium', 4: 'Large', 5: 'Giant'}
exercise_map = {1: 'Low', 2: 'Moderate', 3: 'High', 4: 'Very High'}
care_map = {1: 'Low', 2: 'Moderate', 3: 'High'}
return {
'Size': size_map.get(standardized_info.size_category, 'Medium'),
'Exercise Needs': exercise_map.get(standardized_info.exercise_level, 'Moderate'),
'Grooming Needs': care_map.get(standardized_info.care_complexity, 'Moderate'),
'Good with Children': 'Yes' if standardized_info.child_compatibility >= 0.8 else
'No' if standardized_info.child_compatibility <= 0.2 else 'Unknown',
'Temperament': 'Varies by individual',
'Lifespan': '10-12 years',
'Description': f'A {size_map.get(standardized_info.size_category, "medium")} sized breed'
}
except Exception as e:
print(f"Error converting standardized info: {str(e)}")
return {}
def _get_fallback_recommendations(self, top_k: int = 15) -> List[Dict[str, Any]]:
"""Get fallback recommendations when enhanced system fails"""
try:
safe_breeds = [
('Labrador Retriever', 0.85),
('Golden Retriever', 0.82),
('Cavalier King Charles Spaniel', 0.80),
('French Bulldog', 0.78),
('Boston Terrier', 0.76),
('Bichon Frise', 0.74),
('Pug', 0.72),
('Cocker Spaniel', 0.70)
]
recommendations = []
for i, (breed, score) in enumerate(safe_breeds[:top_k]):
breed_info = get_dog_description(breed.replace(' ', '_')) or {}
recommendation = {
'breed': breed,
'rank': i + 1,
'overall_score': score,
'final_score': score,
'semantic_score': score * 0.8,
'comparative_bonus': 0.0,
'lifestyle_bonus': 0.0,
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Yes'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', ''),
'search_type': 'fallback'
}
recommendations.append(recommendation)
return recommendations
except Exception as e:
print(f"Error generating fallback recommendations: {str(e)}")
return []
def get_enhanced_recommendations_with_unified_scoring(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""簡化的增強推薦方法"""
try:
print(f"Processing enhanced recommendation: {user_input[:50]}...")
# 使用基本語意匹配
return self.get_semantic_recommendations(user_input, top_k)
except Exception as e:
error_msg = f"Enhanced recommendation error: {str(e)}. Please check your description."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def _analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]:
"""增強用戶描述分析"""
text = user_description.lower()
analysis = {
'mentioned_breeds': [],
'lifestyle_keywords': {},
'preference_strength': {},
'constraint_requirements': [],
'user_context': {}
}
# 提取提及的品種
for breed in self.breed_list:
breed_display = breed.replace('_', ' ').lower()
if breed_display in text or any(word in text for word in breed_display.split()):
analysis['mentioned_breeds'].append(breed)
# 簡單偏好強度分析
if any(word in text for word in ['love', 'prefer', 'like', '喜歡', '最愛']):
analysis['preference_strength'][breed] = 0.8
else:
analysis['preference_strength'][breed] = 0.5
# 提取約束要求
if any(word in text for word in ['quiet', 'silent', 'no barking', '安靜']):
analysis['constraint_requirements'].append('low_noise')
if any(word in text for word in ['apartment', 'small space', '公寓']):
analysis['constraint_requirements'].append('apartment_suitable')
if any(word in text for word in ['children', 'kids', 'family', '小孩']):
analysis['constraint_requirements'].append('child_friendly')
# 提取用戶背景
analysis['user_context'] = {
'has_children': any(word in text for word in ['children', 'kids', '小孩']),
'living_space': 'apartment' if any(word in text for word in ['apartment', '公寓']) else 'house',
'activity_level': 'high' if any(word in text for word in ['active', 'energetic', '活躍']) else 'moderate',
'noise_sensitive': any(word in text for word in ['quiet', 'silent', '安靜']),
'experience_level': 'beginner' if any(word in text for word in ['first time', 'beginner', '新手']) else 'intermediate'
}
return analysis
def _create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> UserPreferences:
"""從分析結果創建用戶偏好物件"""
context = analysis['user_context']
# 推斷居住空間類型
living_space = 'apartment' if context.get('living_space') == 'apartment' else 'house_small'
# 推斷院子權限
yard_access = 'no_yard' if living_space == 'apartment' else 'shared_yard'
# 推斷運動時間
activity_level = context.get('activity_level', 'moderate')
exercise_time_map = {'high': 120, 'moderate': 60, 'low': 30}
exercise_time = exercise_time_map.get(activity_level, 60)
# 推斷運動類型
exercise_type_map = {'high': 'active_training', 'moderate': 'moderate_activity', 'low': 'light_walks'}
exercise_type = exercise_type_map.get(activity_level, 'moderate_activity')
# 推斷噪音容忍度
noise_tolerance = 'low' if context.get('noise_sensitive', False) else 'medium'
return UserPreferences(
living_space=living_space,
yard_access=yard_access,
exercise_time=exercise_time,
exercise_type=exercise_type,
grooming_commitment='medium',
experience_level=context.get('experience_level', 'intermediate'),
time_availability='moderate',
has_children=context.get('has_children', False),
children_age='school_age' if context.get('has_children', False) else None,
noise_tolerance=noise_tolerance,
space_for_play=(living_space != 'apartment'),
other_pets=False,
climate='moderate',
health_sensitivity='medium',
barking_acceptance=noise_tolerance,
size_preference='no_preference'
)
def _get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]:
"""獲取候選品種列表"""
candidate_breeds = set()
# 如果提及特定品種,優先包含
if analysis['mentioned_breeds']:
candidate_breeds.update(analysis['mentioned_breeds'])
# 根據約束要求過濾品種
if 'apartment_suitable' in analysis['constraint_requirements']:
apartment_suitable = [
'French_Bulldog', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
'Pug', 'Bichon_Frise', 'Cocker_Spaniel', 'Yorkshire_Terrier', 'Shih_Tzu'
]
candidate_breeds.update(breed for breed in apartment_suitable if breed in self.breed_list)
if 'child_friendly' in analysis['constraint_requirements']:
child_friendly = [
'Labrador_Retriever', 'Golden_Retriever', 'Beagle', 'Cavalier_King_Charles_Spaniel',
'Bichon_Frise', 'Poodle', 'Cocker_Spaniel'
]
candidate_breeds.update(breed for breed in child_friendly if breed in self.breed_list)
# 如果候選品種不足,添加更多通用品種
if len(candidate_breeds) < 20:
general_breeds = [
'Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever', 'French_Bulldog',
'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier', 'Boston_Terrier',
'Border_Collie', 'Siberian_Husky', 'Cavalier_King_Charles_Spaniel', 'Boxer',
'Bichon_Frise', 'Cocker_Spaniel', 'Shih_Tzu', 'Pug', 'Chihuahua'
]
candidate_breeds.update(breed for breed in general_breeds if breed in self.breed_list)
return list(candidate_breeds)[:30] # 限制候選數量以提高效率
def _apply_constraint_filtering_enhanced(self, breed: str, analysis: Dict[str, Any]) -> float:
"""應用約束過濾,返回調整分數"""
penalty = 0.0
breed_info = get_dog_description(breed)
if not breed_info:
return penalty
# 低噪音要求
if 'low_noise' in analysis['constraint_requirements']:
noise_info = breed_noise_info.get(breed, {})
noise_level = noise_info.get('noise_level', 'moderate').lower()
if 'high' in noise_level:
penalty -= 0.3 # 嚴重扣分
elif 'low' in noise_level:
penalty += 0.1 # 輕微加分
# 公寓適合性
if 'apartment_suitable' in analysis['constraint_requirements']:
size = breed_info.get('Size', '').lower()
exercise_needs = breed_info.get('Exercise Needs', '').lower()
if size in ['large', 'giant']:
penalty -= 0.2
elif size in ['small', 'tiny']:
penalty += 0.1
if 'high' in exercise_needs:
penalty -= 0.15
# 兒童友善性
if 'child_friendly' in analysis['constraint_requirements']:
good_with_children = breed_info.get('Good with Children', 'Unknown')
if good_with_children == 'Yes':
penalty += 0.15
elif good_with_children == 'No':
penalty -= 0.4 # 嚴重扣分
return penalty
def _get_breed_characteristics_enhanced(self, breed: str) -> Dict[str, Any]:
"""獲取品種特徵"""
breed_info = get_dog_description(breed)
if not breed_info:
return {}
characteristics = {
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', ''),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', '')
}
# 添加噪音資訊
noise_info = breed_noise_info.get(breed, {})
characteristics['noise_level'] = noise_info.get('noise_level', 'moderate')
return characteristics
def get_hybrid_recommendations(self, user_description: str,
user_preferences: Optional[Any] = None,
top_k: int = 15) -> List[Dict[str, Any]]:
"""
Hybrid recommendations: Combine semantic matching with traditional scoring
Args:
user_description: User's natural language description
user_preferences: Optional structured preference settings
top_k: Number of recommendations to return
Returns:
Hybrid recommendation results
"""
try:
# Get semantic recommendations
semantic_recommendations = self.get_semantic_recommendations(user_description, top_k * 2)
if not user_preferences:
return semantic_recommendations[:top_k]
# Combine with traditional scoring
hybrid_results = []
for semantic_rec in semantic_recommendations:
breed_name = semantic_rec['breed'].replace(' ', '_')
# Calculate traditional compatibility score
traditional_score = calculate_compatibility_score(user_preferences, breed_name)
# Hybrid score (semantic 40% + traditional 60%)
hybrid_score = (
semantic_rec['overall_score'] * 0.4 +
traditional_score * 0.6
)
semantic_rec['hybrid_score'] = hybrid_score
semantic_rec['traditional_score'] = traditional_score
hybrid_results.append(semantic_rec)
# Re-sort by hybrid score
hybrid_results.sort(key=lambda x: x['hybrid_score'], reverse=True)
# Update rankings
for i, result in enumerate(hybrid_results[:top_k]):
result['rank'] = i + 1
result['overall_score'] = result['hybrid_score']
return hybrid_results[:top_k]
except Exception as e:
print(f"Hybrid recommendation failed: {str(e)}")
print(traceback.format_exc())
return self.get_semantic_recommendations(user_description, top_k)
def get_breed_recommendations_by_description(user_description: str,
user_preferences: Optional[Any] = None,
top_k: int = 15) -> List[Dict[str, Any]]:
"""Main interface function for getting breed recommendations by description"""
try:
print("Initializing Enhanced SemanticBreedRecommender...")
recommender = SemanticBreedRecommender()
# 優先使用整合統一評分系統的增強推薦
print("Using enhanced recommendation system with unified scoring")
results = recommender.get_enhanced_recommendations_with_unified_scoring(user_description, top_k)
if results and len(results) > 0:
print(f"Generated {len(results)} enhanced recommendations successfully")
return results
else:
# 如果增強系統無結果,嘗試原有增強系統
print("Enhanced unified system returned no results, trying original enhanced system")
results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)
if results and len(results) > 0:
return results
else:
# 最後回退到標準系統
print("All enhanced systems failed, using standard system")
if user_preferences:
results = recommender.get_hybrid_recommendations(user_description, user_preferences, top_k)
else:
results = recommender.get_semantic_recommendations(user_description, top_k)
if not results:
error_msg = f"All recommendation systems failed to generate results. Please check your input description and try again. Error details may be in the console."
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg)
return results
except Exception as e:
error_msg = f"Critical error in recommendation system: {str(e)}. Please check your input and system configuration."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def get_enhanced_recommendations_with_unified_scoring(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""簡化版本:基本語意推薦功能"""
try:
print(f"Processing description-based recommendation: {user_description[:50]}...")
# 創建基本推薦器實例
recommender = SemanticBreedRecommender()
if not recommender.sbert_model:
print("SBERT model not available, using basic text matching...")
# 使用基本文字匹配邏輯
return _get_basic_text_matching_recommendations(user_description, top_k)
# 使用語意相似度推薦
recommendations = []
user_embedding = recommender.sbert_model.encode(user_description)
# 計算所有品種的增強分數
all_breed_scores = []
for breed_name, breed_vector in recommender.breed_vectors.items():
breed_embedding = breed_vector.embedding
similarity = cosine_similarity([user_embedding], [breed_embedding])[0][0]
# 獲取品種資料
breed_info = get_dog_description(breed_name) or {}
# 計算增強的匹配分數
enhanced_score = _calculate_enhanced_matching_score(
breed_name, breed_info, user_description, similarity
)
all_breed_scores.append((breed_name, enhanced_score, breed_info, similarity))
# 按 final_score 排序(而不是語意相似度)
all_breed_scores.sort(key=lambda x: x[1]['final_score'], reverse=True)
top_breeds = all_breed_scores[:top_k]
for i, (breed, enhanced_score, breed_info, similarity) in enumerate(top_breeds):
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1, # 正確的排名
'overall_score': enhanced_score['final_score'],
'final_score': enhanced_score['final_score'],
'semantic_score': similarity,
'comparative_bonus': enhanced_score['lifestyle_bonus'],
'lifestyle_bonus': enhanced_score['lifestyle_bonus'],
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', 'Unknown'),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', 'No description available'),
'search_type': 'description',
'scores': enhanced_score['dimension_scores']
}
recommendations.append(recommendation)
print(f"Generated {len(recommendations)} semantic recommendations")
return recommendations
except Exception as e:
error_msg = f"Error in semantic recommendation system: {str(e)}. Please check your input and try again."
print(f"ERROR: {error_msg}")
print(traceback.format_exc())
raise RuntimeError(error_msg) from e
def _calculate_enhanced_matching_score(breed: str, breed_info: dict, user_description: str, base_similarity: float) -> dict:
"""計算增強的匹配分數,基於用戶描述和品種特性"""
try:
user_desc = user_description.lower()
# 分析用戶需求
space_requirements = _analyze_space_requirements(user_desc)
exercise_requirements = _analyze_exercise_requirements(user_desc)
noise_requirements = _analyze_noise_requirements(user_desc)
size_requirements = _analyze_size_requirements(user_desc)
family_requirements = _analyze_family_requirements(user_desc)
# 獲取品種特性
breed_size = breed_info.get('Size', '').lower()
breed_exercise = breed_info.get('Exercise Needs', '').lower()
breed_noise = breed_noise_info.get(breed, {}).get('noise_level', 'moderate').lower()
breed_temperament = breed_info.get('Temperament', '').lower()
breed_good_with_children = breed_info.get('Good with Children', '').lower()
# 計算各維度匹配分數
dimension_scores = {}
# 空間匹配 (30% 權重)
space_score = _calculate_space_compatibility(space_requirements, breed_size, breed_exercise)
dimension_scores['space'] = space_score
# 運動需求匹配 (25% 權重)
exercise_score = _calculate_exercise_compatibility(exercise_requirements, breed_exercise)
dimension_scores['exercise'] = exercise_score
# 噪音匹配 (20% 權重)
noise_score = _calculate_noise_compatibility(noise_requirements, breed_noise)
dimension_scores['noise'] = noise_score
# 體型匹配 (15% 權重)
size_score = _calculate_size_compatibility(size_requirements, breed_size)
dimension_scores['grooming'] = min(0.9, base_similarity + 0.1) # 美容需求基於語意相似度
# 家庭相容性 (10% 權重)
family_score = _calculate_family_compatibility(family_requirements, breed_good_with_children, breed_temperament)
dimension_scores['family'] = family_score
dimension_scores['experience'] = min(0.9, base_similarity + 0.05) # 經驗需求基於語意相似度
# 應用硬約束過濾
constraint_penalty = _apply_hard_constraints_enhanced(user_desc, breed_info)
# 計算加權總分 - 精確化維度權重配置
# 根據指導建議重新平衡維度權重
weighted_score = (
space_score * 0.30 + # 空間相容性(降低5%)
exercise_score * 0.28 + # 運動需求匹配(降低2%)
noise_score * 0.18 + # 噪音控制(提升3%)
family_score * 0.12 + # 家庭相容性(提升2%)
size_score * 0.08 + # 體型匹配(降低2%)
min(0.9, base_similarity + 0.1) * 0.04 # 護理需求(新增獨立權重)
)
# 優化完美匹配獎勵機制 - 降低觸發門檻並增加層次
perfect_match_bonus = 0.0
if space_score >= 0.88 and exercise_score >= 0.88 and noise_score >= 0.85:
perfect_match_bonus = 0.08 # 卓越匹配獎勵
elif space_score >= 0.82 and exercise_score >= 0.82 and noise_score >= 0.75:
perfect_match_bonus = 0.04 # 優秀匹配獎勵
elif space_score >= 0.75 and exercise_score >= 0.75:
perfect_match_bonus = 0.02 # 良好匹配獎勵
# 結合語意相似度與維度匹配 - 調整為75%維度匹配 25%語義相似度
base_combined_score = (weighted_score * 0.75 + base_similarity * 0.25) + perfect_match_bonus
# 應用漸進式約束懲罰,但確保基礎分數保障
raw_final_score = base_combined_score + constraint_penalty
# 實施動態分數保障機制 - 提升至40-42%基礎分數
# 根據品種特性動態調整基礎分數
base_guaranteed_score = 0.42 # 提升基礎保障分數
# 特殊品種基礎分數調整
high_adaptability_breeds = ['French_Bulldog', 'Pug', 'Golden_Retriever', 'Labrador_Retriever']
if any(breed in breed for breed in high_adaptability_breeds):
base_guaranteed_score = 0.45 # 高適應性品種更高基礎分數
# 動態分數分佈優化
if raw_final_score >= base_guaranteed_score:
# 對於高分品種,實施適度壓縮避免過度集中
if raw_final_score > 0.85:
compression_factor = 0.92 # 輕度壓縮高分
final_score = 0.85 + (raw_final_score - 0.85) * compression_factor
else:
final_score = raw_final_score
final_score = min(0.93, final_score) # 降低最高分數限制
else:
# 對於低分品種,使用改進的保障機制
normalized_raw_score = max(0.15, raw_final_score)
# 基礎保障75% + 實際計算25%,保持一定區分度
final_score = base_guaranteed_score * 0.75 + normalized_raw_score * 0.25
final_score = max(base_guaranteed_score, min(0.93, final_score))
lifestyle_bonus = max(0.0, weighted_score - base_similarity)
return {
'final_score': final_score,
'weighted_score': weighted_score,
'lifestyle_bonus': lifestyle_bonus,
'dimension_scores': dimension_scores,
'constraint_penalty': constraint_penalty
}
except Exception as e:
print(f"Error in enhanced matching calculation for {breed}: {str(e)}")
return {
'final_score': base_similarity,
'weighted_score': base_similarity,
'lifestyle_bonus': 0.0,
'dimension_scores': {
'space': base_similarity * 0.9,
'exercise': base_similarity * 0.85,
'grooming': base_similarity * 0.8,
'experience': base_similarity * 0.75,
'noise': base_similarity * 0.7,
'family': base_similarity * 0.65
},
'constraint_penalty': 0.0
}
def _analyze_space_requirements(user_desc: str) -> dict:
"""分析空間需求 - 增強中等活動量識別"""
requirements = {'type': 'unknown', 'size': 'medium', 'importance': 0.5}
if any(word in user_desc for word in ['apartment', 'small apartment', 'small space', 'condo', 'flat']):
requirements['type'] = 'apartment'
requirements['size'] = 'small'
requirements['importance'] = 0.95 # 提高重要性
elif any(word in user_desc for word in ['medium-sized house', 'medium house', 'townhouse']):
requirements['type'] = 'medium_house'
requirements['size'] = 'medium'
requirements['importance'] = 0.8 # 中等活動量用戶的特殊標記
elif any(word in user_desc for word in ['large house', 'big house', 'yard', 'garden', 'large space', 'backyard']):
requirements['type'] = 'house'
requirements['size'] = 'large'
requirements['importance'] = 0.7
return requirements
def _analyze_exercise_requirements(user_desc: str) -> dict:
"""分析運動需求 - 增強中等活動量識別"""
requirements = {'level': 'moderate', 'importance': 0.5}
# 低運動量識別
if any(word in user_desc for word in ["don't exercise", "don't exercise much", "low exercise", "minimal", "lazy", "not active"]):
requirements['level'] = 'low'
requirements['importance'] = 0.95
# 中等運動量的精確識別
elif any(phrase in user_desc for phrase in ['30 minutes', 'half hour', 'moderate', 'balanced', 'walk about']):
if 'walk' in user_desc or 'daily' in user_desc:
requirements['level'] = 'moderate'
requirements['importance'] = 0.85 # 中等活動量的特殊標記
# 高運動量識別
elif any(word in user_desc for word in ['active', 'hiking', 'outdoor activities', 'running', 'outdoors', 'love hiking']):
requirements['level'] = 'high'
requirements['importance'] = 0.9
return requirements
def _analyze_noise_requirements(user_desc: str) -> dict:
"""分析噪音需求"""
requirements = {'tolerance': 'medium', 'importance': 0.5}
if any(word in user_desc for word in ['quiet', 'no bark', "won't bark", "doesn't bark", 'silent', 'peaceful']):
requirements['tolerance'] = 'low'
requirements['importance'] = 0.9
elif any(word in user_desc for word in ['loud', 'barking ok', 'noise ok']):
requirements['tolerance'] = 'high'
requirements['importance'] = 0.7
return requirements
def _analyze_size_requirements(user_desc: str) -> dict:
"""分析體型需求"""
requirements = {'preferred': 'any', 'importance': 0.5}
if any(word in user_desc for word in ['small', 'tiny', 'little', 'lap dog', 'compact']):
requirements['preferred'] = 'small'
requirements['importance'] = 0.8
elif any(word in user_desc for word in ['large', 'big', 'giant']):
requirements['preferred'] = 'large'
requirements['importance'] = 0.8
return requirements
def _analyze_family_requirements(user_desc: str) -> dict:
"""分析家庭需求"""
requirements = {'children': False, 'importance': 0.3}
if any(word in user_desc for word in ['children', 'kids', 'family', 'child']):
requirements['children'] = True
requirements['importance'] = 0.8
return requirements
def _calculate_space_compatibility(space_req: dict, breed_size: str, breed_exercise: str) -> float:
"""計算空間相容性分數 - 增強中等活動量處理"""
if space_req['type'] == 'apartment':
if 'small' in breed_size or 'toy' in breed_size:
base_score = 0.95
elif 'medium' in breed_size:
if 'low' in breed_exercise:
base_score = 0.75
else:
base_score = 0.45 # 降低中型犬在公寓的分數
elif 'large' in breed_size:
base_score = 0.05 # 大型犬極度不適合公寓
elif 'giant' in breed_size:
base_score = 0.01 # 超大型犬完全不適合公寓
else:
base_score = 0.7
elif space_req['type'] == 'medium_house':
# 中型房屋的特殊處理 - 適合中等活動量用戶
if 'small' in breed_size or 'toy' in breed_size:
base_score = 0.9
elif 'medium' in breed_size:
base_score = 0.95 # 中型犬在中型房屋很適合
elif 'large' in breed_size:
if 'moderate' in breed_exercise or 'low' in breed_exercise:
base_score = 0.8 # 低運動量大型犬還可以
else:
base_score = 0.6 # 高運動量大型犬不太適合
elif 'giant' in breed_size:
base_score = 0.3 # 超大型犬在中型房屋不太適合
else:
base_score = 0.85
else:
# 大型房屋的情況
if 'small' in breed_size or 'toy' in breed_size:
base_score = 0.85
elif 'medium' in breed_size:
base_score = 0.9
elif 'large' in breed_size or 'giant' in breed_size:
base_score = 0.95
else:
base_score = 0.8
return min(0.95, base_score)
def _calculate_exercise_compatibility(exercise_req: dict, breed_exercise: str) -> float:
"""計算運動需求相容性分數 - 增強中等活動量處理"""
if exercise_req['level'] == 'low':
if 'low' in breed_exercise or 'minimal' in breed_exercise:
return 0.95
elif 'moderate' in breed_exercise:
return 0.5 # 降低不匹配分數
elif 'high' in breed_exercise:
return 0.1 # 進一步降低高運動需求的匹配
else:
return 0.7
elif exercise_req['level'] == 'high':
if 'high' in breed_exercise:
return 0.95
elif 'moderate' in breed_exercise:
return 0.8
elif 'low' in breed_exercise:
return 0.6
else:
return 0.7
else: # moderate - 中等活動量的精確處理
if 'moderate' in breed_exercise:
return 0.95 # 完美匹配
elif 'low' in breed_exercise:
return 0.85 # 低運動需求的品種對中等活動量用戶也不錯
elif 'high' in breed_exercise:
return 0.5 # 中等活動量用戶不太適合高運動需求品種
else:
return 0.75
return 0.6
def _calculate_noise_compatibility(noise_req: dict, breed_noise: str) -> float:
"""計算噪音相容性分數,更好處理複合等級"""
breed_noise_lower = breed_noise.lower()
if noise_req['tolerance'] == 'low':
if 'low' in breed_noise_lower and 'moderate' not in breed_noise_lower:
return 0.95 # 純低噪音
elif 'low-moderate' in breed_noise_lower or 'low to moderate' in breed_noise_lower:
return 0.8 # 低到中等噪音,還可接受
elif breed_noise_lower in ['moderate']:
return 0.4 # 中等噪音有些問題
elif 'high' in breed_noise_lower:
return 0.1 # 高噪音不適合
else:
return 0.6 # 未知噪音水平,保守估計
elif noise_req['tolerance'] == 'high':
if 'high' in breed_noise_lower:
return 0.9
elif 'moderate' in breed_noise_lower:
return 0.85
elif 'low' in breed_noise_lower:
return 0.8 # 安靜犬對高容忍度的人也很好
else:
return 0.8
else: # moderate tolerance
if 'moderate' in breed_noise_lower:
return 0.9
elif 'low' in breed_noise_lower:
return 0.85
elif 'high' in breed_noise_lower:
return 0.6
else:
return 0.75
return 0.7
def _calculate_size_compatibility(size_req: dict, breed_size: str) -> float:
"""計算體型相容性分數"""
if size_req['preferred'] == 'small':
if any(word in breed_size for word in ['small', 'toy', 'tiny']):
return 0.9
elif 'medium' in breed_size:
return 0.6
else:
return 0.3
elif size_req['preferred'] == 'large':
if any(word in breed_size for word in ['large', 'giant']):
return 0.9
elif 'medium' in breed_size:
return 0.7
else:
return 0.4
return 0.7 # 無特別偏好
def _calculate_family_compatibility(family_req: dict, good_with_children: str, temperament: str) -> float:
"""計算家庭相容性分數"""
if family_req['children']:
if 'yes' in good_with_children.lower():
return 0.9
elif any(word in temperament for word in ['gentle', 'patient', 'friendly']):
return 0.8
elif 'no' in good_with_children.lower():
return 0.2
else:
return 0.6
return 0.7
def _apply_hard_constraints_enhanced(user_desc: str, breed_info: dict) -> float:
"""應用品種特性感知的動態懲罰機制"""
penalty = 0.0
# 建立懲罰衰減係數和補償機制
penalty_decay_factor = 0.7
breed_adaptability_bonus = 0.0
breed_size = breed_info.get('Size', '').lower()
breed_exercise = breed_info.get('Exercise Needs', '').lower()
breed_name = breed_info.get('Breed', '').replace(' ', '_')
# 公寓空間約束 - 品種特性感知懲罰機制
if 'apartment' in user_desc or 'small apartment' in user_desc:
if 'giant' in breed_size:
base_penalty = -0.35 # 減少基礎懲罰
# 特定品種適應性補償
adaptable_giants = ['Mastiff', 'Great Dane'] # 相對安靜的巨型犬
if any(adapt_breed in breed_name for adapt_breed in adaptable_giants):
breed_adaptability_bonus += 0.08
penalty += base_penalty * penalty_decay_factor
elif 'large' in breed_size:
base_penalty = -0.25 # 減少大型犬懲罰
# 適合公寓的大型犬補償
apartment_friendly_large = ['Greyhound', 'Great_Dane']
if any(apt_breed in breed_name for apt_breed in apartment_friendly_large):
breed_adaptability_bonus += 0.06
penalty += base_penalty * penalty_decay_factor
elif 'medium' in breed_size and 'high' in breed_exercise:
penalty += -0.15 * penalty_decay_factor # 進一步減少懲罰
# 運動需求不匹配 - 品種特性感知懲罰機制
if any(phrase in user_desc for phrase in ["don't exercise", "not active", "low exercise", "don't exercise much"]):
if 'high' in breed_exercise:
base_penalty = -0.28 # 減少基礎懲罰
# 低維護高運動犬種補償
adaptable_high_energy = ['Greyhound', 'Whippet'] # 運動爆發型,平時安靜
if any(adapt_breed in breed_name for adapt_breed in adaptable_high_energy):
breed_adaptability_bonus += 0.10
penalty += base_penalty * penalty_decay_factor
elif 'moderate' in breed_exercise:
penalty += -0.08 * penalty_decay_factor # 進一步減少懲罰
# 噪音控制需求不匹配 - 品種特性感知懲罰機制
if any(phrase in user_desc for phrase in ['quiet', "won't bark", "doesn't bark", "silent"]):
breed_noise = breed_noise_info.get(breed_name, {}).get('noise_level', 'moderate').lower()
if 'high' in breed_noise:
base_penalty = -0.18 # 減少基礎懲罰
# 訓練性良好的高噪音品種補償
trainable_vocal_breeds = ['German_Shepherd', 'Golden_Retriever']
if any(train_breed in breed_name for train_breed in trainable_vocal_breeds):
breed_adaptability_bonus += 0.05
penalty += base_penalty * penalty_decay_factor
elif 'moderate' in breed_noise and 'low' not in breed_noise:
penalty += -0.05 * penalty_decay_factor
# 體型偏好不匹配 - 漸進式懲罰
if any(phrase in user_desc for phrase in ['small', 'tiny', 'little']):
if 'giant' in breed_size:
penalty -= 0.35 # 超大型犬懲罰
elif 'large' in breed_size:
penalty -= 0.20 # 大型犬懲罰
# 中等活動量用戶的特殊約束處理 - 漸進式懲罰
moderate_activity_terms = ['30 minutes', 'half hour', 'moderate', 'balanced', 'medium-sized house']
if any(term in user_desc for term in moderate_activity_terms):
# 超大型犬對中等活動量用戶的適度懲罰
giant_breeds = ['Saint Bernard', 'Tibetan Mastiff', 'Great Dane', 'Mastiff', 'Newfoundland']
if any(giant in breed_name for giant in giant_breeds) or 'giant' in breed_size:
penalty -= 0.35 # 適度懲罰,不完全排除
# 中型房屋 + 超大型犬的額外考量
if 'medium-sized house' in user_desc and any(giant in breed_name for giant in giant_breeds):
if not any(high_activity in user_desc for high_activity in ['hiking', 'running', 'active', 'outdoor activities']):
penalty -= 0.15 # 輕度額外懲罰
# 30分鐘散步對極高運動需求品種的懲罰
if any(term in user_desc for term in ['30 minutes', 'half hour']) and 'walk' in user_desc:
high_energy_breeds = ['Siberian Husky', 'Border Collie', 'Jack Russell Terrier', 'Weimaraner']
if any(he_breed in breed_name for he_breed in high_energy_breeds) and 'high' in breed_exercise:
penalty -= 0.25 # 適度懲罰極高運動需求品種
# 添加特殊品種適應性補償機制
# 對於邊界適配品種,給予適度補償
boundary_adaptable_breeds = {
'Italian_Greyhound': 0.08, # 安靜、低維護的小型犬
'Boston_Bull': 0.06, # 適應性強的小型犬
'Havanese': 0.05, # 友好適應的小型犬
'Silky_terrier': 0.04, # 安靜的玩具犬
'Basset': 0.07 # 低能量但友好的中型犬
}
if breed_name in boundary_adaptable_breeds:
breed_adaptability_bonus += boundary_adaptable_breeds[breed_name]
# 應用品種適應性補償並設置懲罰上限
final_penalty = penalty + breed_adaptability_bonus
# 限制最大懲罰,避免單一約束主導評分
final_penalty = max(-0.4, final_penalty)
return final_penalty
def _get_basic_text_matching_recommendations(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
"""基本文字匹配推薦(SBERT 不可用時的後備方案)"""
try:
print("Using basic text matching as fallback...")
# 基本關鍵字匹配
keywords = user_description.lower().split()
breed_scores = []
# 從數據庫獲取品種清單
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog LIMIT 50")
basic_breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
except Exception as e:
print(f"Could not load breed list from database: {str(e)}")
# 後備品種清單
basic_breeds = [
'Labrador_Retriever', 'Golden_Retriever', 'German_Shepherd', 'French_Bulldog',
'Border_Collie', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier',
'Dachshund', 'Boxer', 'Siberian_Husky', 'Great_Dane', 'Pomeranian', 'Shih-Tzu',
'Maltese_Dog', 'Chihuahua', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
'Japanese_Spaniel', 'Toy_Terrier', 'Affenpinscher', 'Pekingese', 'Lhasa'
]
for breed in basic_breeds:
breed_info = get_dog_description(breed) or {}
breed_text = f"{breed} {breed_info.get('Temperament', '')} {breed_info.get('Size', '')} {breed_info.get('Description', '')}".lower()
# 計算關鍵字匹配分數
matches = sum(1 for keyword in keywords if keyword in breed_text)
base_score = min(0.95, 0.3 + (matches / len(keywords)) * 0.6)
# 應用增強匹配邏輯
enhanced_score = _calculate_enhanced_matching_score(
breed, breed_info, user_description, base_score
)
breed_scores.append((breed, enhanced_score['final_score'], breed_info, enhanced_score))
# 按分數排序
breed_scores.sort(key=lambda x: x[1], reverse=True)
recommendations = []
for i, (breed, final_score, breed_info, enhanced_score) in enumerate(breed_scores[:top_k]):
recommendation = {
'breed': breed.replace('_', ' '),
'rank': i + 1,
'overall_score': final_score,
'final_score': final_score,
'semantic_score': enhanced_score.get('weighted_score', final_score),
'comparative_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
'lifestyle_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
'size': breed_info.get('Size', 'Unknown'),
'temperament': breed_info.get('Temperament', 'Unknown'),
'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
'good_with_children': breed_info.get('Good with Children', 'Unknown'),
'lifespan': breed_info.get('Lifespan', '10-12 years'),
'description': breed_info.get('Description', 'No description available'),
'search_type': 'description',
'scores': enhanced_score.get('dimension_scores', {
'space': final_score * 0.9,
'exercise': final_score * 0.85,
'grooming': final_score * 0.8,
'experience': final_score * 0.75,
'noise': final_score * 0.7,
'family': final_score * 0.65
})
}
recommendations.append(recommendation)
return recommendations
except Exception as e:
error_msg = f"Error in basic text matching: {str(e)}"
print(f"ERROR: {error_msg}")
raise RuntimeError(error_msg) from e