File size: 38,084 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
 
 
1e4c9bc
 
 
595e0a5
 
1e4c9bc
 
 
595e0a5
 
 
1e4c9bc
595e0a5
 
1e4c9bc
595e0a5
 
1e4c9bc
595e0a5
 
 
 
 
 
1e4c9bc
595e0a5
1e4c9bc
595e0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
 
1e4c9bc
595e0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
 
 
 
 
 
 
1e4c9bc
595e0a5
 
 
 
1e4c9bc
595e0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
595e0a5
 
 
 
 
 
 
 
 
 
 
1e4c9bc
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
 
 
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
 
1e4c9bc
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
 
 
 
1e4c9bc
 
 
 
 
 
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
595e0a5
1e4c9bc
595e0a5
 
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
595e0a5
 
 
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
595e0a5
1e4c9bc
595e0a5
1e4c9bc
 
 
 
 
 
 
595e0a5
1e4c9bc
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
595e0a5
1e4c9bc
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
 
 
1e4c9bc
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
595e0a5
c4c78dc
1e4c9bc
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
595e0a5
 
 
 
1e4c9bc
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
595e0a5
 
1e4c9bc
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595e0a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import random
import hashlib
import numpy as np
import sqlite3
import re
import traceback
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sentence_transformers import SentenceTransformer
import torch
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores
from query_understanding import QueryUnderstandingEngine, analyze_user_query
from constraint_manager import ConstraintManager, apply_breed_constraints
from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore
from score_calibrator import ScoreCalibrator, calibrate_breed_scores
from config_manager import get_config_manager, get_standardized_breed_data
from semantic_vector_manager import SemanticVectorManager, BreedDescriptionVector
from user_query_analyzer import UserQueryAnalyzer
from matching_score_calculator import MatchingScoreCalculator

class SemanticBreedRecommender:
    """
    增強的基於 SBERT 的語義品種推薦系統 (Facade Pattern)
    為狗品種推薦提供多維度自然語言理解
    """

    def __init__(self):
        """初始化語義品種推薦器"""
        # 初始化語義向量管理器
        self.vector_manager = SemanticVectorManager()

        # 初始化用戶查詢分析器
        self.query_analyzer = UserQueryAnalyzer(self.vector_manager.get_breed_list())

        # 初始化匹配評分計算器
        self.score_calculator = MatchingScoreCalculator(self.vector_manager.get_breed_list())

        # 保留原有屬性以維持向後兼容性
        self.model_name = self.vector_manager.model_name
        self.sbert_model = self.vector_manager.get_sbert_model()
        self.breed_vectors = self.vector_manager.get_breed_vectors()
        self.breed_list = self.vector_manager.get_breed_list()
        self.comparative_keywords = self.query_analyzer.comparative_keywords

        # 初始化增強系統組件(如果可用)
        try:
            self.query_engine = QueryUnderstandingEngine()
            self.constraint_manager = ConstraintManager()
            self.multi_head_scorer = None
            self.score_calibrator = ScoreCalibrator()
            self.config_manager = get_config_manager()

            # 如果 SBERT 模型可用,初始化多頭評分器
            if self.sbert_model:
                self.multi_head_scorer = MultiHeadScorer(self.sbert_model)
                print("Multi-head scorer initialized with SBERT model")
        except ImportError:
            print("Enhanced system components not available, using basic functionality")
            self.query_engine = None
            self.constraint_manager = None
            self.multi_head_scorer = None
            self.score_calibrator = None
            self.config_manager = None

    def _parse_comparative_preferences(self, user_input: str) -> Dict[str, float]:
        """解析比較性偏好表達"""
        return self.query_analyzer.parse_comparative_preferences(user_input)

    def _extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]:
        """增強的生活方式關鍵字提取,具有更好的模式匹配"""
        return self.query_analyzer.extract_lifestyle_keywords(user_input)

    def _apply_size_distribution_correction(self, recommendations: List[Dict]) -> List[Dict]:
        """應用尺寸分佈修正以防止大型品種偏差"""
        return self.score_calculator.apply_size_distribution_correction(recommendations)

    def _normalize_breed_size(self, size: str) -> str:
        """標準化品種尺寸到標準分類"""
        return self.score_calculator._normalize_breed_size(size)

    def _parse_user_requirements(self, user_input: str) -> Dict[str, Any]:
        """更準確地解析用戶需求"""
        return self.query_analyzer.parse_user_requirements(user_input)

    def _apply_hard_constraints(self, breed: str, user_input: str, breed_characteristics: Dict[str, Any]) -> float:
        """增強硬約束,具有更嚴格的懲罰"""
        return self.score_calculator.apply_hard_constraints(breed, user_input, breed_characteristics)

    def _calculate_lifestyle_bonus(self, breed_characteristics: Dict[str, Any],
                                 lifestyle_keywords: Dict[str, List[str]]) -> float:
        """增強生活方式匹配獎勵計算"""
        return self.score_calculator.calculate_lifestyle_bonus(breed_characteristics, lifestyle_keywords)

    def _apply_intelligent_trait_matching(self, recommendations: List[Dict], user_input: str) -> List[Dict]:
        """基於增強關鍵字提取和數據庫挖掘應用智能特徵匹配"""
        return self.score_calculator.apply_intelligent_trait_matching(recommendations, user_input)

    def _get_breed_info_from_standardized(self, standardized_info) -> Dict[str, Any]:
        """將標準化品種信息轉換為字典格式"""
        return self.score_calculator.get_breed_info_from_standardized(standardized_info)

    def _get_fallback_recommendations(self, top_k: int = 15) -> List[Dict[str, Any]]:
        """當增強系統失敗時獲取備用推薦"""
        return self.score_calculator.get_fallback_recommendations(top_k)

    def get_enhanced_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
        """
        增強的多維度語義品種推薦

        Args:
            user_input: 用戶的自然語言描述
            top_k: 返回的推薦數量

        Returns:
            增強評分的推薦品種列表
        """
        try:
            # 階段 1: 查詢理解
            if self.query_engine:
                dimensions = self.query_engine.analyze_query(user_input)
                print(f"Query dimensions detected: {len(dimensions.spatial_constraints + dimensions.activity_level + dimensions.noise_preferences + dimensions.size_preferences + dimensions.family_context + dimensions.maintenance_level + dimensions.special_requirements)} total dimensions")
            else:
                print("Query engine not available, using basic analysis")
                return self.get_semantic_recommendations(user_input, top_k)

            # 階段 2: 應用約束
            if self.constraint_manager:
                filter_result = self.constraint_manager.apply_constraints(dimensions, min_candidates=max(8, top_k))
                print(f"Constraint filtering: {len(self.breed_list)} -> {len(filter_result.passed_breeds)} candidates")

                if not filter_result.passed_breeds:
                    error_msg = f"No dog breeds match your requirements after applying constraints. Applied constraints: {filter_result.applied_constraints}. Consider relaxing some requirements."
                    print(f"ERROR: {error_msg}")
                    raise ValueError(error_msg)
            else:
                print("Constraint manager not available, using all breeds")
                filter_result = type('FilterResult', (), {
                    'passed_breeds': self.breed_list,
                    'applied_constraints': [],
                    'relaxed_constraints': [],
                    'warnings': []
                })()

            # 階段 3: 多頭評分
            if self.multi_head_scorer:
                breed_scores = self.multi_head_scorer.score_breeds(filter_result.passed_breeds, dimensions)
                print(f"Multi-head scoring completed for {len(breed_scores)} breeds")
            else:
                print("Multi-head scorer not available, using fallback scoring")
                return self.get_semantic_recommendations(user_input, top_k)

            # 階段 4: 分數校準
            if self.score_calibrator:
                breed_score_tuples = [(score.breed_name, score.final_score) for score in breed_scores]
                calibration_result = self.score_calibrator.calibrate_scores(breed_score_tuples)
                print(f"Score calibration: method={calibration_result.calibration_method}")
            else:
                print("Score calibrator not available, using raw scores")
                calibration_result = type('CalibrationResult', (), {
                    'score_mapping': {score.breed_name: score.final_score for score in breed_scores},
                    'calibration_method': 'none'
                })()

            # 階段 5: 生成最終推薦
            final_recommendations = []

            for i, breed_score in enumerate(breed_scores[:top_k]):
                breed_name = breed_score.breed_name

                # 獲取校準後的分數
                calibrated_score = calibration_result.score_mapping.get(breed_name, breed_score.final_score)

                # 獲取標準化品種信息
                if self.config_manager:
                    standardized_info = get_standardized_breed_data(breed_name.replace(' ', '_'))
                    if standardized_info:
                        breed_info = self._get_breed_info_from_standardized(standardized_info)
                    else:
                        breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}
                else:
                    breed_info = get_dog_description(breed_name.replace(' ', '_')) or {}

                recommendation = {
                    'breed': breed_name,
                    'rank': i + 1,
                    'overall_score': calibrated_score,
                    'final_score': calibrated_score,
                    'semantic_score': breed_score.semantic_component,
                    'attribute_score': breed_score.attribute_component,
                    'bidirectional_bonus': breed_score.bidirectional_bonus,
                    'confidence_score': breed_score.confidence_score,
                    'dimensional_breakdown': breed_score.dimensional_breakdown,
                    'explanation': breed_score.explanation,
                    'size': breed_info.get('Size', 'Unknown'),
                    'temperament': breed_info.get('Temperament', ''),
                    'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
                    'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
                    'good_with_children': breed_info.get('Good with Children', 'Yes'),
                    'lifespan': breed_info.get('Lifespan', '10-12 years'),
                    'description': breed_info.get('Description', ''),
                    'search_type': 'enhanced_description',
                    'calibration_method': calibration_result.calibration_method,
                    'applied_constraints': filter_result.applied_constraints,
                    'relaxed_constraints': filter_result.relaxed_constraints,
                    'warnings': filter_result.warnings
                }

                final_recommendations.append(recommendation)

            # 應用尺寸分佈修正
            corrected_recommendations = self._apply_size_distribution_correction(final_recommendations)

            # 階段 6: 應用智能特徵匹配增強
            intelligence_enhanced_recommendations = self._apply_intelligent_trait_matching(corrected_recommendations, user_input)

            print(f"Generated {len(intelligence_enhanced_recommendations)} enhanced semantic recommendations with intelligent trait matching")
            return intelligence_enhanced_recommendations

        except Exception as e:
            print(f"Error in enhanced semantic recommendations: {str(e)}")
            print(traceback.format_exc())
            # 回退到原始方法
            return self.get_semantic_recommendations(user_input, top_k)

    def get_semantic_recommendations(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
        """
        基於自然語言描述獲取品種推薦

        Args:
            user_input: 用戶的自然語言描述
            top_k: 返回的推薦數量

        Returns:
            推薦品種列表
        """
        try:
            print(f"Processing user input: {user_input}")

            # 檢查模型是否可用 - 如果不可用,則報錯
            if self.sbert_model is None:
                error_msg = "SBERT model not available. This could be due to:\n• Model download failed\n• Insufficient memory\n• Network connectivity issues\n\nPlease check your environment and try again."
                print(f"ERROR: {error_msg}")
                raise RuntimeError(error_msg)

            # 生成用戶輸入嵌入
            user_embedding = self.vector_manager.encode_text(user_input)

            # 解析比較性偏好
            comparative_prefs = self._parse_comparative_preferences(user_input)

            # 提取生活方式關鍵字
            lifestyle_keywords = self._extract_lifestyle_keywords(user_input)

            # 計算與所有品種的相似度並應用約束
            similarities = []

            for breed, breed_vector in self.breed_vectors.items():
                # 首先應用硬約束
                constraint_penalty = self._apply_hard_constraints(breed, user_input, breed_vector.characteristics)

                # 跳過違反關鍵約束的品種
                if constraint_penalty <= -1.0:  # 完全取消資格
                    continue

                # 基本語義相似度
                semantic_score = cosine_similarity(
                    [user_embedding],
                    [breed_vector.embedding]
                )[0][0]

                # 比較性偏好加權
                comparative_bonus = comparative_prefs.get(breed, 0.0)

                # 生活方式匹配獎勵
                lifestyle_bonus = self._calculate_lifestyle_bonus(
                    breed_vector.characteristics,
                    lifestyle_keywords
                )

                # 應用約束懲罰
                lifestyle_bonus += constraint_penalty

                # 更好分佈的增強組合分數
                # 應用指數縮放以創建更自然的分數分佈
                base_semantic = semantic_score ** 0.8  # 輕微壓縮高分
                enhanced_lifestyle = lifestyle_bonus * 2.0  # 放大生活方式匹配
                enhanced_comparative = comparative_bonus * 1.5  # 放大品種偏好

                final_score = (
                    base_semantic * 0.55 +
                    enhanced_comparative * 0.30 +
                    enhanced_lifestyle * 0.15
                )

                # 添加小的隨機變化以自然地打破平局
                random.seed(hash(breed))  # 對相同品種保持一致
                final_score += random.uniform(-0.03, 0.03)

                # 確保最終分數不超過 1.0
                final_score = min(1.0, final_score)

                similarities.append({
                    'breed': breed,
                    'score': final_score,
                    'semantic_score': semantic_score,
                    'comparative_bonus': comparative_bonus,
                    'lifestyle_bonus': lifestyle_bonus
                })

            # 計算平衡分佈的標準化顯示分數
            breed_display_scores = []

            # 首先,收集所有語義分數以進行標準化
            all_semantic_scores = [breed_data['semantic_score'] for breed_data in similarities]
            semantic_mean = np.mean(all_semantic_scores)
            semantic_std = np.std(all_semantic_scores) if len(all_semantic_scores) > 1 else 1.0

            for breed_data in similarities:
                breed = breed_data['breed']
                base_semantic = breed_data['semantic_score']

                # 標準化語義分數以防止極端異常值
                if semantic_std > 0:
                    normalized_semantic = (base_semantic - semantic_mean) / semantic_std
                    normalized_semantic = max(-2.0, min(2.0, normalized_semantic))  # 限制在 2 個標準差
                    scaled_semantic = 0.5 + (normalized_semantic * 0.1)  # 映射到 0.3-0.7 範圍
                else:
                    scaled_semantic = 0.5

                # 獲取品種特徵
                breed_info = get_dog_description(breed) if breed != 'Unknown' else {}
                breed_size = breed_info.get('Size', '').lower() if breed_info else ''
                exercise_needs = breed_info.get('Exercise Needs', '').lower() if breed_info else ''

                # 計算特徵匹配分數(比純語義相似度更重要)
                feature_score = 0.0
                user_text = user_input.lower()

                # 尺寸和空間需求(高權重)
                if any(term in user_text for term in ['apartment', 'small', 'limited space']):
                    if 'small' in breed_size:
                        feature_score += 0.25
                    elif 'medium' in breed_size:
                        feature_score += 0.05
                    elif 'large' in breed_size or 'giant' in breed_size:
                        feature_score -= 0.30

                # 運動需求(高權重)
                if any(term in user_text for term in ['low exercise', 'minimal exercise', "doesn't need", 'not much']):
                    if 'low' in exercise_needs or 'minimal' in exercise_needs:
                        feature_score += 0.20
                    elif 'high' in exercise_needs or 'very high' in exercise_needs:
                        feature_score -= 0.25
                elif any(term in user_text for term in ['active', 'high exercise', 'running', 'hiking']):
                    if 'high' in exercise_needs:
                        feature_score += 0.20
                    elif 'low' in exercise_needs:
                        feature_score -= 0.15

                # 家庭相容性
                if any(term in user_text for term in ['children', 'kids', 'family']):
                    good_with_children = breed_info.get('Good with Children', '') if breed_info else ''
                    if good_with_children == 'Yes':
                        feature_score += 0.10
                    elif good_with_children == 'No':
                        feature_score -= 0.20

                # 平衡權重組合分數
                final_score = (
                    scaled_semantic * 0.35 +  # 降低語義權重
                    feature_score * 0.45 +    # 增加特徵匹配權重
                    breed_data['lifestyle_bonus'] * 0.15 +
                    breed_data['comparative_bonus'] * 0.05
                )

                # 計算基本相容性分數
                base_compatibility = final_score

                # 應用自然分佈的動態評分
                if base_compatibility >= 0.9:  # 例外匹配
                    score_range = (0.92, 0.98)
                    position = (base_compatibility - 0.9) / 0.1
                elif base_compatibility >= 0.75:  # 優秀匹配
                    score_range = (0.85, 0.91)
                    position = (base_compatibility - 0.75) / 0.15
                elif base_compatibility >= 0.6:  # 良好匹配
                    score_range = (0.75, 0.84)
                    position = (base_compatibility - 0.6) / 0.15
                elif base_compatibility >= 0.45:  # 公平匹配
                    score_range = (0.65, 0.74)
                    position = (base_compatibility - 0.45) / 0.15
                elif base_compatibility >= 0.3:  # 較差匹配
                    score_range = (0.55, 0.64)
                    position = (base_compatibility - 0.3) / 0.15
                else:  # 非常差的匹配
                    score_range = (0.45, 0.54)
                    position = max(0, base_compatibility / 0.3)

                # 計算帶自然變化的最終分數
                score_span = score_range[1] - score_range[0]
                base_score = score_range[0] + (position * score_span)

                # 添加控制的隨機變化以進行自然排名
                random.seed(hash(breed + user_input[:15]))
                variation = random.uniform(-0.015, 0.015)
                display_score = round(max(0.45, min(0.98, base_score + variation)), 3)

                breed_display_scores.append({
                    'breed': breed,
                    'display_score': display_score,
                    'semantic_score': base_semantic,
                    'comparative_bonus': breed_data['comparative_bonus'],
                    'lifestyle_bonus': breed_data['lifestyle_bonus']
                })

            # 按顯示分數排序以確保排名一致性
            breed_display_scores.sort(key=lambda x: x['display_score'], reverse=True)
            top_breeds = breed_display_scores[:top_k]

            # 轉換為標準推薦格式
            recommendations = []
            for i, breed_data in enumerate(top_breeds):
                breed = breed_data['breed']
                display_score = breed_data['display_score']

                # 獲取詳細信息
                breed_info = get_dog_description(breed)

                recommendation = {
                    'breed': breed.replace('_', ' '),
                    'rank': i + 1,
                    'overall_score': display_score,  # 使用顯示分數以保持一致性
                    'final_score': display_score,    # 確保 final_score 與 overall_score 匹配
                    'semantic_score': breed_data['semantic_score'],
                    'comparative_bonus': breed_data['comparative_bonus'],
                    'lifestyle_bonus': breed_data['lifestyle_bonus'],
                    'size': breed_info.get('Size', 'Unknown') if breed_info else 'Unknown',
                    'temperament': breed_info.get('Temperament', '') if breed_info else '',
                    'exercise_needs': breed_info.get('Exercise Needs', 'Moderate') if breed_info else 'Moderate',
                    'grooming_needs': breed_info.get('Grooming Needs', 'Moderate') if breed_info else 'Moderate',
                    'good_with_children': breed_info.get('Good with Children', 'Yes') if breed_info else 'Yes',
                    'lifespan': breed_info.get('Lifespan', '10-12 years') if breed_info else '10-12 years',
                    'description': breed_info.get('Description', '') if breed_info else '',
                    'search_type': 'description'
                }

                recommendations.append(recommendation)

            print(f"Generated {len(recommendations)} semantic recommendations")
            return recommendations

        except Exception as e:
            print(f"Failed to generate semantic recommendations: {str(e)}")
            print(traceback.format_exc())
            return []

    def get_enhanced_recommendations_with_unified_scoring(self, user_input: str, top_k: int = 15) -> List[Dict[str, Any]]:
        """簡化的增強推薦方法"""
        try:
            print(f"Processing enhanced recommendation: {user_input[:50]}...")

            # 使用基本語意匹配
            return self.get_semantic_recommendations(user_input, top_k)

        except Exception as e:
            error_msg = f"Enhanced recommendation error: {str(e)}. Please check your description."
            print(f"ERROR: {error_msg}")
            print(traceback.format_exc())
            raise RuntimeError(error_msg) from e

    def _analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]:
        """增強用戶描述分析"""
        return self.query_analyzer.analyze_user_description_enhanced(user_description)

    def _create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> UserPreferences:
        """從分析結果創建用戶偏好物件"""
        return self.query_analyzer.create_user_preferences_from_analysis_enhanced(analysis)

    def _get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]:
        """獲取候選品種列表"""
        return self.query_analyzer.get_candidate_breeds_enhanced(analysis)

    def _apply_constraint_filtering_enhanced(self, breed: str, analysis: Dict[str, Any]) -> float:
        """應用約束過濾,返回調整分數"""
        # 這個方法需要從 score_calculator 調用適當的方法
        # 但原始實現中沒有這個具體方法,所以我們提供基本實現
        constraint_penalty = 0.0

        breed_info = get_dog_description(breed)
        if not breed_info:
            return constraint_penalty

        # 低噪音要求
        if 'low_noise' in analysis['constraint_requirements']:
            noise_info = breed_noise_info.get(breed, {})
            noise_level = noise_info.get('noise_level', 'moderate').lower()
            if 'high' in noise_level:
                constraint_penalty -= 0.3  # 嚴重扣分
            elif 'low' in noise_level:
                constraint_penalty += 0.1  # 輕微加分

        # 公寓適合性
        if 'apartment_suitable' in analysis['constraint_requirements']:
            size = breed_info.get('Size', '').lower()
            exercise_needs = breed_info.get('Exercise Needs', '').lower()

            if size in ['large', 'giant']:
                constraint_penalty -= 0.2
            elif size in ['small', 'tiny']:
                constraint_penalty += 0.1

            if 'high' in exercise_needs:
                constraint_penalty -= 0.15

        # 兒童友善性
        if 'child_friendly' in analysis['constraint_requirements']:
            good_with_children = breed_info.get('Good with Children', 'Unknown')
            if good_with_children == 'Yes':
                constraint_penalty += 0.15
            elif good_with_children == 'No':
                constraint_penalty -= 0.4  # 嚴重扣分

        return constraint_penalty

    def _get_breed_characteristics_enhanced(self, breed: str) -> Dict[str, Any]:
        """獲取品種特徵"""
        return self.score_calculator.get_breed_characteristics_enhanced(breed)

    def get_hybrid_recommendations(self, user_description: str,
                                 user_preferences: Optional[Any] = None,
                                 top_k: int = 15) -> List[Dict[str, Any]]:
        """
        混合推薦:結合語義匹配與傳統評分

        Args:
            user_description: 用戶的自然語言描述
            user_preferences: 可選的結構化偏好設置
            top_k: 返回的推薦數量

        Returns:
            混合推薦結果
        """
        try:
            # 獲取語義推薦
            semantic_recommendations = self.get_semantic_recommendations(user_description, top_k * 2)

            if not user_preferences:
                return semantic_recommendations[:top_k]

            # 與傳統評分結合
            hybrid_results = []

            for semantic_rec in semantic_recommendations:
                breed_name = semantic_rec['breed'].replace(' ', '_')

                # 計算傳統相容性分數
                traditional_score = calculate_compatibility_score(user_preferences, breed_name)

                # 混合分數(語義 40% + 傳統 60%)
                hybrid_score = (
                    semantic_rec['overall_score'] * 0.4 +
                    traditional_score * 0.6
                )

                semantic_rec['hybrid_score'] = hybrid_score
                semantic_rec['traditional_score'] = traditional_score
                hybrid_results.append(semantic_rec)

            # 按混合分數重新排序
            hybrid_results.sort(key=lambda x: x['hybrid_score'], reverse=True)

            # 更新排名
            for i, result in enumerate(hybrid_results[:top_k]):
                result['rank'] = i + 1
                result['overall_score'] = result['hybrid_score']

            return hybrid_results[:top_k]

        except Exception as e:
            print(f"Hybrid recommendation failed: {str(e)}")
            print(traceback.format_exc())
            return self.get_semantic_recommendations(user_description, top_k)


def get_breed_recommendations_by_description(user_description: str,
                                           user_preferences: Optional[Any] = None,
                                           top_k: int = 15) -> List[Dict[str, Any]]:
    """基於描述獲取品種推薦的主要介面函數"""
    try:
        print("Initializing Enhanced SemanticBreedRecommender...")
        recommender = SemanticBreedRecommender()

        # 優先使用整合統一評分系統的增強推薦
        print("Using enhanced recommendation system with unified scoring")
        results = recommender.get_enhanced_recommendations_with_unified_scoring(user_description, top_k)

        if results and len(results) > 0:
            print(f"Generated {len(results)} enhanced recommendations successfully")
            return results
        else:
            # 如果增強系統無結果,嘗試原有增強系統
            print("Enhanced unified system returned no results, trying original enhanced system")
            results = recommender.get_enhanced_semantic_recommendations(user_description, top_k)

            if results and len(results) > 0:
                return results
            else:
                # 最後回退到標準系統
                print("All enhanced systems failed, using standard system")
                if user_preferences:
                    results = recommender.get_hybrid_recommendations(user_description, user_preferences, top_k)
                else:
                    results = recommender.get_semantic_recommendations(user_description, top_k)

                if not results:
                    error_msg = f"All recommendation systems failed to generate results. Please check your input description and try again. Error details may be in the console."
                    print(f"ERROR: {error_msg}")
                    raise RuntimeError(error_msg)
                return results

    except Exception as e:
        error_msg = f"Critical error in recommendation system: {str(e)}. Please check your input and system configuration."
        print(f"ERROR: {error_msg}")
        print(traceback.format_exc())
        raise RuntimeError(error_msg) from e


def get_enhanced_recommendations_with_unified_scoring(user_description: str, top_k: int = 15) -> List[Dict[str, Any]]:
    """簡化版本:基本語意推薦功能"""
    try:
        print(f"Processing description-based recommendation: {user_description[:50]}...")

        # 創建基本推薦器實例
        recommender = SemanticBreedRecommender()

        if not recommender.vector_manager.is_model_available():
            print("SBERT model not available, using basic text matching...")
            # 使用基本文字匹配邏輯
            return _get_basic_text_matching_recommendations(user_description, top_k, recommender)

        # 使用語意相似度推薦
        recommendations = []
        user_embedding = recommender.vector_manager.encode_text(user_description)

        # 計算所有品種的增強分數
        all_breed_scores = []
        for breed_name, breed_vector in recommender.breed_vectors.items():
            breed_embedding = breed_vector.embedding
            similarity = cosine_similarity([user_embedding], [breed_embedding])[0][0]

            # 獲取品種資料
            breed_info = get_dog_description(breed_name) or {}

            # 計算增強的匹配分數
            enhanced_score = recommender.score_calculator.calculate_enhanced_matching_score(
                breed_name, breed_info, user_description, similarity
            )

            all_breed_scores.append((breed_name, enhanced_score, breed_info, similarity))

        # 按 final_score 排序(而不是語意相似度)
        all_breed_scores.sort(key=lambda x: x[1]['final_score'], reverse=True)
        top_breeds = all_breed_scores[:top_k]

        for i, (breed, enhanced_score, breed_info, similarity) in enumerate(top_breeds):
            recommendation = {
                'breed': breed.replace('_', ' '),
                'rank': i + 1,  # 正確的排名
                'overall_score': enhanced_score['final_score'],
                'final_score': enhanced_score['final_score'],
                'semantic_score': similarity,
                'comparative_bonus': enhanced_score['lifestyle_bonus'],
                'lifestyle_bonus': enhanced_score['lifestyle_bonus'],
                'size': breed_info.get('Size', 'Unknown'),
                'temperament': breed_info.get('Temperament', 'Unknown'),
                'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
                'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
                'good_with_children': breed_info.get('Good with Children', 'Unknown'),
                'lifespan': breed_info.get('Lifespan', '10-12 years'),
                'description': breed_info.get('Description', 'No description available'),
                'search_type': 'description',
                'scores': enhanced_score['dimension_scores']
            }
            recommendations.append(recommendation)

        print(f"Generated {len(recommendations)} semantic recommendations")
        return recommendations

    except Exception as e:
        error_msg = f"Error in semantic recommendation system: {str(e)}. Please check your input and try again."
        print(f"ERROR: {error_msg}")
        print(traceback.format_exc())
        raise RuntimeError(error_msg) from e

def _get_basic_text_matching_recommendations(user_description: str, top_k: int = 15, recommender=None) -> List[Dict[str, Any]]:
    """基本文字匹配推薦(SBERT 不可用時的後備方案)"""
    try:
        print("Using basic text matching as fallback...")

        # 如果沒有提供 recommender,創建一個新的
        if recommender is None:
            recommender = SemanticBreedRecommender()

        # 基本關鍵字匹配
        keywords = user_description.lower().split()
        breed_scores = []

        # 從數據庫獲取品種清單或使用預設清單
        try:
            conn = sqlite3.connect('animal_detector.db')
            cursor = conn.cursor()
            cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog LIMIT 50")
            basic_breeds = [row[0] for row in cursor.fetchall()]
            cursor.close()
            conn.close()
            # 過濾掉野生動物品種
            basic_breeds = [breed for breed in basic_breeds if breed != 'Dhole']
        except Exception as e:
            print(f"Could not load breed list from database: {str(e)}")
            # 後備品種清單
            basic_breeds = [
                'Labrador_Retriever', 'Golden_Retriever', 'German_Shepherd', 'French_Bulldog',
                'Border_Collie', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier',
                'Dachshund', 'Boxer', 'Siberian_Husky', 'Great_Dane', 'Pomeranian', 'Shih_Tzu',
                'Maltese_Dog', 'Chihuahua', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
                'Japanese_Spaniel', 'Toy_Terrier', 'Affenpinscher', 'Pekingese', 'Lhasa'
            ]

        for breed in basic_breeds:
            breed_info = get_dog_description(breed) or {}
            breed_text = f"{breed} {breed_info.get('Temperament', '')} {breed_info.get('Size', '')} {breed_info.get('Description', '')}".lower()

            # 計算關鍵字匹配分數
            matches = sum(1 for keyword in keywords if keyword in breed_text)
            base_score = min(0.95, 0.3 + (matches / len(keywords)) * 0.6)

            # 應用增強匹配邏輯
            enhanced_score = recommender.score_calculator.calculate_enhanced_matching_score(
                breed, breed_info, user_description, base_score
            )

            breed_scores.append((breed, enhanced_score['final_score'], breed_info, enhanced_score))

        # 按分數排序
        breed_scores.sort(key=lambda x: x[1], reverse=True)

        recommendations = []
        for i, (breed, final_score, breed_info, enhanced_score) in enumerate(breed_scores[:top_k]):
            recommendation = {
                'breed': breed.replace('_', ' '),
                'rank': i + 1,
                'overall_score': final_score,
                'final_score': final_score,
                'semantic_score': enhanced_score.get('weighted_score', final_score),
                'comparative_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
                'lifestyle_bonus': enhanced_score.get('lifestyle_bonus', 0.0),
                'size': breed_info.get('Size', 'Unknown'),
                'temperament': breed_info.get('Temperament', 'Unknown'),
                'exercise_needs': breed_info.get('Exercise Needs', 'Moderate'),
                'grooming_needs': breed_info.get('Grooming Needs', 'Moderate'),
                'good_with_children': breed_info.get('Good with Children', 'Unknown'),
                'lifespan': breed_info.get('Lifespan', '10-12 years'),
                'description': breed_info.get('Description', 'No description available'),
                'search_type': 'description',
                'scores': enhanced_score.get('dimension_scores', {
                    'space': final_score * 0.9,
                    'exercise': final_score * 0.85,
                    'grooming': final_score * 0.8,
                    'experience': final_score * 0.75,
                    'noise': final_score * 0.7,
                    'family': final_score * 0.65
                })
            }
            recommendations.append(recommendation)

        return recommendations

    except Exception as e:
        error_msg = f"Error in basic text matching: {str(e)}"
        print(f"ERROR: {error_msg}")
        raise RuntimeError(error_msg) from e