PawMatchAI / query_understanding.py
DawnC's picture
Upload 18 files
1e4c9bc verified
raw
history blame
20.1 kB
import re
import json
import numpy as np
import sqlite3
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass, field
import traceback
from sentence_transformers import SentenceTransformer
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
@dataclass
class QueryDimensions:
"""Structured query intent data structure"""
spatial_constraints: List[str] = field(default_factory=list)
activity_level: List[str] = field(default_factory=list)
noise_preferences: List[str] = field(default_factory=list)
size_preferences: List[str] = field(default_factory=list)
family_context: List[str] = field(default_factory=list)
maintenance_level: List[str] = field(default_factory=list)
special_requirements: List[str] = field(default_factory=list)
breed_mentions: List[str] = field(default_factory=list)
confidence_scores: Dict[str, float] = field(default_factory=dict)
@dataclass
class DimensionalSynonyms:
"""Dimensional synonyms dictionary structure"""
spatial: Dict[str, List[str]] = field(default_factory=dict)
activity: Dict[str, List[str]] = field(default_factory=dict)
noise: Dict[str, List[str]] = field(default_factory=dict)
size: Dict[str, List[str]] = field(default_factory=dict)
family: Dict[str, List[str]] = field(default_factory=dict)
maintenance: Dict[str, List[str]] = field(default_factory=dict)
special: Dict[str, List[str]] = field(default_factory=dict)
class QueryUnderstandingEngine:
"""
多維度語義查詢理解引擎
支援中英文自然語言理解並轉換為結構化品種推薦查詢
"""
def __init__(self):
"""初始化查詢理解引擎"""
self.sbert_model = None
self.breed_list = self._load_breed_list()
self.synonyms = self._initialize_synonyms()
self.semantic_templates = {}
self._initialize_sbert_model()
self._build_semantic_templates()
def _load_breed_list(self) -> List[str]:
"""載入品種清單"""
try:
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog")
breeds = [row[0] for row in cursor.fetchall()]
cursor.close()
conn.close()
return breeds
except Exception as e:
print(f"Error loading breed list: {str(e)}")
# 備用品種清單
return ['Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever',
'Bulldog', 'Poodle', 'Beagle', 'Border_Collie', 'Yorkshire_Terrier']
def _initialize_sbert_model(self):
"""初始化 SBERT 模型"""
try:
model_options = ['all-MiniLM-L6-v2', 'all-mpnet-base-v2', 'all-MiniLM-L12-v2']
for model_name in model_options:
try:
self.sbert_model = SentenceTransformer(model_name)
print(f"SBERT model {model_name} loaded successfully for query understanding")
return
except Exception as e:
print(f"Failed to load {model_name}: {str(e)}")
continue
print("All SBERT models failed to load. Using keyword-only analysis.")
self.sbert_model = None
except Exception as e:
print(f"Failed to initialize SBERT model: {str(e)}")
self.sbert_model = None
def _initialize_synonyms(self) -> DimensionalSynonyms:
"""初始化多維度同義詞字典"""
return DimensionalSynonyms(
spatial={
'apartment': ['apartment', 'flat', 'condo', 'small space', 'city living',
'urban', 'no yard', 'indoor'],
'house': ['house', 'home', 'yard', 'garden', 'backyard', 'large space',
'suburban', 'rural', 'farm']
},
activity={
'low': ['low activity', 'sedentary', 'couch potato', 'minimal exercise',
'indoor lifestyle', 'lazy', 'calm'],
'moderate': ['moderate activity', 'daily walks', 'light exercise',
'regular walks'],
'high': ['high activity', 'energetic', 'active', 'exercise', 'hiking',
'running', 'jogging', 'outdoor sports']
},
noise={
'low': ['quiet', 'silent', 'no barking', 'peaceful', 'low noise',
'rarely barks', 'soft-spoken'],
'moderate': ['moderate barking', 'occasional barking'],
'high': ['loud', 'barking', 'vocal', 'noisy', 'frequent barking',
'alert dog']
},
size={
'small': ['small', 'tiny', 'little', 'compact', 'miniature', 'toy',
'lap dog'],
'medium': ['medium', 'moderate size', 'average', 'mid-sized'],
'large': ['large', 'big', 'giant', 'huge', 'massive', 'great']
},
family={
'children': ['children', 'kids', 'family', 'child-friendly', 'toddler',
'baby', 'school age'],
'elderly': ['elderly', 'senior', 'old people', 'retirement', 'aged'],
'single': ['single', 'alone', 'individual', 'solo', 'myself']
},
maintenance={
'low': ['low maintenance', 'easy care', 'simple', 'minimal grooming',
'wash and go'],
'moderate': ['moderate maintenance', 'regular grooming'],
'high': ['high maintenance', 'professional grooming', 'daily brushing',
'care intensive']
},
special={
'guard': ['guard dog', 'protection', 'security', 'watchdog',
'protective', 'defender'],
'companion': ['companion', 'therapy', 'emotional support', 'comfort',
'cuddly', 'lap dog'],
'hypoallergenic': ['hypoallergenic', 'allergies', 'non-shedding',
'allergy-friendly', 'no shed'],
'first_time': ['first time', 'beginner', 'new to dogs', 'inexperienced',
'never owned']
}
)
def _build_semantic_templates(self):
"""建立語義模板向量(僅在 SBERT 可用時)"""
if not self.sbert_model:
return
try:
# 為每個維度建立模板句子
templates = {
'spatial_apartment': "I live in an apartment with limited space and no yard",
'spatial_house': "I live in a house with a large yard and outdoor space",
'activity_low': "I prefer a calm, low-energy dog that doesn't need much exercise",
'activity_high': "I want an active, energetic dog for hiking and outdoor activities",
'noise_low': "I need a quiet dog that rarely barks and won't disturb neighbors",
'noise_high': "I don't mind a vocal dog that barks and makes noise",
'size_small': "I prefer small, compact dogs that are easy to handle",
'size_large': "I want a large, impressive dog with strong presence",
'family_children': "I have young children and need a child-friendly dog",
'family_elderly': "I'm looking for a calm companion dog for elderly person",
'maintenance_low': "I want a low-maintenance dog that's easy to care for",
'maintenance_high': "I don't mind high-maintenance dogs requiring professional grooming"
}
# 生成模板向量
for key, template in templates.items():
embedding = self.sbert_model.encode(template, convert_to_tensor=False)
self.semantic_templates[key] = embedding
print(f"Built {len(self.semantic_templates)} semantic templates")
except Exception as e:
print(f"Error building semantic templates: {str(e)}")
self.semantic_templates = {}
def analyze_query(self, user_input: str) -> QueryDimensions:
"""
分析使用者查詢並提取多維度意圖
Args:
user_input: 使用者的自然語言查詢
Returns:
QueryDimensions: 結構化的查詢維度
"""
try:
# 正規化輸入文字
normalized_input = user_input.lower().strip()
# 基於關鍵字的維度分析
dimensions = self._extract_keyword_dimensions(normalized_input)
# 如果 SBERT 可用,進行語義分析增強
if self.sbert_model:
semantic_dimensions = self._extract_semantic_dimensions(user_input)
dimensions = self._merge_dimensions(dimensions, semantic_dimensions)
# 提取品種提及
dimensions.breed_mentions = self._extract_breed_mentions(normalized_input)
# 計算信心分數
dimensions.confidence_scores = self._calculate_confidence_scores(dimensions, user_input)
return dimensions
except Exception as e:
print(f"Error analyzing query: {str(e)}")
print(traceback.format_exc())
# 回傳空的維度結構
return QueryDimensions()
def _extract_keyword_dimensions(self, text: str) -> QueryDimensions:
"""基於關鍵字提取維度"""
dimensions = QueryDimensions()
# 空間限制分析
for category, keywords in self.synonyms.spatial.items():
if any(keyword in text for keyword in keywords):
dimensions.spatial_constraints.append(category)
# 活動水平分析
for level, keywords in self.synonyms.activity.items():
if any(keyword in text for keyword in keywords):
dimensions.activity_level.append(level)
# 噪音偏好分析
for level, keywords in self.synonyms.noise.items():
if any(keyword in text for keyword in keywords):
dimensions.noise_preferences.append(level)
# 尺寸偏好分析
for size, keywords in self.synonyms.size.items():
if any(keyword in text for keyword in keywords):
dimensions.size_preferences.append(size)
# 家庭情況分析
for context, keywords in self.synonyms.family.items():
if any(keyword in text for keyword in keywords):
dimensions.family_context.append(context)
# 維護水平分析
for level, keywords in self.synonyms.maintenance.items():
if any(keyword in text for keyword in keywords):
dimensions.maintenance_level.append(level)
# 特殊需求分析
for requirement, keywords in self.synonyms.special.items():
if any(keyword in text for keyword in keywords):
dimensions.special_requirements.append(requirement)
return dimensions
def _extract_semantic_dimensions(self, text: str) -> QueryDimensions:
"""基於語義相似度提取維度(需要 SBERT)"""
if not self.sbert_model or not self.semantic_templates:
return QueryDimensions()
try:
# 生成查詢向量
query_embedding = self.sbert_model.encode(text, convert_to_tensor=False)
dimensions = QueryDimensions()
# 計算與各個模板的相似度
similarities = {}
for template_key, template_embedding in self.semantic_templates.items():
similarity = np.dot(query_embedding, template_embedding) / (
np.linalg.norm(query_embedding) * np.linalg.norm(template_embedding)
)
similarities[template_key] = similarity
# 設定相似度閾值
threshold = 0.5
# 根據相似度提取維度
for template_key, similarity in similarities.items():
if similarity > threshold:
if template_key.startswith('spatial_'):
category = template_key.replace('spatial_', '')
if category not in dimensions.spatial_constraints:
dimensions.spatial_constraints.append(category)
elif template_key.startswith('activity_'):
level = template_key.replace('activity_', '')
if level not in dimensions.activity_level:
dimensions.activity_level.append(level)
elif template_key.startswith('noise_'):
level = template_key.replace('noise_', '')
if level not in dimensions.noise_preferences:
dimensions.noise_preferences.append(level)
elif template_key.startswith('size_'):
size = template_key.replace('size_', '')
if size not in dimensions.size_preferences:
dimensions.size_preferences.append(size)
elif template_key.startswith('family_'):
context = template_key.replace('family_', '')
if context not in dimensions.family_context:
dimensions.family_context.append(context)
elif template_key.startswith('maintenance_'):
level = template_key.replace('maintenance_', '')
if level not in dimensions.maintenance_level:
dimensions.maintenance_level.append(level)
return dimensions
except Exception as e:
print(f"Error in semantic dimension extraction: {str(e)}")
return QueryDimensions()
def _extract_breed_mentions(self, text: str) -> List[str]:
"""提取品種提及"""
mentioned_breeds = []
for breed in self.breed_list:
# 將品種名稱轉換為顯示格式
breed_display = breed.replace('_', ' ').lower()
breed_words = breed_display.split()
# 檢查品種名稱是否在文字中
breed_found = False
# 完整品種名稱匹配
if breed_display in text:
breed_found = True
else:
# 部分匹配(至少匹配品種名稱的主要部分)
main_word = breed_words[0] if breed_words else ""
if len(main_word) > 3 and main_word in text:
breed_found = True
if breed_found:
mentioned_breeds.append(breed)
return mentioned_breeds
def _merge_dimensions(self, keyword_dims: QueryDimensions,
semantic_dims: QueryDimensions) -> QueryDimensions:
"""合併關鍵字和語義維度"""
merged = QueryDimensions()
# 合併各個維度的結果(去重)
merged.spatial_constraints = list(set(
keyword_dims.spatial_constraints + semantic_dims.spatial_constraints
))
merged.activity_level = list(set(
keyword_dims.activity_level + semantic_dims.activity_level
))
merged.noise_preferences = list(set(
keyword_dims.noise_preferences + semantic_dims.noise_preferences
))
merged.size_preferences = list(set(
keyword_dims.size_preferences + semantic_dims.size_preferences
))
merged.family_context = list(set(
keyword_dims.family_context + semantic_dims.family_context
))
merged.maintenance_level = list(set(
keyword_dims.maintenance_level + semantic_dims.maintenance_level
))
merged.special_requirements = list(set(
keyword_dims.special_requirements + semantic_dims.special_requirements
))
return merged
def _calculate_confidence_scores(self, dimensions: QueryDimensions,
original_text: str) -> Dict[str, float]:
"""計算各維度的信心分數"""
confidence_scores = {}
# 基於匹配的關鍵字數量計算信心分數
text_length = len(original_text.split())
# 空間限制信心分數
spatial_matches = len(dimensions.spatial_constraints)
confidence_scores['spatial'] = min(1.0, spatial_matches * 0.5)
# 活動水平信心分數
activity_matches = len(dimensions.activity_level)
confidence_scores['activity'] = min(1.0, activity_matches * 0.5)
# 噪音偏好信心分數
noise_matches = len(dimensions.noise_preferences)
confidence_scores['noise'] = min(1.0, noise_matches * 0.5)
# 尺寸偏好信心分數
size_matches = len(dimensions.size_preferences)
confidence_scores['size'] = min(1.0, size_matches * 0.5)
# 家庭情況信心分數
family_matches = len(dimensions.family_context)
confidence_scores['family'] = min(1.0, family_matches * 0.5)
# 維護水平信心分數
maintenance_matches = len(dimensions.maintenance_level)
confidence_scores['maintenance'] = min(1.0, maintenance_matches * 0.5)
# 特殊需求信心分數
special_matches = len(dimensions.special_requirements)
confidence_scores['special'] = min(1.0, special_matches * 0.5)
# 品種提及信心分數
breed_matches = len(dimensions.breed_mentions)
confidence_scores['breeds'] = min(1.0, breed_matches * 0.3)
# 整體信心分數(基於總匹配數量和文字長度)
total_matches = sum([
spatial_matches, activity_matches, noise_matches, size_matches,
family_matches, maintenance_matches, special_matches, breed_matches
])
confidence_scores['overall'] = min(1.0, total_matches / max(1, text_length * 0.1))
return confidence_scores
def get_dimension_summary(self, dimensions: QueryDimensions) -> Dict[str, Any]:
"""獲取維度摘要信息"""
return {
'spatial_constraints': dimensions.spatial_constraints,
'activity_level': dimensions.activity_level,
'noise_preferences': dimensions.noise_preferences,
'size_preferences': dimensions.size_preferences,
'family_context': dimensions.family_context,
'maintenance_level': dimensions.maintenance_level,
'special_requirements': dimensions.special_requirements,
'breed_mentions': [breed.replace('_', ' ') for breed in dimensions.breed_mentions],
'confidence_scores': dimensions.confidence_scores,
'total_dimensions_detected': sum([
len(dimensions.spatial_constraints),
len(dimensions.activity_level),
len(dimensions.noise_preferences),
len(dimensions.size_preferences),
len(dimensions.family_context),
len(dimensions.maintenance_level),
len(dimensions.special_requirements)
])
}
# 便利函數
def analyze_user_query(user_input: str) -> QueryDimensions:
"""
便利函數:分析使用者查詢
Args:
user_input: 使用者的自然語言查詢
Returns:
QueryDimensions: 結構化的查詢維度
"""
engine = QueryUnderstandingEngine()
return engine.analyze_query(user_input)
def get_query_summary(user_input: str) -> Dict[str, Any]:
"""
便利函數:獲取查詢摘要
Args:
user_input: 使用者的自然語言查詢
Returns:
Dict: 查詢維度摘要
"""
engine = QueryUnderstandingEngine()
dimensions = engine.analyze_query(user_input)
return engine.get_dimension_summary(dimensions)