File size: 20,996 Bytes
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089125f
1e4c9bc
 
 
089125f
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089125f
 
 
 
1e4c9bc
089125f
1e4c9bc
 
 
 
089125f
 
 
 
 
1e4c9bc
 
 
 
 
 
089125f
1e4c9bc
 
 
 
089125f
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089125f
 
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089125f
 
 
1e4c9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
089125f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import re
import json
import numpy as np
import sqlite3
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass, field
import traceback
from sentence_transformers import SentenceTransformer
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info

@dataclass
class QueryDimensions:
    """Structured query intent data structure"""
    spatial_constraints: List[str] = field(default_factory=list)
    activity_level: List[str] = field(default_factory=list)
    noise_preferences: List[str] = field(default_factory=list)
    size_preferences: List[str] = field(default_factory=list)
    family_context: List[str] = field(default_factory=list)
    maintenance_level: List[str] = field(default_factory=list)
    special_requirements: List[str] = field(default_factory=list)
    breed_mentions: List[str] = field(default_factory=list)
    confidence_scores: Dict[str, float] = field(default_factory=dict)

@dataclass
class DimensionalSynonyms:
    """Dimensional synonyms dictionary structure"""
    spatial: Dict[str, List[str]] = field(default_factory=dict)
    activity: Dict[str, List[str]] = field(default_factory=dict)
    noise: Dict[str, List[str]] = field(default_factory=dict)
    size: Dict[str, List[str]] = field(default_factory=dict)
    family: Dict[str, List[str]] = field(default_factory=dict)
    maintenance: Dict[str, List[str]] = field(default_factory=dict)
    special: Dict[str, List[str]] = field(default_factory=dict)

class QueryUnderstandingEngine:
    """
    多維度語義查詢理解引擎
    支援中英文自然語言理解並轉換為結構化品種推薦查詢
    """

    def __init__(self):
        """初始化查詢理解引擎"""
        self.sbert_model = None
        self._sbert_loading_attempted = False
        self.breed_list = self._load_breed_list()
        self.synonyms = self._initialize_synonyms()
        self.semantic_templates = {}
        # 延遲SBERT載入直到需要時才在GPU環境中進行
        print("QueryUnderstandingEngine initialized (SBERT loading deferred)")

    def _load_breed_list(self) -> List[str]:
        """載入品種清單"""
        try:
            conn = sqlite3.connect('animal_detector.db')
            cursor = conn.cursor()
            cursor.execute("SELECT DISTINCT Breed FROM AnimalCatalog")
            breeds = [row[0] for row in cursor.fetchall()]
            cursor.close()
            conn.close()
            return breeds
        except Exception as e:
            print(f"Error loading breed list: {str(e)}")
            # 備用品種清單
            return ['Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever',
                   'Bulldog', 'Poodle', 'Beagle', 'Border_Collie', 'Yorkshire_Terrier']

    def _initialize_sbert_model(self):
        """初始化 SBERT 模型 - 延遲載入以避免ZeroGPU CUDA初始化問題"""
        if self.sbert_model is not None or getattr(self, '_sbert_loading_attempted', False):
            return self.sbert_model
            
        try:
            print("Loading SBERT model for query understanding in GPU context...")
            model_options = ['all-MiniLM-L6-v2', 'all-mpnet-base-v2', 'all-MiniLM-L12-v2']

            for model_name in model_options:
                try:
                    import torch
                    device = 'cuda' if torch.cuda.is_available() else 'cpu'
                    self.sbert_model = SentenceTransformer(model_name, device=device)
                    print(f"SBERT model {model_name} loaded successfully for query understanding on {device}")
                    return self.sbert_model
                except Exception as e:
                    print(f"Failed to load {model_name}: {str(e)}")
                    continue

            print("All SBERT models failed to load. Using keyword-only analysis.")
            self.sbert_model = None
            return None

        except Exception as e:
            print(f"Failed to initialize SBERT model: {str(e)}")
            self.sbert_model = None
            return None
        finally:
            self._sbert_loading_attempted = True

    def _initialize_synonyms(self) -> DimensionalSynonyms:
        """初始化多維度同義詞字典"""
        return DimensionalSynonyms(
            spatial={
                'apartment': ['apartment', 'flat', 'condo', 'small space', 'city living',
                             'urban', 'no yard', 'indoor'],
                'house': ['house', 'home', 'yard', 'garden', 'backyard', 'large space',
                         'suburban', 'rural', 'farm']
            },
            activity={
                'low': ['low activity', 'sedentary', 'couch potato', 'minimal exercise',
                       'indoor lifestyle', 'lazy', 'calm'],
                'moderate': ['moderate activity', 'daily walks', 'light exercise',
                           'regular walks'],
                'high': ['high activity', 'energetic', 'active', 'exercise', 'hiking',
                        'running', 'jogging', 'outdoor sports']
            },
            noise={
                'low': ['quiet', 'silent', 'no barking', 'peaceful', 'low noise',
                       'rarely barks', 'soft-spoken'],
                'moderate': ['moderate barking', 'occasional barking'],
                'high': ['loud', 'barking', 'vocal', 'noisy', 'frequent barking',
                        'alert dog']
            },
            size={
                'small': ['small', 'tiny', 'little', 'compact', 'miniature', 'toy',
                         'lap dog'],
                'medium': ['medium', 'moderate size', 'average', 'mid-sized'],
                'large': ['large', 'big', 'giant', 'huge', 'massive', 'great']
            },
            family={
                'children': ['children', 'kids', 'family', 'child-friendly', 'toddler',
                           'baby', 'school age'],
                'elderly': ['elderly', 'senior', 'old people', 'retirement', 'aged'],
                'single': ['single', 'alone', 'individual', 'solo', 'myself']
            },
            maintenance={
                'low': ['low maintenance', 'easy care', 'simple', 'minimal grooming',
                       'wash and go'],
                'moderate': ['moderate maintenance', 'regular grooming'],
                'high': ['high maintenance', 'professional grooming', 'daily brushing',
                        'care intensive']
            },
            special={
                'guard': ['guard dog', 'protection', 'security', 'watchdog',
                         'protective', 'defender'],
                'companion': ['companion', 'therapy', 'emotional support', 'comfort',
                            'cuddly', 'lap dog'],
                'hypoallergenic': ['hypoallergenic', 'allergies', 'non-shedding',
                                 'allergy-friendly', 'no shed'],
                'first_time': ['first time', 'beginner', 'new to dogs', 'inexperienced',
                              'never owned']
            }
        )

    def _build_semantic_templates(self):
        """建立語義模板向量(僅在 SBERT 可用時)"""
        # Initialize SBERT model if needed
        if self.sbert_model is None:
            self._initialize_sbert_model()
            
        if not self.sbert_model:
            return

        try:
            # 為每個維度建立模板句子
            templates = {
                'spatial_apartment': "I live in an apartment with limited space and no yard",
                'spatial_house': "I live in a house with a large yard and outdoor space",
                'activity_low': "I prefer a calm, low-energy dog that doesn't need much exercise",
                'activity_high': "I want an active, energetic dog for hiking and outdoor activities",
                'noise_low': "I need a quiet dog that rarely barks and won't disturb neighbors",
                'noise_high': "I don't mind a vocal dog that barks and makes noise",
                'size_small': "I prefer small, compact dogs that are easy to handle",
                'size_large': "I want a large, impressive dog with strong presence",
                'family_children': "I have young children and need a child-friendly dog",
                'family_elderly': "I'm looking for a calm companion dog for elderly person",
                'maintenance_low': "I want a low-maintenance dog that's easy to care for",
                'maintenance_high': "I don't mind high-maintenance dogs requiring professional grooming"
            }

            # 生成模板向量
            for key, template in templates.items():
                embedding = self.sbert_model.encode(template, convert_to_tensor=False)
                self.semantic_templates[key] = embedding

            print(f"Built {len(self.semantic_templates)} semantic templates")

        except Exception as e:
            print(f"Error building semantic templates: {str(e)}")
            self.semantic_templates = {}

    def analyze_query(self, user_input: str) -> QueryDimensions:
        """
        分析使用者查詢並提取多維度意圖

        Args:
            user_input: 使用者的自然語言查詢

        Returns:
            QueryDimensions: 結構化的查詢維度
        """
        try:
            # 正規化輸入文字
            normalized_input = user_input.lower().strip()

            # 基於關鍵字的維度分析
            dimensions = self._extract_keyword_dimensions(normalized_input)

            # 如果 SBERT 可用,進行語義分析增強
            if self.sbert_model is None:
                self._initialize_sbert_model()
                
            if self.sbert_model:
                semantic_dimensions = self._extract_semantic_dimensions(user_input)
                dimensions = self._merge_dimensions(dimensions, semantic_dimensions)

            # 提取品種提及
            dimensions.breed_mentions = self._extract_breed_mentions(normalized_input)

            # 計算信心分數
            dimensions.confidence_scores = self._calculate_confidence_scores(dimensions, user_input)

            return dimensions

        except Exception as e:
            print(f"Error analyzing query: {str(e)}")
            print(traceback.format_exc())
            # 回傳空的維度結構
            return QueryDimensions()

    def _extract_keyword_dimensions(self, text: str) -> QueryDimensions:
        """基於關鍵字提取維度"""
        dimensions = QueryDimensions()

        # 空間限制分析
        for category, keywords in self.synonyms.spatial.items():
            if any(keyword in text for keyword in keywords):
                dimensions.spatial_constraints.append(category)

        # 活動水平分析
        for level, keywords in self.synonyms.activity.items():
            if any(keyword in text for keyword in keywords):
                dimensions.activity_level.append(level)

        # 噪音偏好分析
        for level, keywords in self.synonyms.noise.items():
            if any(keyword in text for keyword in keywords):
                dimensions.noise_preferences.append(level)

        # 尺寸偏好分析
        for size, keywords in self.synonyms.size.items():
            if any(keyword in text for keyword in keywords):
                dimensions.size_preferences.append(size)

        # 家庭情況分析
        for context, keywords in self.synonyms.family.items():
            if any(keyword in text for keyword in keywords):
                dimensions.family_context.append(context)

        # 維護水平分析
        for level, keywords in self.synonyms.maintenance.items():
            if any(keyword in text for keyword in keywords):
                dimensions.maintenance_level.append(level)

        # 特殊需求分析
        for requirement, keywords in self.synonyms.special.items():
            if any(keyword in text for keyword in keywords):
                dimensions.special_requirements.append(requirement)

        return dimensions

    def _extract_semantic_dimensions(self, text: str) -> QueryDimensions:
        """基於語義相似度提取維度(需要 SBERT)"""
        if not self.sbert_model or not self.semantic_templates:
            return QueryDimensions()

        try:
            # 生成查詢向量
            query_embedding = self.sbert_model.encode(text, convert_to_tensor=False)

            dimensions = QueryDimensions()

            # 計算與各個模板的相似度
            similarities = {}
            for template_key, template_embedding in self.semantic_templates.items():
                similarity = np.dot(query_embedding, template_embedding) / (
                    np.linalg.norm(query_embedding) * np.linalg.norm(template_embedding)
                )
                similarities[template_key] = similarity

            # 設定相似度閾值
            threshold = 0.5

            # 根據相似度提取維度
            for template_key, similarity in similarities.items():
                if similarity > threshold:
                    if template_key.startswith('spatial_'):
                        category = template_key.replace('spatial_', '')
                        if category not in dimensions.spatial_constraints:
                            dimensions.spatial_constraints.append(category)
                    elif template_key.startswith('activity_'):
                        level = template_key.replace('activity_', '')
                        if level not in dimensions.activity_level:
                            dimensions.activity_level.append(level)
                    elif template_key.startswith('noise_'):
                        level = template_key.replace('noise_', '')
                        if level not in dimensions.noise_preferences:
                            dimensions.noise_preferences.append(level)
                    elif template_key.startswith('size_'):
                        size = template_key.replace('size_', '')
                        if size not in dimensions.size_preferences:
                            dimensions.size_preferences.append(size)
                    elif template_key.startswith('family_'):
                        context = template_key.replace('family_', '')
                        if context not in dimensions.family_context:
                            dimensions.family_context.append(context)
                    elif template_key.startswith('maintenance_'):
                        level = template_key.replace('maintenance_', '')
                        if level not in dimensions.maintenance_level:
                            dimensions.maintenance_level.append(level)

            return dimensions

        except Exception as e:
            print(f"Error in semantic dimension extraction: {str(e)}")
            return QueryDimensions()

    def _extract_breed_mentions(self, text: str) -> List[str]:
        """提取品種提及"""
        mentioned_breeds = []

        for breed in self.breed_list:
            # 將品種名稱轉換為顯示格式
            breed_display = breed.replace('_', ' ').lower()
            breed_words = breed_display.split()

            # 檢查品種名稱是否在文字中
            breed_found = False

            # 完整品種名稱匹配
            if breed_display in text:
                breed_found = True
            else:
                # 部分匹配(至少匹配品種名稱的主要部分)
                main_word = breed_words[0] if breed_words else ""
                if len(main_word) > 3 and main_word in text:
                    breed_found = True

            if breed_found:
                mentioned_breeds.append(breed)

        return mentioned_breeds

    def _merge_dimensions(self, keyword_dims: QueryDimensions,
                         semantic_dims: QueryDimensions) -> QueryDimensions:
        """合併關鍵字和語義維度"""
        merged = QueryDimensions()

        # 合併各個維度的結果(去重)
        merged.spatial_constraints = list(set(
            keyword_dims.spatial_constraints + semantic_dims.spatial_constraints
        ))
        merged.activity_level = list(set(
            keyword_dims.activity_level + semantic_dims.activity_level
        ))
        merged.noise_preferences = list(set(
            keyword_dims.noise_preferences + semantic_dims.noise_preferences
        ))
        merged.size_preferences = list(set(
            keyword_dims.size_preferences + semantic_dims.size_preferences
        ))
        merged.family_context = list(set(
            keyword_dims.family_context + semantic_dims.family_context
        ))
        merged.maintenance_level = list(set(
            keyword_dims.maintenance_level + semantic_dims.maintenance_level
        ))
        merged.special_requirements = list(set(
            keyword_dims.special_requirements + semantic_dims.special_requirements
        ))

        return merged

    def _calculate_confidence_scores(self, dimensions: QueryDimensions,
                                   original_text: str) -> Dict[str, float]:
        """計算各維度的信心分數"""
        confidence_scores = {}

        # 基於匹配的關鍵字數量計算信心分數
        text_length = len(original_text.split())

        # 空間限制信心分數
        spatial_matches = len(dimensions.spatial_constraints)
        confidence_scores['spatial'] = min(1.0, spatial_matches * 0.5)

        # 活動水平信心分數
        activity_matches = len(dimensions.activity_level)
        confidence_scores['activity'] = min(1.0, activity_matches * 0.5)

        # 噪音偏好信心分數
        noise_matches = len(dimensions.noise_preferences)
        confidence_scores['noise'] = min(1.0, noise_matches * 0.5)

        # 尺寸偏好信心分數
        size_matches = len(dimensions.size_preferences)
        confidence_scores['size'] = min(1.0, size_matches * 0.5)

        # 家庭情況信心分數
        family_matches = len(dimensions.family_context)
        confidence_scores['family'] = min(1.0, family_matches * 0.5)

        # 維護水平信心分數
        maintenance_matches = len(dimensions.maintenance_level)
        confidence_scores['maintenance'] = min(1.0, maintenance_matches * 0.5)

        # 特殊需求信心分數
        special_matches = len(dimensions.special_requirements)
        confidence_scores['special'] = min(1.0, special_matches * 0.5)

        # 品種提及信心分數
        breed_matches = len(dimensions.breed_mentions)
        confidence_scores['breeds'] = min(1.0, breed_matches * 0.3)

        # 整體信心分數(基於總匹配數量和文字長度)
        total_matches = sum([
            spatial_matches, activity_matches, noise_matches, size_matches,
            family_matches, maintenance_matches, special_matches, breed_matches
        ])
        confidence_scores['overall'] = min(1.0, total_matches / max(1, text_length * 0.1))

        return confidence_scores

    def get_dimension_summary(self, dimensions: QueryDimensions) -> Dict[str, Any]:
        """獲取維度摘要信息"""
        return {
            'spatial_constraints': dimensions.spatial_constraints,
            'activity_level': dimensions.activity_level,
            'noise_preferences': dimensions.noise_preferences,
            'size_preferences': dimensions.size_preferences,
            'family_context': dimensions.family_context,
            'maintenance_level': dimensions.maintenance_level,
            'special_requirements': dimensions.special_requirements,
            'breed_mentions': [breed.replace('_', ' ') for breed in dimensions.breed_mentions],
            'confidence_scores': dimensions.confidence_scores,
            'total_dimensions_detected': sum([
                len(dimensions.spatial_constraints),
                len(dimensions.activity_level),
                len(dimensions.noise_preferences),
                len(dimensions.size_preferences),
                len(dimensions.family_context),
                len(dimensions.maintenance_level),
                len(dimensions.special_requirements)
            ])
        }

def analyze_user_query(user_input: str) -> QueryDimensions:
    """
    便利函數:分析使用者查詢

    Args:
        user_input: 使用者的自然語言查詢

    Returns:
        QueryDimensions: 結構化的查詢維度
    """
    engine = QueryUnderstandingEngine()
    return engine.analyze_query(user_input)

def get_query_summary(user_input: str) -> Dict[str, Any]:
    """
    便利函數:獲取查詢摘要

    Args:
        user_input: 使用者的自然語言查詢

    Returns:
        Dict: 查詢維度摘要
    """
    engine = QueryUnderstandingEngine()
    dimensions = engine.analyze_query(user_input)
    return engine.get_dimension_summary(dimensions)