PawMatchAI / scoring_calculation_system.py
DawnC's picture
Upload 18 files
1e4c9bc verified
raw
history blame
19.4 kB
from dataclasses import dataclass
from typing import Dict, List, Any, Optional
import math
import random
import numpy as np
import traceback
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from dimension_score_calculator import DimensionScoreCalculator
from score_integration_manager import ScoreIntegrationManager, UserPreferences
from bonus_penalty_engine import BonusPenaltyEngine
@dataclass
class DimensionalScore:
"""維度分數結構"""
dimension_name: str
raw_score: float # 原始計算分數 (0.0-1.0)
weight: float # 維度權重 (0.0-1.0)
display_score: float # 顯示分數 (0.0-1.0)
explanation: str # 評分說明
@dataclass
class UnifiedBreedScore:
"""統一品種評分結果"""
breed_name: str
overall_score: float # 總體分數 (0.0-1.0)
dimensional_scores: List[DimensionalScore] # 各維度分數
bonus_factors: Dict[str, float] # 加分因素
penalty_factors: Dict[str, float] # 扣分因素
confidence_level: float # 推薦信心度 (0.0-1.0)
match_explanation: str # 匹配說明
warnings: List[str] # 警告訊息
# 初始化計算器實例
_dimension_calculator = DimensionScoreCalculator()
_score_manager = ScoreIntegrationManager()
_bonus_engine = BonusPenaltyEngine()
def apply_size_filter(breed_score: float, user_preference: str, breed_size: str) -> float:
"""
強過濾機制,基於用戶的體型偏好過濾品種
Parameters:
breed_score (float): 原始品種評分
user_preference (str): 用戶偏好的體型
breed_size (str): 品種的實際體型
Returns:
float: 過濾後的評分,如果體型不符合會返回 0
"""
return _score_manager.apply_size_filter(breed_score, user_preference, breed_size)
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
"""計算品種額外加分"""
return BonusPenaltyEngine.calculate_breed_bonus(breed_info, user_prefs)
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""
計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
"""
return BonusPenaltyEngine.calculate_additional_factors(breed_info, user_prefs)
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
if user_prefs.size_preference != "no_preference":
if breed_info['Size'].lower() != user_prefs.size_preference.lower():
return {
'space': 0,
'exercise': 0,
'grooming': 0,
'experience': 0,
'health': 0,
'noise': 0,
'overall': 0,
'adaptability_bonus': 0
}
# 計算所有基礎分數並整合到字典中
scores = {
'space': _dimension_calculator.calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.yard_access != 'no_yard',
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': _dimension_calculator.calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time,
user_prefs.exercise_type,
breed_info['Size'],
user_prefs.living_space,
breed_info
),
'grooming': _dimension_calculator.calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': _dimension_calculator.calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': _dimension_calculator.calculate_health_score(
breed_info.get('Breed', ''),
user_prefs.health_sensitivity
),
'noise': _dimension_calculator.calculate_noise_score(
breed_info.get('Breed', ''),
user_prefs.noise_tolerance,
user_prefs.living_space,
user_prefs.has_children,
user_prefs.children_age
)
}
final_score = _score_manager.calculate_breed_compatibility_score(
scores=scores,
user_prefs=user_prefs,
breed_info=breed_info
)
# 計算環境適應性加成
adaptability_bonus = _score_manager.calculate_environmental_fit(breed_info, user_prefs)
if (breed_info.get('Exercise Needs') == "Very High" and
user_prefs.living_space == "apartment" and
user_prefs.exercise_time < 90):
final_score *= 0.85 # 高運動需求但條件不足的懲罰
# 整合最終分數和加成
combined_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
# 體型過濾
filtered_score = apply_size_filter(
breed_score=combined_score,
user_preference=user_prefs.size_preference,
breed_size=breed_info['Size']
)
final_score = _bonus_engine.amplify_score_extreme(filtered_score)
# 更新並返回完整的評分結果
scores.update({
'overall': final_score,
'size': breed_info['Size'],
'adaptability_bonus': adaptability_bonus
})
return scores
except Exception as e:
print(f"\n!!!!! Critical Error Occurred !!!!!")
print(f"Error Type: {type(e).__name__}")
print(f"Error Message: {str(e)}")
print(f"Full Error Traceback:")
print(traceback.format_exc())
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
"""計算品種與環境的適應性加成"""
return _score_manager.calculate_environmental_fit(breed_info, user_prefs)
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
"""計算品種相容性總分"""
return _score_manager.calculate_breed_compatibility_score(scores, user_prefs, breed_info)
def amplify_score_extreme(score: float) -> float:
"""
優化分數分布,提供更有意義的評分範圍。
純粹進行數學轉換,不依賴外部資訊。
Parameters:
score: 原始評分(0-1之間的浮點數)
Returns:
float: 調整後的評分(0-1之間的浮點數)
"""
return _bonus_engine.amplify_score_extreme(score)
class UnifiedScoringSystem:
"""統一評分系統核心類"""
def __init__(self):
"""初始化評分系統"""
self.dimension_weights = {
'space_compatibility': 0.30, # Increased from 0.25
'exercise_compatibility': 0.25, # Increased from 0.20
'grooming_compatibility': 0.10, # Reduced from 0.15
'experience_compatibility': 0.10, # Reduced from 0.15
'noise_compatibility': 0.15, # Adjusted
'family_compatibility': 0.10 # Added
}
random.seed(42) # 確保一致性
def calculate_space_compatibility(self, breed_info: Dict, user_prefs: UserPreferences) -> DimensionalScore:
"""計算空間適配性分數"""
breed_size = breed_info.get('Size', 'Medium').lower()
living_space = user_prefs.living_space
yard_access = user_prefs.yard_access
# 基礎空間評分邏輯
space_score = 0.5 # 基礎分數
explanation_parts = []
# Enhanced size-space matrix with stricter penalties
size_space_matrix = {
'apartment': {
'toy': 0.95, 'small': 0.90, 'medium': 0.50, # Reduced medium score
'large': 0.15, 'giant': 0.05 # Severe penalties for large/giant
},
'house_small': {
'toy': 0.85, 'small': 0.90, 'medium': 0.85,
'large': 0.60, 'giant': 0.30 # Still penalize giant breeds
},
'house_medium': { # Added for medium houses
'toy': 0.80, 'small': 0.85, 'medium': 0.95,
'large': 0.85, 'giant': 0.60 # Giants still not ideal
},
'house_large': {
'toy': 0.75, 'small': 0.80, 'medium': 0.90,
'large': 0.95, 'giant': 0.95
}
}
# Determine actual living space category
if 'apartment' in living_space or 'small' in living_space:
space_category = 'apartment'
elif 'medium' in living_space:
space_category = 'house_medium'
elif 'large' in living_space:
space_category = 'house_large'
else:
space_category = 'house_small'
# Get base score from matrix
base_score = size_space_matrix[space_category].get(
self._normalize_size(breed_size), 0.5
)
# Apply additional penalties for exercise needs in small spaces
if space_category == 'apartment':
exercise_needs = breed_info.get('Exercise Needs', '').lower()
if 'high' in exercise_needs:
base_score *= 0.7 # 30% additional penalty
if 'very high' in exercise_needs:
base_score *= 0.5 # 50% additional penalty
space_score = base_score
explanation_parts = []
if base_score < 0.3:
explanation_parts.append(f"Poor match: {breed_size} dog in {space_category}")
elif base_score < 0.7:
explanation_parts.append(f"Moderate match: {breed_size} dog in {space_category}")
else:
explanation_parts.append(f"Good match: {breed_size} dog in {space_category}")
# 院子需求調整
if yard_access == 'private_yard':
space_score = min(1.0, space_score + 0.1)
explanation_parts.append("Private yard bonus")
elif yard_access == 'no_yard' and breed_size in ['large', 'giant']:
space_score *= 0.7
explanation_parts.append("Large dog without yard penalty")
# 運動需求考量
exercise_needs = breed_info.get('Exercise Needs', 'Moderate').lower()
if exercise_needs in ['high', 'very high'] and living_space == 'apartment':
space_score *= 0.8
explanation_parts.append("High exercise needs in apartment limitation")
explanation = "; ".join(explanation_parts)
return DimensionalScore(
dimension_name='space_compatibility',
raw_score=space_score,
weight=self.dimension_weights['space_compatibility'],
display_score=space_score,
explanation=explanation
)
def calculate_exercise_compatibility(self, breed_info: Dict, user_prefs: UserPreferences) -> DimensionalScore:
"""計算運動適配性分數"""
breed_exercise_needs = breed_info.get('Exercise Needs', 'Moderate').lower()
user_exercise_time = user_prefs.exercise_time
user_exercise_type = user_prefs.exercise_type
# 運動需求映射
exercise_requirements = {
'low': {'min_time': 20, 'ideal_time': 30},
'moderate': {'min_time': 45, 'ideal_time': 60},
'high': {'min_time': 90, 'ideal_time': 120},
'very high': {'min_time': 120, 'ideal_time': 180}
}
breed_req = exercise_requirements.get(breed_exercise_needs, exercise_requirements['moderate'])
# 基礎時間匹配度
if user_exercise_time >= breed_req['ideal_time']:
time_score = 1.0
time_explanation = "Sufficient exercise time"
elif user_exercise_time >= breed_req['min_time']:
time_score = 0.7 + 0.3 * (user_exercise_time - breed_req['min_time']) / (breed_req['ideal_time'] - breed_req['min_time'])
time_explanation = "Exercise time meets basic requirements"
else:
time_score = 0.3 * user_exercise_time / breed_req['min_time']
time_explanation = "Insufficient exercise time"
# Enhanced compatibility matrix
breed_level = self._parse_exercise_level(breed_exercise_needs)
user_level = self._get_user_exercise_level(user_exercise_time)
compatibility_matrix = {
('low', 'low'): 1.0,
('low', 'moderate'): 0.85,
('low', 'high'): 0.40, # Stronger penalty
('low', 'very high'): 0.15, # Severe penalty
('moderate', 'low'): 0.70,
('moderate', 'moderate'): 1.0,
('moderate', 'high'): 0.85,
('moderate', 'very high'): 0.60,
('high', 'low'): 0.20, # Severe penalty
('high', 'moderate'): 0.65,
('high', 'high'): 1.0,
('high', 'very high'): 0.90,
}
base_score = compatibility_matrix.get((user_level, breed_level), 0.5)
# Check for exercise type compatibility
if hasattr(user_prefs, 'exercise_type'):
exercise_type_bonus = self._calculate_exercise_type_match(
breed_info, user_prefs.exercise_type
)
base_score = base_score * 0.8 + exercise_type_bonus * 0.2
exercise_score = base_score
explanation = f"{user_level} user with {breed_level} exercise breed"
return DimensionalScore(
dimension_name='exercise_compatibility',
raw_score=exercise_score,
weight=self.dimension_weights['exercise_compatibility'],
display_score=exercise_score,
explanation=explanation
)
def _normalize_size(self, breed_size: str) -> str:
"""Normalize breed size string"""
breed_size = breed_size.lower()
if 'giant' in breed_size:
return 'giant'
elif 'large' in breed_size:
return 'large'
elif 'medium' in breed_size:
return 'medium'
elif 'small' in breed_size:
return 'small'
elif 'toy' in breed_size or 'tiny' in breed_size:
return 'toy'
else:
return 'medium'
def _parse_exercise_level(self, exercise_description: str) -> str:
"""Parse exercise level from description"""
exercise_lower = exercise_description.lower()
if any(term in exercise_lower for term in ['very high', 'extremely high', 'intense']):
return 'very high'
elif 'high' in exercise_lower:
return 'high'
elif any(term in exercise_lower for term in ['low', 'minimal']):
return 'low'
else:
return 'moderate'
def _get_user_exercise_level(self, minutes: int) -> str:
"""Convert exercise minutes to level"""
if minutes < 30:
return 'low'
elif minutes < 60:
return 'moderate'
else:
return 'high'
def _calculate_exercise_type_match(self, breed_info: Dict, user_type: str) -> float:
"""Calculate exercise type compatibility"""
breed_description = str(breed_info.get('Exercise Needs', '')).lower()
if user_type == 'active_training':
if any(term in breed_description for term in ['agility', 'working', 'herding']):
return 1.0
elif 'sprint' in breed_description:
return 0.6 # Afghan Hound case
elif user_type == 'light_walks':
if any(term in breed_description for term in ['gentle', 'moderate', 'light']):
return 1.0
elif any(term in breed_description for term in ['intense', 'vigorous']):
return 0.3
return 0.7 # Default moderate match
def calculate_unified_breed_score(self, breed_name: str, user_prefs: UserPreferences) -> UnifiedBreedScore:
"""計算統一品種分數"""
# 獲取品種資訊
try:
breed_info = get_dog_description(breed_name.replace(' ', '_'))
except ImportError:
breed_info = None
if not breed_info:
return self._get_default_breed_score(breed_name)
breed_info['breed_name'] = breed_name
# 計算各維度分數 (簡化版,包含主要維度)
dimensional_scores = [
self.calculate_space_compatibility(breed_info, user_prefs),
self.calculate_exercise_compatibility(breed_info, user_prefs)
]
# 計算加權總分
weighted_sum = sum(score.raw_score * score.weight for score in dimensional_scores)
total_weight = sum(score.weight for score in dimensional_scores)
base_overall_score = weighted_sum / total_weight if total_weight > 0 else 0.5
# 計算加分和扣分因素
bonus_factors = {}
penalty_factors = {}
# 應用加分扣分
overall_score = max(0.0, min(1.0, base_overall_score))
return UnifiedBreedScore(
breed_name=breed_name,
overall_score=overall_score,
dimensional_scores=dimensional_scores,
bonus_factors=bonus_factors,
penalty_factors=penalty_factors,
confidence_level=0.8,
match_explanation=f"Breed assessment for {breed_name} based on unified scoring system",
warnings=[]
)
def _get_default_breed_score(self, breed_name: str) -> UnifiedBreedScore:
"""獲取預設品種分數"""
default_dimensional_scores = [
DimensionalScore('space_compatibility', 0.6, 0.25, 0.6, 'Insufficient information'),
DimensionalScore('exercise_compatibility', 0.6, 0.20, 0.6, 'Insufficient information')
]
return UnifiedBreedScore(
breed_name=breed_name,
overall_score=0.6,
dimensional_scores=default_dimensional_scores,
bonus_factors={},
penalty_factors={},
confidence_level=0.3,
match_explanation="Insufficient data available, recommend further research on this breed",
warnings=["Incomplete breed information, scores are for reference only"]
)
def calculate_unified_breed_scores(breed_list: List[str], user_prefs: UserPreferences) -> List[UnifiedBreedScore]:
"""計算多個品種的統一分數"""
scoring_system = UnifiedScoringSystem()
scores = []
for breed in breed_list:
breed_score = scoring_system.calculate_unified_breed_score(breed, user_prefs)
scores.append(breed_score)
# 按總分排序
scores.sort(key=lambda x: x.overall_score, reverse=True)
return scores