File size: 37,295 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7466dd7
1e4c9bc
 
 
 
 
7466dd7
 
1e4c9bc
 
 
 
 
7466dd7
 
1e4c9bc
 
 
 
 
7466dd7
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7466dd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import math
import traceback
from typing import Dict, Any, List
from dataclasses import dataclass

@dataclass
class UserPreferences:
    """使用者偏好設定的資料結構"""
    living_space: str  # "apartment", "house_small", "house_large"
    yard_access: str  # "no_yard", "shared_yard", "private_yard"
    exercise_time: int  # minutes per day
    exercise_type: str  # "light_walks", "moderate_activity", "active_training"
    grooming_commitment: str  # "low", "medium", "high"
    experience_level: str  # "beginner", "intermediate", "advanced"
    time_availability: str  # "limited", "moderate", "flexible"
    has_children: bool
    children_age: str  # "toddler", "school_age", "teenager"
    noise_tolerance: str  # "low", "medium", "high"
    space_for_play: bool
    other_pets: bool
    climate: str  # "cold", "moderate", "hot"
    health_sensitivity: str = "medium"
    barking_acceptance: str = None
    size_preference: str = "no_preference"  # "no_preference", "small", "medium", "large", "giant"
    training_commitment: str = "medium"  # "low", "medium", "high" - 訓練投入程度
    living_environment: str = "ground_floor"  # "ground_floor", "with_elevator", "walk_up" - 居住環境細節

    def __post_init__(self):
        if self.barking_acceptance is None:
            self.barking_acceptance = self.noise_tolerance


class ScoreIntegrationManager:
    """
    評分整合管理器類別
    負責動態權重計算、評分整合和條件互動評估
    """
    
    def __init__(self):
        """初始化評分整合管理器"""
        pass
    
    def apply_size_filter(self, breed_score: float, user_preference: str, breed_size: str) -> float:
        """
        強過濾機制,基於用戶的體型偏好過濾品種

        Parameters:
            breed_score (float): 原始品種評分
            user_preference (str): 用戶偏好的體型
            breed_size (str): 品種的實際體型

        Returns:
            float: 過濾後的評分,如果體型不符合會返回 0
        """
        if user_preference == "no_preference":
            return breed_score

        # 標準化 size 字串以進行比較
        breed_size = breed_size.lower().strip()
        user_preference = user_preference.lower().strip()

        # 特殊處理 "varies" 的情況
        if breed_size == "varies":
            return breed_score * 0.5  # 給予一個折扣係數,因為不確定性

        # 如果用戶有明確體型偏好但品種不符合,返回 0
        if user_preference != breed_size:
            return 0

        return breed_score

    def calculate_breed_compatibility_score(self, scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
        """
        計算品種相容性總分,完整實現原始版本的複雜邏輯:
        1. 運動類型與時間的精確匹配
        2. 進階使用者的專業需求
        3. 空間利用的實際效果
        4. 條件組合的嚴格評估
        """
        def evaluate_perfect_conditions():
            """
            評估條件匹配度,特別強化:
            1. 運動類型與時間的綜合評估
            2. 專業技能需求評估
            3. 品種特性評估
            """
            perfect_matches = {
                'size_match': 0,
                'exercise_match': 0,
                'experience_match': 0,
                'living_condition_match': 0,
                'breed_trait_match': 0  # 新增品種特性匹配度
            }

            # 第一部分:運動需求評估
            def evaluate_exercise_compatibility():
                """
                評估運動需求的匹配度,特別關注:
                1. 時間與強度的合理搭配
                2. 不同品種的運動特性
                3. 運動類型的適配性

                這個函數就像是一個體育教練,需要根據每個"運動員"(狗品種)的特點,
                為他們制定合適的訓練計劃。
                """
                exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
                exercise_time = user_prefs.exercise_time
                exercise_type = user_prefs.exercise_type
                temperament = breed_info.get('Temperament', '').lower()
                description = breed_info.get('Description', '').lower()

                # 定義更精確的品種運動特性
                breed_exercise_patterns = {
                    'sprint_type': {  # 短跑型犬種,如 Whippet, Saluki
                        'identifiers': ['fast', 'speed', 'sprint', 'racing', 'coursing', 'sight hound'],
                        'ideal_exercise': {
                            'active_training': 1.0,     # 完美匹配高強度訓練
                            'moderate_activity': 0.5,    # 持續運動不是最佳選擇
                            'light_walks': 0.3          # 輕度運動效果很差
                        },
                        'time_ranges': {
                            'ideal': (30, 60),          # 最適合的運動時間範圍
                            'acceptable': (20, 90),      # 可以接受的時間範圍
                            'penalty_start': 90         # 開始給予懲罰的時間點
                        },
                        'penalty_rate': 0.8            # 超出範圍時的懲罰係數
                    },
                    'endurance_type': {  # 耐力型犬種,如 Border Collie
                        'identifiers': ['herding', 'working', 'tireless', 'energetic', 'stamina', 'athletic'],
                        'ideal_exercise': {
                            'active_training': 0.9,     # 高強度訓練很好
                            'moderate_activity': 1.0,    # 持續運動是最佳選擇
                            'light_walks': 0.4          # 輕度運動不足
                        },
                        'time_ranges': {
                            'ideal': (90, 180),         # 需要較長的運動時間
                            'acceptable': (60, 180),
                            'penalty_start': 60         # 運動時間過短會受罰
                        },
                        'penalty_rate': 0.7
                    },
                    'moderate_type': {  # 一般活動型犬種,如 Labrador
                        'identifiers': ['friendly', 'playful', 'adaptable', 'versatile', 'companion'],
                        'ideal_exercise': {
                            'active_training': 0.8,
                            'moderate_activity': 1.0,
                            'light_walks': 0.6
                        },
                        'time_ranges': {
                            'ideal': (60, 120),
                            'acceptable': (45, 150),
                            'penalty_start': 150
                        },
                        'penalty_rate': 0.6
                    }
                }

                def determine_breed_type():
                    """改進品種運動類型的判斷,更精確識別工作犬"""
                    # 優先檢查特殊運動類型的標識符
                    for breed_type, pattern in breed_exercise_patterns.items():
                        if any(identifier in temperament or identifier in description
                              for identifier in pattern['identifiers']):
                            return breed_type

                    # 改進:根據運動需求和工作犬特徵進行更細緻的判斷
                    if (exercise_needs in ['VERY HIGH', 'HIGH'] or
                        any(trait in temperament.lower() for trait in
                            ['herding', 'working', 'intelligent', 'athletic', 'tireless'])):
                        if user_prefs.experience_level == 'advanced':
                            return 'endurance_type'  # 優先判定為耐力型
                    elif exercise_needs == 'LOW':
                        return 'moderate_type'

                    return 'moderate_type'

                def calculate_time_match(pattern):
                    """
                    計算運動時間的匹配度。
                    這就像在判斷運動時間是否符合訓練計劃。
                    """
                    ideal_min, ideal_max = pattern['time_ranges']['ideal']
                    accept_min, accept_max = pattern['time_ranges']['acceptable']
                    penalty_start = pattern['time_ranges']['penalty_start']

                    # 在理想範圍內
                    if ideal_min <= exercise_time <= ideal_max:
                        return 1.0

                    # 超出可接受範圍的嚴格懲罰
                    elif exercise_time < accept_min:
                        deficit = accept_min - exercise_time
                        return max(0.2, 1 - (deficit / accept_min) * 1.2)
                    elif exercise_time > accept_max:
                        excess = exercise_time - penalty_start
                        penalty = min(0.8, (excess / penalty_start) * pattern['penalty_rate'])
                        return max(0.2, 1 - penalty)

                    # 在可接受範圍但不在理想範圍
                    else:
                        if exercise_time < ideal_min:
                            progress = (exercise_time - accept_min) / (ideal_min - accept_min)
                            return 0.6 + (0.4 * progress)
                        else:
                            remaining = (accept_max - exercise_time) / (accept_max - ideal_max)
                            return 0.6 + (0.4 * remaining)

                def apply_special_adjustments(time_score, type_score, breed_type, pattern):
                    """
                    處理特殊情況,確保運動方式真正符合品種需求。
                    特別加強:
                    1. 短跑型犬種的長時間運動懲罰
                    2. 耐力型犬種的獎勵機制
                    3. 運動類型匹配的重要性
                    """
                    # 短跑型品種的特殊處理
                    if breed_type == 'sprint_type':
                        if exercise_time > pattern['time_ranges']['penalty_start']:
                            # 加重長時間運動的懲罰
                            penalty_factor = min(0.8, (exercise_time - pattern['time_ranges']['penalty_start']) / 60)
                            time_score *= max(0.3, 1 - penalty_factor)  # 最低降到0.3
                            # 運動類型不適合時的額外懲罰
                            if exercise_type != 'active_training':
                                type_score *= 0.3  # 更嚴重的懲罰

                    # 耐力型品種的特殊處理
                    elif breed_type == 'endurance_type':
                        if exercise_time < pattern['time_ranges']['penalty_start']:
                            time_score *= 0.5  # 維持運動不足的懲罰
                        elif exercise_time >= 150:  # 新增:高運動量獎勵
                            if exercise_type in ['active_training', 'moderate_activity']:
                                time_bonus = min(0.3, (exercise_time - 150) / 150)
                                time_score = min(1.0, time_score * (1 + time_bonus))
                                type_score = min(1.0, type_score * 1.2)

                        # 運動強度不足的懲罰
                        if exercise_type == 'light_walks':
                            if exercise_time > 90:
                                type_score *= 0.4  # 加重懲罰
                            else:
                                type_score *= 0.5

                    return time_score, type_score

                # 執行評估流程
                breed_type = determine_breed_type()
                pattern = breed_exercise_patterns[breed_type]

                # 計算基礎分數
                time_score = calculate_time_match(pattern)
                type_score = pattern['ideal_exercise'].get(exercise_type, 0.5)

                # 應用特殊調整
                time_score, type_score = apply_special_adjustments(time_score, type_score, breed_type, pattern)

                # 根據品種類型決定最終權重
                if breed_type == 'sprint_type':
                    if exercise_time > pattern['time_ranges']['penalty_start']:
                        # 超時時更重視運動類型的匹配度
                        return (time_score * 0.3) + (type_score * 0.7)
                    else:
                        return (time_score * 0.5) + (type_score * 0.5)
                elif breed_type == 'endurance_type':
                    if exercise_time < pattern['time_ranges']['penalty_start']:
                        # 時間不足時更重視時間因素
                        return (time_score * 0.7) + (type_score * 0.3)
                    else:
                        return (time_score * 0.6) + (type_score * 0.4)
                else:
                    return (time_score * 0.5) + (type_score * 0.5)

            # 第二部分:專業技能需求評估
            def evaluate_expertise_requirements():
                care_level = breed_info.get('Care Level', 'MODERATE').upper()
                temperament = breed_info.get('Temperament', '').lower()

                # 定義專業技能要求
                expertise_requirements = {
                    'training_complexity': {
                        'VERY HIGH': {'beginner': 0.2, 'intermediate': 0.5, 'advanced': 0.9},
                        'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
                        'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
                        'LOW': {'beginner': 0.9, 'intermediate': 0.95, 'advanced': 0.9}
                    },
                    'special_traits': {
                        'working': 0.2,    # 工作犬需要額外技能
                        'herding': 0.2,    # 牧羊犬需要特殊訓練
                        'intelligent': 0.15,# 高智商犬種需要心智刺激
                        'independent': 0.15,# 獨立性強的需要特殊處理
                        'protective': 0.1   # 護衛犬需要適當訓練
                    }
                }

                # 基礎分數
                base_score = expertise_requirements['training_complexity'][care_level][user_prefs.experience_level]

                # 特殊特徵評估
                trait_penalty = 0
                for trait, penalty in expertise_requirements['special_traits'].items():
                    if trait in temperament:
                        if user_prefs.experience_level == 'beginner':
                            trait_penalty += penalty
                        elif user_prefs.experience_level == 'advanced':
                            trait_penalty -= penalty * 0.5  # 專家反而因應對特殊特徵而加分

                return max(0.2, min(1.0, base_score - trait_penalty))

            def evaluate_living_conditions() -> float:
                """
                評估生活環境適配性,特別加強:
                1. 降低對大型犬的過度懲罰
                2. 增加品種特性評估
                3. 提升對適應性的重視度
                """
                size = breed_info['Size']
                exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
                temperament = breed_info.get('Temperament', '').lower()
                description = breed_info.get('Description', '').lower()

                # 降低對大型犬的懲罰
                space_requirements = {
                    'apartment': {
                        'Small': 1.0,
                        'Medium': 0.8,
                        'Large': 0.7,
                        'Giant': 0.6,
                        'Varies': 0.8
                    },
                    'house_small': {
                        'Small': 0.9,
                        'Medium': 1.0,
                        'Large': 0.8,
                        'Giant': 0.7,
                        'Varies': 1.0
                    },
                    'house_large': {
                        'Small': 0.8,
                        'Medium': 0.9,
                        'Large': 1.0,
                        'Giant': 1.0,
                        'Varies': 0.9
                    }
                }

                # 基礎空間分數
                space_score = space_requirements.get(
                    user_prefs.living_space,
                    space_requirements['house_small']
                )[size]

                # 品種適應性評估
                adaptability_bonus = 0
                adaptable_traits = ['adaptable', 'calm', 'quiet', 'gentle', 'laid-back']
                challenging_traits = ['hyperactive', 'restless', 'requires space']

                # 計算適應性加分
                if user_prefs.living_space == 'apartment':
                    for trait in adaptable_traits:
                        if trait in temperament or trait in description:
                            adaptability_bonus += 0.1

                    # 特別處理大型犬的適應性
                    if size in ['Large', 'Giant']:
                        apartment_friendly_traits = ['calm', 'gentle', 'quiet']
                        matched_traits = sum(1 for trait in apartment_friendly_traits
                                           if trait in temperament or trait in description)
                        if matched_traits > 0:
                            adaptability_bonus += 0.15 * matched_traits

                # 活動空間需求調整,更寬容的評估
                if exercise_needs in ['HIGH', 'VERY HIGH']:
                    if user_prefs.living_space != 'house_large':
                        space_score *= 0.9  # 從0.8提升到0.9,降低懲罰

                # 院子可用性評估,提供更合理的獎勵
                yard_scores = {
                    'no_yard': 0.85,      # 從0.7提升到0.85
                    'shared_yard': 0.92,  # 從0.85提升到0.92
                    'private_yard': 1.0
                }
                yard_multiplier = yard_scores.get(user_prefs.yard_access, 0.85)

                # 根據體型調整院子重要性
                if size in ['Large', 'Giant']:
                    yard_importance = 1.2
                elif size == 'Medium':
                    yard_importance = 1.1
                else:
                    yard_importance = 1.0

                # 計算最終分數
                final_score = space_score * (1 + adaptability_bonus)

                # 應用院子影響
                if user_prefs.yard_access != 'no_yard':
                    yard_bonus = (yard_multiplier - 1) * yard_importance
                    final_score = min(1.0, final_score + yard_bonus)

                # 確保分數在合理範圍內,但提供更高的基礎分數
                return max(0.4, min(1.0, final_score))

            # 第四部分:品種特性評估
            def evaluate_breed_traits():
                temperament = breed_info.get('Temperament', '').lower()
                description = breed_info.get('Description', '').lower()

                trait_scores = []

                # 評估性格特徵
                if user_prefs.has_children:
                    if 'good with children' in description:
                        trait_scores.append(1.0)
                    elif 'patient' in temperament or 'gentle' in temperament:
                        trait_scores.append(0.8)
                    else:
                        trait_scores.append(0.5)

                # 評估適應性
                adaptability_keywords = ['adaptable', 'versatile', 'flexible']
                if any(keyword in temperament for keyword in adaptability_keywords):
                    trait_scores.append(1.0)
                else:
                    trait_scores.append(0.7)

                return sum(trait_scores) / len(trait_scores) if trait_scores else 0.7

            # 計算各項匹配分數
            perfect_matches['exercise_match'] = evaluate_exercise_compatibility()
            perfect_matches['experience_match'] = evaluate_expertise_requirements()
            perfect_matches['living_condition_match'] = evaluate_living_conditions()
            perfect_matches['size_match'] = evaluate_living_conditions()  # 共用生活環境評估
            perfect_matches['breed_trait_match'] = evaluate_breed_traits()

            return perfect_matches

        def calculate_weights() -> dict:
            """
            動態計算評分權重,特別關注:
            1. 極端情況的權重調整
            2. 使用者條件的協同效應
            3. 品種特性的影響

            Returns:
                dict: 包含各評分項目權重的字典
            """
            # 定義基礎權重 - 提供更合理的起始分配
            base_weights = {
                'space': 0.25,        # 提升空間權重,因為這是最基本的需求
                'exercise': 0.25,     # 運動需求同樣重要
                'experience': 0.20,   # 保持經驗的重要性
                'grooming': 0.10,     # 稍微降低美容需求的權重
                'noise': 0.10,        # 維持噪音評估的權重
                'health': 0.10        # 維持健康評估的權重
            }

            def analyze_condition_extremity() -> dict:
                """
                評估使用者條件的極端程度,這影響權重的動態調整。
                根據條件的極端程度返回相應的調整建議。
                """
                extremities = {}

                # 運動時間評估 - 更細緻的分級
                if user_prefs.exercise_time <= 30:
                    extremities['exercise'] = ('extremely_low', 0.8)
                elif user_prefs.exercise_time <= 60:
                    extremities['exercise'] = ('low', 0.6)
                elif user_prefs.exercise_time >= 180:
                    extremities['exercise'] = ('extremely_high', 0.8)
                elif user_prefs.exercise_time >= 120:
                    extremities['exercise'] = ('high', 0.6)
                else:
                    extremities['exercise'] = ('moderate', 0.3)

                # 空間限制評估 - 更合理的空間評估
                space_extremity = {
                    'apartment': ('restricted', 0.7),    # 從0.9降低到0.7,減少限制
                    'house_small': ('moderate', 0.5),
                    'house_large': ('spacious', 0.3)
                }
                extremities['space'] = space_extremity.get(user_prefs.living_space, ('moderate', 0.5))

                # 經驗水平評估 - 保持原有的評估邏輯
                experience_extremity = {
                    'beginner': ('low', 0.7),
                    'intermediate': ('moderate', 0.4),
                    'advanced': ('high', 0.6)
                }
                extremities['experience'] = experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5))

                return extremities

            def calculate_weight_adjustments(extremities: dict) -> dict:
                """
                根據極端程度計算權重調整,特別注意條件組合的影響。
                """
                adjustments = {}
                temperament = breed_info.get('Temperament', '').lower()
                is_working_dog = any(trait in temperament
                                   for trait in ['herding', 'working', 'intelligent', 'tireless'])

                # 空間權重調整
                if extremities['space'][0] == 'restricted':
                    if extremities['exercise'][0] in ['high', 'extremely_high']:
                        adjustments['space'] = 1.3
                        adjustments['exercise'] = 2.3
                    else:
                        adjustments['space'] = 1.6
                        adjustments['noise'] = 1.5

                # 運動需求權重調整
                if extremities['exercise'][0] in ['extremely_high', 'extremely_low']:
                    base_adjustment = 2.0
                    if extremities['exercise'][0] == 'extremely_high':
                        if is_working_dog:
                            base_adjustment = 2.3
                    adjustments['exercise'] = base_adjustment

                # 經驗需求權重調整
                if extremities['experience'][0] == 'low':
                    adjustments['experience'] = 1.8
                    if breed_info.get('Care Level') == 'HIGH':
                        adjustments['experience'] = 2.0
                elif extremities['experience'][0] == 'high':
                    if is_working_dog:
                        adjustments['experience'] = 1.8  # 從2.5降低到1.8

                # 特殊組合的處理
                def adjust_for_combinations():
                    if (extremities['space'][0] == 'restricted' and
                        extremities['exercise'][0] in ['high', 'extremely_high']):
                        # 適度降低極端組合的影響
                        adjustments['space'] = adjustments.get('space', 1.0) * 1.2
                        adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.2

                    # 理想組合的獎勵
                    if (extremities['experience'][0] == 'high' and
                        extremities['space'][0] == 'spacious' and
                        extremities['exercise'][0] in ['high', 'extremely_high'] and
                        is_working_dog):
                        adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
                        adjustments['experience'] = adjustments.get('experience', 1.0) * 1.3

                adjust_for_combinations()
                return adjustments

            # 獲取條件極端度
            extremities = analyze_condition_extremity()

            # 計算權重調整
            weight_adjustments = calculate_weight_adjustments(extremities)

            # 應用權重調整,確保總和為1
            final_weights = base_weights.copy()
            for key, adjustment in weight_adjustments.items():
                if key in final_weights:
                    final_weights[key] *= adjustment

            # 正規化權重
            total_weight = sum(final_weights.values())
            normalized_weights = {k: v/total_weight for k, v in final_weights.items()}

            return normalized_weights

        def calculate_base_score(scores: dict, weights: dict) -> float:
            """
            計算基礎評分分數,採用更靈活的評分機制。

            這個函數使用了改進後的評分邏輯,主要關注:
            1. 降低關鍵指標的最低門檻,使系統更包容
            2. 引入非線性評分曲線,讓分數分布更合理
            3. 優化多重條件失敗的處理方式
            4. 加強對品種特性的考慮

            Parameters:
                scores: 包含各項評分的字典
                weights: 包含各項權重的字典

            Returns:
                float: 0.2到1.0之間的基礎分數
            """
            # 重新定義關鍵指標閾值,提供更寬容的評分標準
            critical_thresholds = {
                'space': 0.35,
                'exercise': 0.35,
                'experience': 0.5,
                'noise': 0.5
            }

            # 評估關鍵指標失敗情況
            def evaluate_critical_failures() -> list:
                """
                評估關鍵指標的失敗情況,但採用更寬容的標準。
                根據品種特性動態調整失敗判定。
                """
                failures = []
                temperament = breed_info.get('Temperament', '').lower()

                for metric, threshold in critical_thresholds.items():
                    if scores[metric] < threshold:
                        # 特殊情況處理:適應性強的品種可以有更低的空間要求
                        if metric == 'space' and any(trait in temperament
                           for trait in ['adaptable', 'calm', 'apartment']):
                            if scores[metric] >= threshold - 0.1:
                                continue

                        # 運動需求的特殊處理
                        elif metric == 'exercise':
                            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
                            if exercise_needs == 'LOW' and scores[metric] >= threshold - 0.1:
                                continue

                        failures.append((metric, scores[metric]))

                return failures

            # 計算基礎分數
            def calculate_weighted_score() -> float:
                """
                計算加權分數,使用非線性函數使分數分布更合理。
                """
                weighted_scores = []
                for key, score in scores.items():
                    if key in weights:
                        # 使用sigmoid函數使分數曲線更平滑
                        adjusted_score = 1 / (1 + math.exp(-10 * (score - 0.5)))
                        weighted_scores.append(adjusted_score * weights[key])

                return sum(weighted_scores)

            # 處理臨界失敗情況
            critical_failures = evaluate_critical_failures()
            base_score = calculate_weighted_score()

            if critical_failures:
                # 分離空間和運動相關的懲罰
                space_exercise_penalty = 0
                other_penalty = 0

                for metric, score in critical_failures:
                    if metric in ['space', 'exercise']:
                        # 降低空間和運動失敗的懲罰程度
                        penalty = (critical_thresholds[metric] - score) * 0.08
                        space_exercise_penalty += penalty
                    else:
                        # 其他失敗的懲罰保持較高
                        penalty = (critical_thresholds[metric] - score) * 0.20
                        other_penalty += penalty

                # 計算總懲罰,但使用更溫和的方式
                total_penalty = (space_exercise_penalty + other_penalty) / 2
                base_score *= (1 - total_penalty)

                # 多重失敗的處理更寬容
                if len(critical_failures) > 1:
                    # 從0.98提升到0.99,降低多重失敗的疊加懲罰
                    base_score *= (0.99 ** (len(critical_failures) - 1))

            # 品種特性加分
            def apply_breed_bonus() -> float:
                """
                根據品種特性提供額外加分,
                特別是對於在特定環境下表現良好的品種。
                """
                bonus = 0
                temperament = breed_info.get('Temperament', '').lower()
                description = breed_info.get('Description', '').lower()

                # 適應性加分
                adaptability_traits = ['adaptable', 'versatile', 'easy-going']
                if any(trait in temperament for trait in adaptability_traits):
                    bonus += 0.05

                # 公寓適應性加分
                if user_prefs.living_space == 'apartment':
                    apartment_traits = ['calm', 'quiet', 'good for apartments']
                    if any(trait in temperament or trait in description for trait in apartment_traits):
                        bonus += 0.05

                return min(0.1, bonus)  # 限制最大加分

            # 應用品種特性加分
            breed_bonus = apply_breed_bonus()
            base_score = min(1.0, base_score * (1 + breed_bonus))

            # 確保最終分數在合理範圍內
            return max(0.2, min(1.0, base_score))

        def evaluate_condition_interactions(scores: dict) -> float:
            """評估不同條件間的相互影響,更寬容地處理極端組合"""
            interaction_penalty = 1.0

            # 只保留最基本的經驗相關評估
            if user_prefs.experience_level == 'beginner':
                if breed_info.get('Care Level') == 'HIGH':
                    interaction_penalty *= 0.95

            # 運動時間與類型的基本互動也降低懲罰程度
            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
            if exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
                interaction_penalty *= 0.95

            return interaction_penalty

        def calculate_adjusted_perfect_bonus(perfect_conditions: dict) -> float:
            """計算完美匹配獎勵,但更注重條件的整體表現"""
            bonus = 1.0

            # 降低單項獎勵的影響力
            bonus += 0.06 * perfect_conditions['size_match']
            bonus += 0.06 * perfect_conditions['exercise_match']
            bonus += 0.06 * perfect_conditions['experience_match']
            bonus += 0.03 * perfect_conditions['living_condition_match']

            # 如果有任何條件表現不佳,降低整體獎勵
            low_scores = [score for score in perfect_conditions.values() if score < 0.6]
            if low_scores:
                bonus *= (0.85 ** len(low_scores))

            # 確保獎勵不會過高
            return min(1.25, bonus)

        def apply_breed_specific_adjustments(score: float) -> float:
            """根據品種特性進行最終調整"""
            # 檢查是否存在極端不匹配的情況
            exercise_mismatch = False
            size_mismatch = False
            experience_mismatch = False

            # 運動需求極端不匹配
            if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
                if user_prefs.exercise_time < 90 or user_prefs.exercise_type == 'light_walks':
                    exercise_mismatch = True

            # 體型與空間極端不匹配
            if user_prefs.living_space == 'apartment' and breed_info['Size'] in ['Large', 'Giant']:
                size_mismatch = True

            # 經驗需求極端不匹配
            if user_prefs.experience_level == 'beginner' and breed_info.get('Care Level') == 'HIGH':
                experience_mismatch = True

            # 根據不匹配的數量進行懲罰
            mismatch_count = sum([exercise_mismatch, size_mismatch, experience_mismatch])
            if mismatch_count > 0:
                score *= (0.8 ** mismatch_count)

            return score

        # 計算動態權重
        weights = calculate_weights()

        # 正規化權重
        total_weight = sum(weights.values())
        normalized_weights = {k: v/total_weight for k, v in weights.items()}

        # 計算基礎分數
        base_score = calculate_base_score(scores, normalized_weights)

        # 評估條件互動
        interaction_multiplier = evaluate_condition_interactions(scores)

        # 計算完美匹配獎勵
        perfect_conditions = evaluate_perfect_conditions()
        perfect_bonus = calculate_adjusted_perfect_bonus(perfect_conditions)

        # 計算初步分數
        preliminary_score = base_score * interaction_multiplier * perfect_bonus

        # 應用品種特定調整
        final_score = apply_breed_specific_adjustments(preliminary_score)

        # 確保分數在合理範圍內,並降低最高可能分數
        max_possible_score = 0.96  # 降低最高可能分數
        min_possible_score = 0.3

        return min(max_possible_score, max(min_possible_score, final_score))

    def calculate_environmental_fit(self, breed_info: dict, user_prefs: UserPreferences) -> float:
        """
        計算品種與環境的適應性加成
        
        Args:
            breed_info: 品種資訊
            user_prefs: 使用者偏好
            
        Returns:
            float: 環境適應性加成分數
        """
        adaptability_score = 0.0
        description = breed_info.get('Description', '').lower()
        temperament = breed_info.get('Temperament', '').lower()

        # 環境適應性評估
        if user_prefs.living_space == 'apartment':
            if 'adaptable' in temperament or 'apartment' in description:
                adaptability_score += 0.1
            if breed_info.get('Size') == 'Small':
                adaptability_score += 0.05
        elif user_prefs.living_space == 'house_large':
            if 'active' in temperament or 'energetic' in description:
                adaptability_score += 0.1

        # 氣候適應性
        if user_prefs.climate in description or user_prefs.climate in temperament:
            adaptability_score += 0.05

        return min(0.2, adaptability_score)